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1 Department of Neurology, Paracelsus Medical University, Salzburg, Austria, 2 Neuroscience Institute & Center for Neurocognitive Research, Paracelsus Medical University,

Salzburg, Austria, 3 Department of Psychology & Center for Neurocognitive Research, University of Salzburg, Salzburg, Austria

Abstract

The active oddball paradigm is a candidate task for voluntary brain activation. Previous research has focused on group
effects, and has largely overlooked the potential problem of interindividual differences. Interindividual variance causes
problems with the interpretation of group-level results. In this study we want to demonstrate the degree of consistency in
the active oddball task across subjects, in order to answer the question of whether this task is able to reliably detect
conscious target processing in unresponsive patients. We asked 18 subjects to count rare targets and to ignore frequent
standards and rare distractors in an auditory active oddball task. Event-related-potentials (ERPs) and time-frequency data
were analyzed with permutation-t-tests on a single subject level. We plotted the group-average ERPs and time-frequency
data, and evaluated the numbers of subjects showing significant differences between targets and distractors in certain time-
ranges. The distinction between targets/distractors and standards was found to be significant in the time-range of the P300
in all participants. In contrast, significant differences between targets and distractors in the time-range of the P3a/b were
found in 8 subjects, only. By including effects in the N1 and in a late negative component there remained 2 subjects who
did not show a distinction between targets and distractors in the ERP. While time-frequency data showed prominent effects
for target/distractor vs. standard, significant differences between targets and distractors were found in 2 subjects, only. The
results suggest that time-frequency- and ERP-analysis of the active oddball task may not be sensitive enough to detect
voluntary brain activation in unresponsive patients. In addition, we found that time-frequency analysis was even less
informative than ERPs about the subject’s task performance. Despite suggesting the use of more sensitive paradigms and/or
analysis techniques, the present results give further evidence that electroencephalographic research should rely more
strongly on single-subject analysis because interpretations of group-effects may be misleading.
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Copyright: � 2013 Höller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research project is being supported by the Jubilaumsfonds of the National Bank of Austria (project no. 14201). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: y.hoeller@salk.at

Introduction

Voluntary brain activation is an important issue in contempo-

rary research. The number of papers addressing this issue is

boosted significantly by the scientific fields of ‘disorders of

consciousness’ (DOC) and ‘brain computer interfaces’. The goals

of these two fields overlap to some extent, and there are some

research problems which have to be solved by both of them. One

of these problems is the interindividual variance of response

patterns to identical stimuli.

In brain computer interfaces, voluntary brain activation is used

to communicate with a system solely by altering brain activity [1].

The problem of interindividual variance of response patterns is

commonly solved by machine learning techniques. An algorithm is

applied to a training set of sequences for each single subject to

learn their typical response or responses (depending on the

algorithm). This is known as the training phase. Following the

training phase a classifier compares new sequences of brain

activity to the learned typical response(s), and decides how to

categorize the new sequence. Machine learning techniques are

largely independent of interindividual variance as long as the

features extracted from the training data allow a certain degree of

freedom. For example, if one chooses m-activity in the range of 10–

15 Hz as such a feature in a motor imagery paradigm, those

subjects with reactivity in frequency ranges below 10 and above

15 Hz will end up with low classification-accuracy rates.

In DOC voluntary brain activation is used to get an accurate

distinction between subjects who do not have conscious awareness

and subjects who are able to follow commands. Patients who are

unable to follow commands behaviorally may be conscious but

could mistakenly be diagnosed as being unconscious because

clinical assessment is based on behavioral signs of consciousness.

Therefore, the patients are confronted with simple commands

which can be followed by thought [2–14]. To make research

feasible for clinical practice it is necessary to provide recommen-

dations for analyzing and statistically evaluating the data on a

single-subject level. Group-level effects may not be concordant

with effects in single subjects. Indeed, while most subjects show a

desynchronization in the alpha range during motor imagery, there

is a small number of subjects who show an alpha synchronization

during this task [15].

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e74572

V. 

¨



Recently, several research groups have adopted single-subject

statistics in electroencephalographic research of disorders of

consciousness (e.g. [2,4,6,7,16]). In one of these studies, ma-

chine-learning techniques were applied for the assessment of

patients with disorders of consciousness in a motor imagery task

[4]. We believe that this may be the most promising approach to

be used in clinical practice. However, even for machine-learning

techniques it is important to know the features which best describe

the individual response patterns. More concretely, the features for

the classifier may be chosen so that they are invariant to

interindividual differences in response patterns. To design

accurate features it is necessary to get experience about the

consistency of effects across subjects. In addition, it was shown that

there are several statistical pitfalls in the interpretation of

classification accuracies [17].

