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1 IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France, 2 INSERM, U896, Montpellier, France, 3 Université Montpellier1, Montpellier, France,
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Abstract

To identify genes implicated in metastatic colonization of the liver in colorectal cancer, we collected pairs of primary tumors
and hepatic metastases before chemotherapy in 13 patients. We compared mRNA expression in the pairs of patients to
identify genes deregulated during metastatic evolution. We then validated the identified genes using data obtained by
different groups. The 33-gene signature was able to classify 87% of hepatic metastases, 98% of primary tumors, 97% of
normal colon mucosa, and 95% of normal liver tissues in six datasets obtained using five different microarray platforms. The
identified genes are specific to colon cancer and hepatic metastases since other metastatic locations and hepatic
metastases originating from breast cancer were not classified by the signature. Gene Ontology term analysis showed that
50% of the genes are implicated in extracellular matrix remodeling, and more precisely in cell adhesion, extracellular matrix
organization and angiogenesis. Because of the high efficiency of the signature to classify colon hepatic metastases, the
identified genes represent promising targets to develop new therapies that will specifically affect hepatic metastasis
microenvironment.
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Introduction

Colorectal cancer (CRC) is the third most common cancer in

the world with 1.2 million new cases and more than 600,000

deaths every year [1]. In CRC, about 40% of patients will develop

metastases. Because the venous drainage of the colon is through

the portal vein, which goes directly to the liver, more than 70% of

the CRC metastases are located in the hepatic tissue. In about

50% of the metastatic patients this is the unique metastatic

location. Metastatic evolution results in a very poor prognosis with

a median survival of about two years in treated patients. Long

term survival is however possible in the 15% of patients that can

benefit of hepatic metastasis surgery, usually after induction

chemotherapy [2]. Improvement of current chemotherapies of

CRC liver metastases will result in a higher proportion of patient

benefiting from surgical resection, in longer survival time and

ultimately in a higher proportion of cured patients.

Metastasis dissemination is a multi-step phenomenon still not

completely understood [3]. For distant dissemination, a cell must

first evade the primary tumor site and access venous or lymphatic

circulation. This isolated cell must survive in the blood or

lymphatic stream until it reaches a new organ where it will stop

and adhere to endothelial cells in the capillary beds. Extravasation

from the vessels into the organ will then eventually take place and

cell will finally establish itself as a tumor by invasion and

proliferation, recruiting stromal cells and building a new vascular

network. Numerous genes are presumably implicated in these

processes but are not fully identified yet. A better understanding of

these mechanisms should allow to develop new therapeutic

treatments that could target each of these steps. In current clinical

practice, several adjuvant therapies are able to decrease metastatic

dissemination. In CRC, oxaliplatin/5FU combined therapy

significantly increases disease free and overall survival in stage

III patients and thus decreases metastasis development [4].

However, such a therapy targets cell proliferation and not directly

the metastatic process.

Few studies compared microarray data from primary colon

tumors and metastatic tissues to identify genes implicated in cancer

progression [5]. Three studies focused on the development of

diagnostic and prognostic markers and did not try to identify gene

signatures able to differentiate metastatic from primary cancer

tissues [6–8]. Two studies presented gene signatures associated

with metastatic disease containing more than 400 genes. Such long

lists of genes are difficult to use for the development of new

therapies [9,10]. Among the five studies aimed at identifying the

molecular mechanisms taking place during metastatic dissemina-

tion and growth, two did not succeed in the identification of a

signature able to clearly separate primary cancers from metastatic

tissues. In these two latter studies, authors analyzed pairs of

primary and metastatic tumors and showed that samples clustered

by patient and not by tissue origin [11,12]. This suggests that

heterogeneity between patients is higher than between a primary
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tumor and its metastases. Finally, the three gene signatures

published so far [9,13,14] share only few genes [8], underlining the

difficulty of extracting pertinent data from the background due to

human diversity, cancer heterogeneity and the use of different

microarray platforms.

Because of the difficulty of getting a robust signature from

clinical samples, several authors have used model cell lines to

identify genes associated with metastatic dissemination [9,15,16].

However, if working with cell lines will solve the problem of inter-

individual variations, tissues and corresponding cell lines have

different gene expression profiles [17]. This questioned the validity

of a cell line based approach for clinical applications except when

the results were crossed with those obtained with patient samples

[16].

Another approach to remove the noise due to inter-individual

variations is to use paired samples of primary and metastatic

tissues in a homogeneous group of patients. Proper statistical test

for paired samples allows the identification of genes implicated in

the unique difference between the tissues, the metastatic location

versus the primary tumor site. However, collection of such paired

tissues is difficult since most of the metastases are not surgically

removed. In addition, surgery of metastases takes place after

chemotherapy, which presumably modifies metastasis expression

profiles. This explains why only five studies have used such paired

samples in CRC patients [7,11–14]. Two of these studies did not

succeed in the identification of a gene signature able to separate

primary tumors from metastases [11,12] and two studies did not

try to identify such a signature [7,14]. Only Ki et al [13] reported

a 46-gene signature that perfectly separated the two classes. The

signature was able to correctly classify 15 out of 18 samples of a

training set. This training set was however collected in the same

study and an external validation of this signature is still lacking.

To identify genes implicated in metastatic colonization of the

liver in CRC, we collected pairs of primary tumors and hepatic

metastases before chemotherapy in a homogeneous group of 13

patients. We compared mRNA expression in the pairs of patients

to identify genes deregulated during metastatic evolution. We then

validated the identified genes using public data obtained by

different groups using different array platforms. By crossing the

results obtained on different platforms and in related but different

clinical models we sought to identify a gene signature robust

enough to reliably point out to common mechanisms that may be

targeted in patients.

Materials and Methods

Ethics Statement
The study was approved by ICM (Institut du Cancer de

Montpellier) CORT (Comité de Recherche Translationnelle)

ethical committee and all participating patients were informed of

the study and had to provide signed written informed consent

before enrollment.

Patients and Tissue samples
Forty colorectal cancer patients with synchronous and unre-

sectable liver metastases were enrolled in a prospective study at the

ICM Cancer center from January 2000 to June 2004 [18]. Normal

colon, colon cancer and hepatic metastasis samples were collected

at the time of surgery, prior to chemotherapy.

All tissue samples were identified with a two-letter code. The

first letter identifies the tissue origin (C: Colon, H: Hepatic, L:

Lung, P: Peritoneum) and the second letter the tissue tumor state

(N: Normal, P: Polyp, T: primary Tumor, M: Metastasis).

RNA preparation and hybridization
After RNA extraction using RNeasyH mini Kit (Qiagen), a small

fraction of the total RNA preparation was taken to determine the

quality of the sample and the yield of total RNA. Controls were

performed by UV spectroscopy and analysis of total RNA profile

using the Agilent RNA 6000 Nano LabChipH Kit with the Agilent

2100 Bioanalyser (Agilent Technologies, Palo Alto, CA) to

determine RNA purity, quantity, and integrity.

First strand cDNA synthesis was generated using a T7-linked

oligo-dT primer, followed by second strand synthesis. Labeled

cRNA probes were then generated by reverse transcription

followed by in vitro transcription, incorporating biotin labeling,

as part of the standard Affymetrix protocol. For each sample, the

probes were then hybridized to human genome U133A chips

(Affymetrix Inc., Santa Clara, CA) containing over 22 000

qualifiers, corresponding to genes and expressed sequence tags

(EST). Data acquisition, processing and normalization were done

as previously described [18]. The microarray data were deposited

in the public Gene Expression Omnibus (GEO) database (www.

ncbi.nlm.nih.gov/geo/) under accession number GSE49355.

Data analysis
All data analyses were done using the R statistical environment

[19]. A two-class paired SAM was implemented, using the R

package ‘‘samr’’ [20], in order to compare gene expression

between CT and HM. SAM allowed the identification of genes

whose expression varied significantly through the 26 paired

samples. If False Discovery Rate (FDR),0.001, gene expression

was considered significantly different.

Hierarchical unsupervised clusterings were performed using the

hcluster method of R package ‘‘amap’’ [21] and the plots using the

heatmap.2 function of ‘‘gplots’’ package [22]. Gene and sample

distances were calculated using absolute Pearson and Pearson

distances respectively. Linkages were done using the Ward

algorithm. Inter-study normalization used the Bioconductor

package ‘‘inSilicoMerging’’ [23,24] using an Empirical Bayes

method [25]. Gene- and pathway-enrichment analyses were done

using the DAVID web-server [26,27] and ClueGO Cytoscape

plugin [28,29] using Gene Ontology release 28.03.2013_18h05

[30]. ClueGO parameters were: MinLevel = 2; MaxLevel = 10;

NoGenes1 = 4; MinPercentage1 = 1.0; GOFusion = true;

GOGroup = true; KappaScoreThreshold = 0.5; GroupByKap-

paStat = true; Correction Method Used = Bonferroni step down.

Results

From the 40 CRC patients with synchronous and unresectable

liver metastases enrolled in this study, we obtained expression data

for at least one tissue in 28 patients (Table S1). This represented 18

normal colon mucosas (CN)*, 20 colon primary tumors (CT) and

19 hepatic metastases (HM). Most of the primary tumors were

located in the left colon and histological analysis showed a well or

moderate differentiation state. Among those 57 analyzed tissues,

both CT and HM were collected in 13 patients (Table 1). These

13 pairs of samples were used to identify genes differentially

expressed in HM versus the corresponding CT.

Identification of a specific gene signature
Expression profiling of the 26 samples was conducted on

Affymetrix human U133A chips containing 22200 probes

corresponding to about 12700 genes. We only considered the

12408 probes that were present in at least 50% of the samples.

After normalization and log2 transformation, we identified genes

differentially expressed between CT and HM using the SAM

Analysis of Colon Tumors and Paired Metastases
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method and a paired t-test statistics. Based on a false discovery rate

(FDR) of 0.1%, we obtained a first list of 66 probes.

A major problem with HM samples is that they may contain

contaminant normal liver tissue. This may lead to the false

identification of genes since liver and colon tissues have very

different gene expression profiles [13]. To minimize this problem,

HM samples were collected and microscopically checked by a

pathologist. Only those containing at least 50% of cancer cells

were retained in this study. This still however allowed a large

contamination of the HM tissues with normal liver. We thus used a

simple bioinformatics method to identify within the 66 probes

those for which the variation between CT and HM cannot be

explained by such a contamination. Let consider that a probe p

gives the same signal in a pair of CT and HM tissues

(pCT = pHM) and a different signal, pHN, in the paired normal

hepatic tissue (HN). Since HM sample may contain some HN

tissue, the measured pHMm is different from pHM and is

pHMm~(1{l):pHMzl:pHN, where l is the fraction of HN

contamination (0–0.5).