In the present study we examined the consistency of effects in an

active oddball task. In this task subjects are asked to silently count

a rare target sound and to ignore a frequent standard and a rare

distractor. Such an experiment should produce a P3a and P3b

component [18] in the event related potential (ERP). The

distinction between P3a and P3b allows us to ascertain whether

the subject counted the target or simply listened to the presented

sequence of sounds. To apply such a paradigm to patients with

DOC it is necessary to know if the distinction between P3a and

P3b is consistent among healthy subjects on a single subject level.

We want to examine if the distinction between P3a and P3b is a

robust effect, i.e. if it can be found in all healthy subjects of our

sample. If the effect is not robust, the procedure cannot be applied

to detect a possible response in patients with DOC.

In addition, we applied time-frequency analyses to examine

whether or not the frequency dimension adds further information

to the detection of voluntary brain activation. We expect delta,

theta, and alpha alternations to be related to target-distractor

differences [19].

Results

ERPs
Figure 1 shows the group-average ERP. We see the oddball-

typical deviations between standard and target as well as between

standard and deviant tones in the N1, P300, and in a late negative

component at 500–600 ms. However, we are specifically interest-

ed in the difference between targets and distractors. At parietal

electrode positions there is a higher amplitude (i.e. more negative

values) for targets compared to distractors at the N1. At central

positions, this difference begins after the N1 and becomes visible in

the transition to the P300. At frontal electrode positions, the N1

for distractors is higher than for targets. Moreover, there is a larger

late negative component (500–600 ms) for distractors than for

targets at frontal, central, and parietal electrodes. After the late

negative component we can see a positive deviation of the

distractors at frontal and central sites, while the targets remain at a

more negative level.

The statistical evaluation of the group-average ERPs is shown in

Figure 2. The lines represent the numbers of subjects showing

significant differences between conditions. In the comparisons

between standard and deviant and standard and target we see a

high number of participants showing significant differences at the

N1, the P300, and the late negative component. The comparison

target vs. distractor is of special interest. There are two small

increases in number of subjects showing a difference. The first

small peak can be found around 250 ms at central positions. The

later peak at about 600 ms shows up frontally.

Note that the number of subjects refers to the subjects showing a

significant difference at the same instance of time. That is, there

can be more subjects showing differences in the time-range of the

P300, but these differences do not overlap in time. This may

happen if the P300 occurs earlier in one subject than in another

subject; e.g. if one subject shows the difference between targets and

distractors at the peak of the P300 while the other subject shows

the difference immediately after the peak.

In fact, all subjects show a significant difference between targets

and standards, as well as between distractors and standards in

some subsegment of the time-span between 300 and 400 ms. This

effect was most extended in time over subjects on electrode Fz

(with similar high values at electrode Cz), for the comparison

targets vs. standards with one subject showing no significant

difference at this electrode (but rather on electrode C3) so that the

binomial significance for electrode Fz was pv:0001. The

comparison of distractor vs. standard yielded similar results. The

longest effect was found on electrode Fz, which yielded almost the

same value as electrode Cz; all subjects showed significant

differences in this time-range and at this location (binomial

significance pv:0001). In sum, all subjects showed a P300 effect.

In the group-average ERP, while we see a prominent P300, we

see no classical distinction between P3a and P3b. We assessed the

significant difference between 200 and 400 ms for the comparison

cat(t) vs. door(d) and found that 10 subjects remained without a

significant difference. This result indicated a significance on the

group level (binomial significance pv:0001). The number of

subjects without a significant difference dropped to 6 when we

included also the time-frame of the N1, i.e. applied a more

rigorous time-range from 150 to 450 ms. The location of the

difference varied across subjects, but was pronounced at electrodes

Cz, C3, C4, and Pz.

The difference between targets and distractors in the late

negative component between 450 and 750 ms was significant in 9

subjects (binomial significance pv:0001), and was most extended

in time over central positions (Cz, C3 and C4). Summing up the

statistical significance in the time-range of the N1, the P3a/b and

the late negative component, 2 subjects remained without a

significant difference between targets and distractors.