Thus the measured pCT/pHMm ratio is:

Equation 1 :
pCT

pHMm
~

pCT

(1{l):pHMzl:pHN

~
pCT

(1{l):pCTzl:pHN
~

1

(1{l)z l
pCT=pHN

Since we did not collect paired HN samples in our study, we

compared our measured pCT/pHMm values to the pCT/pHN

ratios obtained from 6 paired patients previously analyzed using

the same Affymetrix platform by Sheffer et al [7]. For each of the

66 probes identified in our study we calculated the minimum and

maximum values of the pCT/pHN ratios obtained with the 6 pairs

of Sheffer’s study. We then considered that a probe is a false

positive if it falls within the interval defined by equation 1 when l
varies between 0 and 0.5. The process is illustrated in Fig. 1 in the

case of the minimal pCT/pHN ratios obtained with the 6 Sheffer’s

paired samples. Each color corresponds to a probe and each dot to

a sample. For each probe the pCT/pHN ratio is constant and the

13 pCT/pHMm ratios obtained with our 13 pairs of patients are

thus aligned on a vertical line. When there is no contamination

(l= 0), equation 1 corresponds to the x-axis. Simulation of a

contamination of 50% gives the red dotted line that starts from the

diagonal +1 and goes to the horizontal y = +1 line, when data are

plotted using logarithmic scales. Any point between the x-axis and

the red dotted line can thus be explained by a hepatic

contamination and must be discarded. If we divide the plot in

four quadrants separated by the diagonal and the x-axis, this

essentially removed all the points in quadrant (a). The analysis was

done for both the minimal and the maximal pCT/pHN ratios

obtained with the 6 reference pairs and only samples that were

selected with both reference ratios were kept.

In addition, we were only interested in genes that are expressed

at a different level in CT and HM and we only kept the dots in

Fig. 1 corresponding to a CT/HM ratio of at least two, that is the

dots at a minimal distance of 1 from the x-axis. We also removed

the dots close to the diagonal because we sought to isolate possible

therapeutic targets that must be expressed at a different level in the

metastasis and in the surrounding normal liver tissue.

In summary, these filters removed all the dots present in the

hatched region in Fig. 1 for the 6 pCT/pHN ratios obtained from

Sheffer’s study. Quadrant (a) was totally removed by this approach

and quadrant (c) was almost empty whatever the pCT/pHN

reference ratio used. The two remaining quadrants (b) and (d)

correspond to genes up- and down-regulated in HM versus CT

respectively. Finally, for each probe, we counted the number of

dots in each quadrant and we kept the probes for which at least 8

out of the 13 pairs were present in the same quadrant. This

procedure suppressed genes known as expressed by normal hepatic

tissue like albumin and gave us the final list of 34 probes (Table 2

& 3).

External validations
The HM and CT samples used to derive the probe signature

were perfectly separated by unsupervised hierarchical clustering

(HMp and CTp in Fig. 2). This was however expected and we thus

proceeded with external validations using different datasets.

During the collection of the paired samples, we collected and

hybridized 6 HM and 7 CT additional unpaired samples. We also

collected 18 normal colon (CN) tissues, among which 10 were

from the same patients than the 13 paired CT and HM samples.

We classified these 31 samples together with the 26 paired samples

using two-way unsupervised hierarchical clustering. Three classes

were clearly identified, one containing only HM samples, a second

one with all the CT and one misclassified HM, and the last one

containing all the CN tissues (Fig. 1 and Table 4). The unpaired

and paired samples were mixed, showing that the gene expression

pattern was not due to the paired nature of the training set. In

addition, the 34-probe signature clearly discriminated CN from

CT, demonstrating that the genes identified as deregulated during

metastatic evolution were also modified during primary cancer

formation. However, this validation set was of a modest size and

we further validated our gene signature using external data

available in public databases.

The only publicly available dataset containing CT and HM

samples of CRC using the same Affymetrix human U133A chips

has been collected by Sheffer et al [7]. This large dataset contains

Table 1. Clinical characteristics of patients included in the
training set.

N = 13 %

Gender Male 7 53.8

Female 6 46.2

Age (year), median [range] 57 [45–70]

WHO performance status 0 5 38.5

1 8 61.5

Tumor location Right colon 1 7.7

Transverse colon 1 7.7

Left colon 10 76.9

Rectum-sigmoid junction 1 7.7

Differentiation Well 6 46.2

Moderate 6 46.2

Poor 1 7.6

Synchronous metastatic Yes 13 100

pN pN0 3 23.0

pN1 4 30.8

pN2 6 46.2

pT pN3 10 76.9

pN4 3 23.1

doi:10.1371/journal.pone.0074599.t001

Analysis of Colon Tumors and Paired Metastases
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not only CT and HM samples but also CN, HN, polyps (CP), lung

metastases (LM) and normal lung tissues (LN). The 34-probe

signature classified these samples in five main classes (Fig. 3 and

Table 4). The first three classes corresponded to HN (13/13 HN, 1

CT and 2 HM), HM (42/47 HM and 2 CT), and CN (52/54)

samples respectively. The two last classes regrouped most of the

CP and CT samples (231/234), CP samples being mainly located

in the fourth class (46/48). The last class also contained all the

tissues extracted from the lung (LN and LM) in two sub-classes,

one containing most of the LN (6/7) and the second one all the

LM samples (20/20) with 7 CT and 3 HM samples. This clearly

validated our probe signature since 183/186 (98%) CT and 42/47

HM (89%) were correctly separated. In addition, we also correctly

classified CN samples, as previously shown in our validation set.

HN samples were separated from HM tissues but 6 of them had

been used in the filtering procedure and cannot be considered as

an external validation set. However the 7 HN samples that were

not used for the signature definition were also clustered

independently of the HM samples, demonstrating the efficiency

of our bioinformatics procedure to eliminate the signal due to a

hepatic contamination.

Stability to microarray technology
There is usually a good correlation between Affymetrix data

and other techniques to measure mRNA abundance [31].