The statistical evaluation of the comparison target vs. distractor

suggests that there is a distinction between P3a and P3b in some

subjects. The inter-individual variance becomes evident in global-

field-potentials (GFPs) in Figure 3. Even tough the effects in the N1

and the P300 for targets/distractors vs. standards are rather

consistent across subjects, not all participants show marked

increases in the comparison of targets vs. distractors. Most

importantly, the blue line (comparison targets vs. distractors) is

relatively flat in certain subjects (e.g. S4). To show that the P300 is

also spatially consistent across subjects we refer to Figures 4 and 5,

which show subsequent scalp maps with a prominent P300 (i.e., a

red spot) for all subjects. In contrast, Figure 6 shows a

heterogeneous picture for the comparison target-distractor.

For an overview of which subjects showed significant results in

most of the mentioned effects and those who showed very little see

Table 1.

Time-frequency Data
Figures 7, 8 and 9 show the group-average time-frequency plots

for the comparisons beep-cat, beep-door, and cat-door.

The difference spectra standard vs. target/distractor in Figures 7

and 8 show a lower delta-theta activity for standards compared to

targets and distractors at about 200–600 ms on frontal, central,

and parietal electrodes. In addition, we see a higher alpha-beta

EEG-Response Consistency
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activity at the parietoocciptial region for standards compared to

targets and distractors at about 300–700 ms.

The difference spectrogram target-distractor is shown in

Figure 9. One can see a lower activity spreading from lower

frequencies to the beta range at parietal electrodes between 500

and 800 ms for target compared to distractor. Additionally, there

is a higher centroparietal delta-theta activity in an early time frame

(about 300–500 ms) for targets than for distractors. At C3 and Cz

this alternation is preceded by a lower delta-theta activity for

targets than for distractors. At F3, Fz, and F4 this alternation is

followed by a lower delta-theta activity for targets than for

distractors.

Figure 1. Grand-average ERP.
doi:10.1371/journal.pone.0074572.g001

Figure 2. ERP-statistics. Lines indicate the number of subjects showing significant differences between conditions.
doi:10.1371/journal.pone.0074572.g002
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The statistical evaluation of the group-average time-frequency

data is shown in Figures 10, 11, and 12. The coloring represents

the numbers of subjects showing significant differences between

targets and distractors. That is, the blue regions indicate that there

are no subjects with significant differences and the intensity of pink

indicates an increasing number of subjects showing significant

differences.

Figures 10 and 11 show that the effects we have seen in Figures 7

and 8 are significant in a considerable number of subjects. There

was a significant difference between standards and targets and

between standards and distractors at frontal, central, and parietal

electrodes in the delta-alpha range at about 200–600 ms. This

difference is significant in 14 subjects (binomial significance

pv:0001) from 1–5 Hz for the comparison standard-target and

in 15 subjects (binomial significance pv:0001) for the comparison

standard-distractor. There are fewer subjects showing an alpha

effect at about 500–1000 ms at parietal and occipital electrodes.

This effect was significant at 7–9 Hz in 6 subjects (binomial

significance pv:001) for the comparison standard vs. target and in

2 subjects (no binomial significance p~:23) for the comparison

standard vs. distractor. At 700 ms there were 2 subjects (no

binomial significance p~:23) with significant effects in the delta

range (1–2 Hz) in the comparison standard-target, and 2 subjects

(no binomial significance p~:23) showed a significant effect at

about 900 ms in the alpha range in the comparison standard-

target; only one subject showed this effect in the comparison

standard-distractor (no binomial significance p = .60).

Figure 12 shows the statistical results for the comparison target

vs. distractor. At first glance it becomes obvious that the small

spots in Figure 9 are significant only in single subjects. This results

in no significant group effect (binomial significance p~0:60). In

total, only 2 subjects showed significant differences between target

and distractor in time-frequency data. Since these 2 subjects were

not the same 2 subjects that showed no significant effect in ERPs,

the analysis of time-frequency data did not add further informa-

tion to the results.

Figures 13, 14, and 15 show the time-frequency plots of all

subjects at electrode Pz. We chose Pz because this location showed

a higher difference for the comparison target vs. distractor than

other electrodes, e.g. electrode Cz or Fz. The time-frequency plots

give evidence for inter-individual difference in response type. For

example, subject no. 6 shows higher activity for standard vs.

distractor/target in the alpha range, whereas most other subjects

show lower activity in these respects.

See Table 1 for a summary of all effects in each subject.