However, gene signatures are usually more platform dependent

and must be validated to demonstrate their usefulness [32]. This is

usually done by RT-PCR or immunohistochemistry but we

alternatively used external data obtained in different laboratories

using different array platforms.

A search for publicly available data identified four sets of CRC

data containing HM and CT samples (Table 4). Two studies used

home-made cDNA microarrays [8,13], one used the Agilent

human 1A platform [9], and the last one used home-spotted chips

using the Sigma human Oligolibrary [11]. Because these platforms

did not use Affymetrix probes, we first converted our probe

signature into a gene signature. However, probe 216557_x_at

corresponded to seven immunoglobulin genes. We thus looked in a

larger list of 347 probes differentially expressed between CT and

HM, according to the paired SAM analysis with a relaxed FDR of

10%, for specific probes for each of the seven genes associated with

this 216557_x_at probe. We only found probes for IGHD and

IGHG1 loci and we thus only used those two identifiers in the next

analyses. The 34-probe signature was thus converted to a 33-gene

signature (Table 2 & 3, column ‘‘Symbol’’) because two genes were

identified using two probes (WNT5A and CYP1B1) and the

216557_x_at probe was converted to two symbols (IGHD and

IGHG1).

We used this 33-gene signature to classify the four datasets using

unsupervised hierarchical clustering. However, those platforms

contained only a subset of the 33 genes, from 32 in the best case

down to 23 in the worst one (Table 4) and this may affect the

quality of the obtained classifications. Despite this limitation, all

the CT, HM, CN and HN samples were correctly classified with

Figure 1. Identification of the 34-probe gene signature. The CT/HM values for the 13 pairs of samples and the 34 probes identified using
paired SAM analysis were plotted versus the CT/HN values obtained in one paired sample from Sheffer’s study [7]. The horizontal axis and the
diagonal (HM = HN) separate the graph in four quadrants. (a) Genes over-expressed in HM versus CT, and downregulated in HM versus HN. (b) Genes
over-expressed in HM versus CT, and in HM versus HN. (c) Genes downregulated in HM versus CT, and over-expressed in HM versus HN. (d) Genes
downregulated in HM versus CT, and in HM versus HN. The red dashed line corresponds to a simulated contamination of a CT sample with 50% of a
HN sample (see equation 1 in results section). The hatched region corresponds to HM samples that either are expressed at a comparable level (less
than a 2-fold difference) in HM and CT or HM and HN, or whose variation between CT and HM can be explained by a contamination of HM by HN.
doi:10.1371/journal.pone.0074599.g001

Analysis of Colon Tumors and Paired Metastases
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an accuracy of 83–100%, except in the case of Ki’s study where

only 16 out of 27 HM samples (59%) were correctly predicted

(Table 4 and Fig. S1). This may be due to the small number of

genes present in this last study since only 23 genes of our 33-gene

signature were present in Ki’s study and one gene (VWF) was

absent in 34% of the samples (Fig. S1B). In addition, this data set

contained a squamous cell carcinoma (SCC; sample DA09647)

and a gastrointestinal stromal tumor (GIST; sample DX27754),

both being misclassified as in the original published data.

Conservation of gene variations
The clustering approach used in the previous results only

showed that the 33 gene expression levels were modified between

all the HM and CT samples, but the variation of these genes may

Table 2. Downregulated genes in hepatic metastases compared to the paired primary colon tumor.

Probe Symbol Gene name

205828_at MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase)

202274_at ACTG2 actin, gamma 2, smooth muscle, enteric

219747_at NDNF neuron-derived neurotrophic factor

207172_s_at CDH11 cadherin 11, type 2, OB-cadherin (osteoblast)

52255_s_at COL5A3 collagen, type V, alpha 3

204136_at COL7A1 collagen, type VII, alpha 1

218002_s_at CXCL14 chemokine (C-X-C motif) ligand 14

214974_x_at CXCL5 chemokine (C-X-C motif) ligand 5

208394_x_at ESM1 endothelial cell-specific molecule 1

216557_x_at IGHD immunoglobulin heavy constant delta

IGHG1 immunoglobulin heavy constant gamma 1 (G1m marker)

39402_at IL1B interleukin 1, beta

210302_s_at MAB21L2 mab-21-like 2 (C. elegans)

209086_x_at MCAM melanoma cell adhesion molecule

213075_at OLFML2A olfactomedin-like 2A

206637_at P2RY14 purinergic receptor P2Y, G-protein coupled, 14

203708_at PDE4B phosphodiesterase 4B, cAMP-specific

203680_at PRKAR2B protein kinase, cAMP-dependent, regulatory, type II, beta

201404_x_at PSMB2 proteasome (prosome, macropain) subunit, beta type, 2

209070_s_at RGS5 regulator of G-protein signaling 5

205529_s_at RUNX1T1 runt-related transcription factor 1; translocated to, 1 (cyclin D-related)

215382_x_at TPSAB1 tryptase alpha/beta 1

202112_at VWF von Willebrand factor

205990_s_at WNT5A wingless-type MMTV integration site family, member 5A

213425_at

207117_at ZNF117 zinc finger protein 117

doi:10.1371/journal.pone.0074599.t002

Table 3. Upregulated genes in hepatic metastases compared to the paired primary colon tumor.

Probe Symbol Gene name

202437_s_at CYP1B1 cytochrome P450, family 1, subfamily B, polypeptide 1

202436_s_at

219873_at COLEC11 collectin sub-family member 11

205753_at CRP C-reactive protein, pentraxin-related

204988_at FGB fibrinogen beta chain

206010_at HABP2 hyaluronan binding protein 2

202376_at SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3

209875_s_at SPP1 secreted phosphoprotein 1

201666_at TIMP1 TIMP metallopeptidase inhibitor 1

doi:10.1371/journal.pone.0074599.t003

Analysis of Colon Tumors and Paired Metastases
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be different in each dataset. It was not possible to compare the

HM/CT ratios for all the genes in all the samples since many

genes were absent in several studies, resulting in only four genes

present in the six datasets.

We thus considered only the three datasets generated on

commercial platforms because they contained all the genes but one

of our signature. Two studies were done using Affymetrix human

U133A chips (This study and Sheffer [7]) and the last one used the

Agilent human 1A platform [9], which did not contain a probe for

NDNF. To obtain reliable expression ratios, comparable between

different platforms and studies, all the samples were renormalized

altogether using a Empirical Bayes method [25]. The new

normalized data allowed a clear separation of HM and CT using

unsupervised hierarchical clustering since only 4 HM samples

were incorrectly classified (Fig. S2A).

The common genes showed comparable expression modulation

in the three datasets (Fig. 4). Not only they showed variations in

the same direction but the HM/CT ratios were also well

conserved, particularly in the two studies using the same

Affymetrix platform. This showed that not only the 33 genes

isolated are able to classify HM and CT samples but also that their

variations are comparable in three independent studies.

Specificity: metastatic location
CRC mainly forms distant metastases in the liver, but also in the

Lung and in the peritoneal cavity. We asked whether our gene list

was able to classify all the CRC metastases or if it was restricted to

the hepatic location used to define the differentially expressed

genes.

Three studies have collected CRC metastases located in another

organ than liver: Sheffer [7] and Koh [11] collected several LM,

and Kleivi some peritoneal carcinomatoses (PM) [9]. Using

Affymetrix microarrays, Sheffer et al. analyzed 20 LM and seven

LN tissues, which were partially classified using our gene signature.

However, the classification was not as good as in the case of HM

since they were not clearly separated from CT samples (Fig. 3). In

addition, LM clustered in another branch than HM showing that

if the deregulation of the 33 genes is partially conserved it is

however different in the two metastatic locations. The small

number of LM analyzed in the second study did not allow us to

draw a clear conclusion, but the samples did not show any

tendency to cluster together (Fig. S1A). The third study analyzed

four CRC peritoneal carcinomatoses. Again it was difficult to draw

a conclusion from such a small number of samples. Nonetheless,

the four samples clustered neither together nor with HM by

unsupervised hierarchical clustering using our gene signature

(Table 4 and Fig. S1D). This demonstrated that the 33 genes

identified are strongly associated with the hepatic location of the

metastases.

Specificity: primary tumor
We next examined the effect of the primary tumor origin to

determine if the deregulated genes were specific to CRC.

Figure 2. Hierarchical clustering of the samples collected in this study. HMp and CTp are the 13 paired samples used to identify the 34-
probe signature (Table 1). HMu, CTu and CNu are additional samples collected in this study (Table S1).
doi:10.1371/journal.pone.0074599.g002

Analysis of Colon Tumors and Paired Metastases
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Table 4. External validation.

Samples

First author Year Platform Nb genes 1 Type Nb Correct 2 Common genes 3 Data Ref

This Oligo 33 CT 7 7 GSE49355

study 12,712 HM 6 5

Affymetrix CN 4 18 18

Sheffer 2009 Oligo 33 CT 186 183 5 E-GEOD-41258 [7]

12,712 HM 47 42

Affymetrix CN 54 52

CP 48 48 5

HN 13 13

LM 20 nc 6

LN 7 nc 6

Ki 2007 cDNA 23 CT 47 7 46 CDH11 E-GEOD-6988 [13]

17,104 HM 27 16 ESM1

CN 25 24 RGS5

HN 13 13 TIMP1

WNT5A

Koh 2008 Oligo 25 CT 15 8 14 CRP molpathol.org [11]

18,664 HM 12 12 9 CXCL14

Sigma LM 3 2 9 CYP1B1

CN 15 15 IL1B

MMP3

SERPINA3

SPP1

WNT5A

Kleivi 2007 Oligo 32 CT 18 10 17 None Dr Lothe [9]

22,000 HM 4 4

Agilent PM 4 nc

Lin 2011 cDNA 24 CT 31 31 ACTG2 E-GEOD-22834 [8]

19,500 HM 32 32 CDH11

HN 12 10 CYP1B1

ESM1

MCAM

RGS5

SERPINA3

SPP1 11

TIMP1

ZNF117

All CT 304 298 98%

HM 128 111 87%

CN 112 109 97%

HN 38 36 95%

nc: non correctly classified
1Number of the genes of our 33 gene signature present on the used platform.
2Number of samples correctly classified using our signature (restricted to the number of genes in column ‘‘Nb genes’’).
3Genes in common between our 33 gene signature and those published in each study (Table 2 in Ki, Supplementary Table 2 in Koh, Fig. 2 in Kleivi, Supplementary
Table 2 in Lin).
4Ten of the CN samples are from the 13 paired patients used to identify the 34-probe signature.
5CT and CP are not clearly separated and are in a single class (Fig. 3).
6LN and LM clustered in independent groups but were not separated from CT (Fig. 3).
727 CT with synchronous and 20 CT with metachronous metastases.
812 rectum and 3 colon tumors.
9HM and LM are not separated and are in a single class.
108 right and 5 left colon tumors. 5 rectum tumors.
11Only SPP1 is in the top 35 ranking genes in Lin’s study (Fig. 1 in Lin).
doi:10.1371/journal.pone.0074599.t004
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We pooled five datasets of breast cancers originating from the

same laboratory [33,34]. The final set contained 198 primary

breast cancers, 10 normal tissues, and metastases of different

origins (4 in the liver, 13 in Lymph Nodes, 9 in the brain, 6 in the

lung, and 10 from other locations). Unsupervised hierarchical

clustering using our 34-probe signature did not show any tendency

of any tissue type to form an independent cluster. Even the hepatic

metastases did not cluster together showing that the identified

genes are specific to CRC hepatic metastases (Fig. S3A). This also

demonstrated the discriminating power of our approach to remove

background signal due to metastatic contamination (Fig. 1).