Discussion

In this work we examined the consistency of effects of voluntary

brain activation in an active oddball task. Even though the number

of subjects showing a distinction between targets and distractors in

the range of P3a/b was significant, it was not robust at all. An

effect was found in 8 out of 18 subjects. When taking into account

significant differences in the time-range of the N1 and at a late

negative component, 2 subjects remained without significant

distinction between targets and distractors. The time-frequency

results were not useful in distinguishing targets from distractors.

Most importantly, analysis of time-frequency data added no

information to the detection of voluntary brain activation in this

Figure 3. Global field potentials for the difference-waves for all three comparisons.
doi:10.1371/journal.pone.0074572.g003
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Figure 4. Scalp maps for all subjects (each row represents one
subject) between 300 and 400 ms for the comparison target
minus standard.
doi:10.1371/journal.pone.0074572.g004

Figure 5. Scalp maps for all subjects (each row represents one
subject) between 300 and 400 ms for the comparison dis-
tractor minus standard.
doi:10.1371/journal.pone.0074572.g005
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paradigm. Based on these results, we doubt the usefulness of time-

frequency- and ERP-analysis of the active oddball paradigm to

detect voluntary brain activation in patients with DOC.

The P3a is known to reflect novelty while the P3b reflects target

detection [18]. The group-average ERP shows a distinction

between targets and distractors in the N1 but no clear distinction

between P3a and P3b. Eventually, there is a tendency towards a

P3b at parietal electrodes, where the waveform of targets exceeds

those of the distractors. Although we see no clear distinction

between P3a and P3b in the group average, this does not mean

that there is no P3a–P3b complex in any subject. Instead, when

analyzing the effect on a single subject level we took into account

the inter-individual variance in time and found a significant

distinction between targets and distractors in 8 subjects, which

were most pronounced over central positions, which is the location

where one would expect the P3a to occur [20].

The distinction between P3a and P3b is a relative robust effect.

However, the P3b is usually found in experiments when subjects

are asked to react to a target by pressing a button. In contrast, our

subjects were asked to count the targets silently. It was reported

recently that intra-subject variability of reaction times is relatively

stable within subjects across trials and influences the amplitude of

the P3b [21,22]. We cannot measure the reaction time of silent

counting, but it is very likely that the intra-subject variability in

these respects is higher in subjects who show no clear distinction

between targets and distractors. A demanding counting task was

found to attenuate the amplitude of the P3 [23]. Thus, we could

speculate that the intra-subject variability is generally higher in

silent counting than when subjects are required to press a button,

making the detection of P3b in such experiments difficult.

Lack of control if the subjects were actually performing the task

may be considered as another confounding factor. It is possible

that some of the subjects that did not show a significant difference

in the P3a/P3b period did not perform the task, or did not pay

attention to the targets, despite being instructed to do so. In overt-

counting tasks, e.g. by asking subjects to press a button whenever

they detect a target, the performance of the subject can be

correlated with the ERP-components or frequency characteristics.

However, this is not an option in unconscious patients, so that it is

important to establish reliable task-related brain responses in

healthy participants which depend purely on voluntary brain

activation.

In addition, it is possible that the semantic nature of our

paradigm confounds the distinction of P3a/b in some subjects. We

applied cat, door and beep sounds instead of three similar beep

sounds with different pitch. The amplitude difference in the range

of 300 ms between standard and distractor was found to depend

on the nature of the difference [24]. In an experiment with three

tasks, Halder et al. [24] found that if target and distractor differ in

pitch or frequency, the P300 is generally larger than with

amplitude modulation of the stimuli. Most subjects showed best

discrimination between targets and distractors when the stimuli

differed by pitch. In this study, automated classification was used

to distinguish targets from distractors. Most interestingly, while 5

out of 20 subjects showed best classification accuracies among all

three tasks above 90%, a further 5 out of 20 subjects showed best

classification accuracies below 70%. This proportion of subjects

possibly matches the proportion of subjects without a significant

difference in our sample, and does support our suggestion that the

target-distractor discrimination is not reproducible in all healthy

subjects.