Indeed, if the identified signature was specific to liver tissue and

not to CRC hepatic metastases, breast hepatic metastases should

also cluster together.

This was further confirmed in squamous cell carcinomas of

head and neck origin. None of the primary tumors, normal tissues

and lymph node metastases collected in this study were separated

using the 34-probe signature (Fig. S3B).

Pathway enrichment analysis
To get some insight on the pathways in which the 33 identified

genes could be implicated, we performed gene- and pathway-

annotation enrichment analyses using the DAVID web server and

the Gene Ontology (GO) database. In this analysis we only used

the IGHG1 gene symbol and not the the IGHD symbol associated

to the same Affymetrix probe, resulting in a 32-gene signature.

Only the KEGG pathway ‘‘ExtraCellular Matrix-receptor inter-

action’’ was significantly enriched with an EASE score (a modified

Fisher Exact Pvalue) of 0.022 using DAVID web server. This was

further confirmed by GO analysis using ClueGO software (Fig. 5).

Eight GO terms were significantly enriched in our gene list. These

eight terms were grouped in three pathways by ClueGO using

kappa statistics, ‘‘Extracellular matrix organization’’, ‘‘Cell adhe-

sion’’ and ‘‘Angiogenesis’’, which contained 50% (16/32) of the

genes of the identified signature.

Altogether, our data show that it is possible to identify a short

list of genes that differentiates primary tumors from hepatic

metastases in CRC in six independent studies. The variation of

these genes is well conserved, indicating a common mechanism

that takes place during metastatic colonization of the liver by CRC

cells.

Discussion

To identify molecular mechanisms that regulate distant

metastatic growth in CRC, we compared mRNA expression

levels in paired primary tumor and hepatic metastatic tissues of 13

individuals. Despite the small size of the training set, we were able

to define a 33-gene signature that discriminates 87% of HM from

98% of CT, 97% of CN and 95% of HN in six validation sets

representing 128 HM, 304 CT, 112 CN and 38 HN samples and

obtained on several commercial and home-made microarray

platforms.

Figure 3. Hierarchical clustering of colon validation set. Data collected, hybridized and normalized by Sheffer et al. [7] were clustered using
our 34-probe signature.
doi:10.1371/journal.pone.0074599.g003
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Figure 4. Expression of identified genes in three studies. Datasets from three intendant studies were renormalized together using an
empirical Bayes method. Among the 33 genes of the gene signature, 32 genes were present in our (red), Sheffer (green) and Kleivi (blue) datasets
(Table 4). The log2 ratio of HM to CT is plotted. Genes were ordered from the most downregulated to the most upregulated gene in HM versus CT in
our study.
doi:10.1371/journal.pone.0074599.g004

Figure 5. Functional annotation enrichment analysis of the 33-gene signature. Gene Ontology terms significantly over-represented in the
33-gene signature were identified and plotted using ClueGO. A) The size of the nodes are inversely proportional to the pvalue in Fig. 5B. Line widths
between GO terms are proportional to the kappa scores used to define the categories. B) Table giving the results of the ClueGO analysis. Nr: Number
of genes in our 33-gene signature associated with the GO term.%: Percentage of the genes of the considered GO term presents in our signature.
Pvalue: pvalue of the GO term, corrected for multiple testing. C) Relation between the GO annotations of the 11 ‘‘cell adhesion’’-associated genes in
Fig. 5B and GO:0007155 term. Black arrows: ‘‘is a’’. Green arrows: ‘‘Positively regulates’’.
doi:10.1371/journal.pone.0074599.g005
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Global analysis of tissue samples must take into account that

cancer tissues may contain a substantial proportion of the

surrounding organ tissue. This is particularly true for small tumors

and metastases. Comparison of the gene expression profiles of

tumors located in two different organs may thus lead to the false

identification of organ-specific genes instead of tumor-associated

genes. This is particularly critical when the two organs have very

different gene expression patterns, as it is the case of colon mucosa

and liver [13]. We thus introduced a filtering step that removed

the organ-specific genes and focus the signature towards metastasis

and stroma associated genes. The efficiency of this filtering step is

demonstrated by the external validations done in this study, since

we correctly separated HM from HN tissues in three different

studies (Fig. 3, Fig. S1B & C). In addition, if the identified

signature was associated with the liver location of metastases, it

should cluster together hepatic metastases whatever the location of

the primary tumor. This is not the case since hepatic metastases of

breast cancer were not grouped in the dendrogram (Fig. S3A).

Finally, the signature clustered CN and CT tissues independently

and is thus associated to some colon-specific modifications that

originated in the primary tumor development. Other approaches

have been previously used to solve the same issue. The best

approach is to directly remove unwanted tissues by laser

microdissection but it is time consuming and requires to work

with a small number of cells. This has been done to study hepatic

metastases of CRC in a small series of ten patients and led to the

identification of genes mainly implicated in cell adhesion [14]. Ki

et al. [13] developed a bioinformatics approach based on the first

elimination of all the genes differentially expressed between

normal colon mucosa and normal liver tissue before comparing

hepatic metastases and primary tumors in CRC. As noted by the

authors this may however lead to the elimination of important

genes. Our approach is more conservative since the selected genes

can be differentially expressed in normal liver and colon tissues.

The identified signature is independent of the stage of the

primary tumor since two of the used validation sets contained stage

I, II, III and IV cancers [7,13]. In addition, stages did not cluster

together and were randomly spread through the dendrogram (data

not shown). This showed that the 33-gene expression pattern is

constant in all primary tumors, independently of the presence of

metastases. This is presumably because modulation of the pointed

pathways takes place during metastatic migration and growth. In

the primary tumors, those pathways are modulated only in the

small subset of cells that will metastasize and are thus not

detectable using global tissue analyses. Indeed, only a small subset

of the primary tumor cells has the potency to migrate and form

metastases, both in animal models [35] and in patients [36], and

only a single cell analysis could identify them in the bulk of the

primary tumor. Finally, the identified genes do not differentiate

primary tumors according to their location. Because of the

diversity of the datasets used in this analysis, primary tumors were

located at several different locations in the colon and rectum (left

and right colon, rectum, sigmoid, Table 4). Whatever the location,

the efficiency of the 33-gene based clustering was the same. This is

in agreement with large colorectal genome studies that showed

that colon and rectal tumors are the same type of cancer [37]. The

classification does not depend either on the MSI status or the p53

mutation state (data not shown). However, the gene signature

failed to classify the hepatic metastases originating from a GIST

and a SCC included in Ki’s study. This was already the case in the

original publication in which the authors showed that these two

tumor types clustered independently from the other colorectal

tumors. This is expected since most of the SCC are located in the

lower portion of the rectum, often have mixed adenosquamous

histologies and are more closely related to skin SCC than to CRC

[38], and that GIST are sarcomas that originate in interstitial cells

of cajal and rarely develop in colon.

The 33-gene signature identified is highly specific to primary

colorectal tumors and their hepatic metastases. Indeed lung

metastases of CRC were poorly classified and carcinomatoses did

not cluster at all. Since dissemination of cancer cells through the

portal vein is the same for lung and liver metastatic locations, it

presumably means that several of the genes are important for long

distance cell migration through blood vessels. This is not the case

of carcinomatoses that often disseminate directly into the

peritoneal cavity [39]. When applied to other cancer types, we

were not able to separate metastases from primary tumors. This

was even the case for hepatic metastases of breast cancer. The

modulated pathways are thus specific both to the primary tumor

type and to the metastatic location. This is in good agreement with

the ‘‘seed and soil’’ hypothesis first formulated by Stephen Paget in

1889 [3], who proposed that metastasis growth depends on a

cross-talk between a cancer cell and the host organ. However, the

fact that lung metastases of CRC were partially classified indicates

that the identified genes not only depend on the primary tumor

type and the location of the metastases, but also on the

dissemination pathway. This may explain the presence of several

genes implicated in platelet activation and blood coagulation

(TIMP1, VWF, PRKAR2B, FGB). Fibrinogen beta (FGB) was the

most over-expressed gene in hepatic metastases and the von

Willebrand factor (VWF) the second downregulated one in three

independent studies (Fig. 4). In addition to their roles in blood

coagulation, both genes have been previously implicated in

metastasis dissemination. For instance, FBG [40] and VWF [41]

deficiency respectively decreases and increases the metastatic

potential of a lung carcinoma and a melanoma in mouse models.

These effects have been demonstrated in knock-out mouse models

and they may take place at any step from cell injection to

metastasis formation in the lung. Since in our analysis the

expression of these two genes is specifically modulated within the

metastases, this argues in favor of a role of these genes in the last

steps of metastasis formation.

Enrichment analysis showed that an unique KEGG pathway,

ECM-receptor interaction, was significantly modulated in the

hepatic metastases. In addition, most GO terms significantly

enriched in our gene list are related to extracellular matrix

adhesion and remodeling (Fig. 5). The GO Biological Process

containing the largest number of genes is cell adhesion

(GO:0007155). Six of the genes are indeed part of this GO

Biological Process (VWF, COL7A1, HABP2, CDH11, MCAM,

SPP1). In addition, four other genes (SPP1, IL1B, NDNF,

WNT5A) are positive regulators of cell adhesion (GO:0022409

and GO:0010811), one (CYP1A1) is implicated in endothelial cell-

cell adhesion (GO:0071603), and a last one (COL5A3) in cell-

matrix adhesion (GO:007160) (Fig. 5C). This represents 11 genes

(33%) of the identified signature. Most of these genes are

downregulated in hepatic metastases (Fig. 4), resulting in a lower

adhesion potential of the metastatic cell. The low-adhesion

propensity of metastatic cells has been frequently observed and

is presumably required for cell dissemination [42]. However two

proteins implicated in cell adhesion are over-expressed in hepatic

metastases, HABP2 and CYP1B1. HABP2 binds hyaluronate, one

of the five constituents of the ECM matrix and has also an anti-

angiogenic function [43]. Its expression level is however moderate

in hepatic metastases with only a two-fold increase compared to

normal colon mucosa (Fig. S2B). CYP1B1 over-expression in

cancer has been previously reported. Its downregulation using

siRNA leads, in an endometrial carcinoma cell line, to a decrease
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in cell proliferation and invasion [44]. They also showed that

CYP1B1 positively regulates MCAM expression. This seems to be

different in colon metastases since we have concomitant over-

expression of CYP1B1 and downregulation of MCAM. However,

CYP1B1 is expressed in endothelial cells and its expression

promotes angiogenesis in a non-cancer mouse model [45].

Together with VWF, which is downregulated in tumor endothelial

cells of CRC [46], CYP1B1 over-expression could promote

angiogenesis in colon hepatic metastases. This is further enhanced

by the downregulation of WNT5A [47] and CXCL14 [48] which

have both been shown to negatively regulate angiogenesis.

However the expression of two other genes that positively regulate

angiogenesis, ESM1 and IL1B, are also decreased in hepatic

metastases. The expression of ESM1 is, nevertheless, only slightly

decreased in HM and still much higher than in normal colon and

liver tissues, and the expression of IL1B is not strongly modified

(Figs. 4 and S2B).

In addition to a decrease in ECM adhesion, a matrix

metalloproteinase (MMP), MMP3, is strongly downregulated in

hepatic metastases. Various proteinases are implicated in ECM

turnover, but MMPs are the principal ECM-degrading agents.

Several studies have shown that MMP, including MMP3, over-

expression correlates with poor prognosis and metastatic evolution

in several cancers, including colon adenocarcinomas [49]. In

particular, colon metastases are known to induce MMP2 and

MMP9 expression in stromal cells, and MMP inhibitors reduce

tumor growth and metastasis in animal models [50]. This is thus

particularly surprising to identify MMP3 as the most downregu-

lated gene in hepatic metastases. Since this is the case in three

independent studies (Fig. 4) this shows that it is not coincidental

but corresponds to the metastatic evolution of colon adenocarci-

noma. The most likely explanation is that MMP3 is required in the

primary tumor, but no more needed once macroscopic metastases

are established in the liver. This may explains why MMP3

expression strongly increased in colon adenocarcinoma and

decreased back to a normal level in metastatic samples (Fig. S2B).

Despite several advances in the treatment of colorectal hepatic

metastases, there is still a need of new targets to improve patient

outcome. The 33 genes identified in this study have interesting

properties that may make them promising therapeutic targets.

First, we demonstrated that their deregulations are widely

conserved in six different studies (Table 4). Second, they showed

conserved levels of deregulation in three genome-wide studies

(Fig. 4). Third, several of them were found in the signatures

published so far (column ‘‘Common genes’’ in Table 4). Four,

because these genes are specifically deregulated in hepatic

metastases of CRC, targeting them may result in highly specific

therapeutics. Five, many of these genes have already been shown

to block or enhance metastatic potential either in cell lines

(CYP1B1 [51]) or in animal models (VWF [41], FBG [40], SPP1

[52], WNT5a [53]). Finally, several of the identified proteins could

be targeted either with chemicals or antibodies. The identified

genes may be implicated in any of the necessary steps required to

form a metastasis, from primary tumor escape to growth at the

secondary site. If a gene is required for an early step and no more

for the maintenance of macroscopic metastases in the liver, there is

no reason for this gene to be conserved in 90% of the samples as

demonstrated here. This argues in favor of a strong requirement of

these genes for macroscopic metastasis survival in the liver, and

thus for a possibility to affect metastases by targeting them. As it is

already available in clinics with the anti-VEGF Bevacizumab that

targets angiogenesis and thus the metastatic niche of colorectal

liver metastases, some of the identified genes may offer opportu-

nities to remodel the tumor environment, increase chemotherapy

efficiency and improve patient survival in CRC.

Supporting Information

Figure S1 Two-way hierarchical clustering of colorectal
cancer datasets. All data were processed and normalized by the

original authors. A) Normal colon tissues (blue), primary tumors

(green), and hepatic (red) and lung (orange) metastases were

clustered using the 25 genes of our 33-gene signature present in

Koh et al. Study [11]. B) Normal colon (blue) and normal liver

(light blue) tissues, primary tumors in metastatic (green) and non-

metastatic (light green) patients, and hepatic (red) metastases were

clustered using the 23 genes of our 33-gene signature present in Ki

et al. Study [13]. The red and green bars bellow the heatmap

indicate the hepatic metastasis samples from the GIST and the

SCC respectively. C) Normal liver tissues (light blue), primary

tumors (green) and hepatic metastases (red) were clustered using

the 24 genes of our 33-gene signature present in Lin et al. [8]

study. D) Normal colon tissues (blue), primary tumors (green),

hepatic metastases (red) and peritoneal carcinomatosis (orange)

were clustered using the 32 genes of our 33-gene signature present

in Kleivi et al. [9] study.

(PDF)

Figure S2 Gene expression variation in three indepen-
dent studies. Data collected in this study, in Sheffer et al [7].

and in Kleivi et al [9]. were renormalized together using an

empirical Bayes method (Fig. 4). A) Normalized HM and CT

samples were clustered using the 32 common genes. B) Boxplots of

the expression levels of the 32 common genes in CN (blue), CT

(green), HM (red) and HN (dark blue) tissues are plotted.

(PDF)

Figure S3 Two-way hierarchical clustering of non-
colorectal cancers and their metastases. A) 198 primary

breast cancers, 10 normal tissues, and metastases of different

origins (4 in the liver, 13 in Lymph Nodes, 9 in the brain, 6 in the

lung, and 10 from other locations). All samples were collected,

analyzed and normalized in the same laboratory [33,34]. Samples

were clustered using the 22 genes of our 33-gene signature present

in the study. Gene Expression Omnibus identifiers of the used

datasets: GSE2740, GSE3521. B) Normal tissues (blue), primary

tumors (green) and lymph node metastases (red) in head and neck

squamous cell carcinomas. Samples were obtained from two

sources, collected and normalized by Lukk et al. [17]. Samples

were clustered using our 34-probe signature.

(PDF)

Table S1. Clinical characteristics of patients used in this study.

(PDF)
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