Figure 6. Scalp maps for all subjects (each row represents one subject) between 200 and 400 ms for the comparison cat minus
door.
doi:10.1371/journal.pone.0074572.g006

Table 1. Summary of effects for individual subjects.

subjects

effect 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ERP-results

t-s Fz 0.3–0.4 s 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

d-s Fz 0.3–0.4 s 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

t-d all 0.15–0.45 s 6 6 6 6 6 6 6 6 6 6 6 6

t-d all 0.2–0.4 s 6 6 6 6 6 6 6 6

t-d all 0.45–0.75 s 6 6 6 6 6 6 6 6 6

Time-frequency-results

t-s fpc 0.2–0.6 s 1–5 Hz 6 6 6 6 6 6 6 6 6 6 6 6 6 6

d-s fpc 0.2–0.6 s 1–5 Hz 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

t-s po 0.5–1 s 7–9 Hz 6 6 6 6 6 6 6 6

d-s po 0.5–1 s 7–9 Hz 6 6

t-s all 0.7 s 1–2 Hz 6 6

t-s all 0.9 s 7–13 Hz 6 6

d-s all 0.9 s 7–13 Hz 6

t-d all 0–1 s allHz 6 6

Significant effects in each subject are indicated with an x; effects are named with the following abbreviations: t-s = target vs. standard; d-s = distractor vs. standard; t-
d = target vs. distractor; in ERPs, electrode Fz or all electrodes (all) where evaluated; in Time-Frequency results, location was fpc = frontal, parietal, and central;
po = parietal and occipital; and all = all locations.
doi:10.1371/journal.pone.0074572.t001
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The stimuli that were to be counted or ignored in our

experiment have different emotional valences (cat vs. door), and

the emotional valence may vary between subjects. The emotional

valence of the subject’s own name was presented by Schnakers

et al. [13]. In their experiment, the subject’s own name and 7

other unfamiliar names were presented in a randomized order.

The P300 to subject’s own name was strongly pronounced when

the participants were instructed to count the instances of their own

name. Subject’s own name also evoked a prominent response

when subjects were instructed to passively listen to the stimuli. In

Figure 7. Difference spectrogram standard-target averaged across subjects.
doi:10.1371/journal.pone.0074572.g007

Figure 8. Difference spectrogram standard-distractor averaged across subjects.
doi:10.1371/journal.pone.0074572.g008
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contrast, unfamiliar names evoked a P300 when subjects should

count these names, but not in the passive condition. It is possible

that the emotional valence of the sound of a cat differs between

subjects and, therefore, the cat-target stimulus evokes different

brain responses compared to the door-distractor stimulus,

independent of the instruction to pay attention or to ignore the

stimuli. According to Ferrari et al. [25], the amplitude of the P3

reflects stimulus meaning, significance, and novelty. Therefore, a

stimulus that may have specific meaning to a subject (sound of a

cat or subject’s own name) may result in a higher P3.

Figure 9. Difference spectrogram target-distractor averaged across subjects.
doi:10.1371/journal.pone.0074572.g009

Figure 10. Time-frequency statistics. Coloring indicates the number of subjects showing significant differences between standard vs. target.
doi:10.1371/journal.pone.0074572.g010
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By including also the N1 there remained 6 subjects and by

including also the late negative component there remained only 2

out of 18 subjects without significant target-distractor distinction.

In a visual oddball task which required silent counting of targets

[26], 9 out of 14 subjects showed divergence between targets and

standards in early components, with a mean latency which

corresponded with the P300. In this study, 6 subjects showed a late

divergence, with latency similar to our late negative component.

There were 3 subjects without significant distinction between

targets and standards. Please note that the task of this study did not

Figure 11. Time-frequency statistics. Coloring indicates the number of subjects showing significant differences between standard vs. distractor.
doi:10.1371/journal.pone.0074572.g011

Figure 12. Time-frequency statistics. Coloring indicates the number of subjects showing significant differences between target and distractor.
doi:10.1371/journal.pone.0074572.g012
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include a distractor category, and therefore comparisons are

limited. However, in both task designs we cannot rule out the

possibility that the late negative component may be related to

automated processing of semantic content. Thus, we cannot be

sure if the significant difference is caused by the brain activation

related to counting or to the different processing of stimuli. This

distinction between automated processing and voluntary counting

is crucial for defining conscious behavior. Thus, this answer has to

be answered before applying the task to patients with disorders of

consciousness. However, as reported in the study involving a visual

oddball task, [26], not necessarily all subjects show significant

distinction between stimulus categories. For supporting DOC

diagnoses, we believe that it is necessary to choose a task which

reliably provokes a voluntary brain response in healthy subjects.

Our study is not the first which documented missing P3a/b

effects in single subjects. We found no distinction on group level,

but a significant distinction in single subjects. Kotchoubey et al.

[27] found the opposite pattern of inconsistency between single-

subject data and group-average ERPs. The authors found

increased amplitude of the N1 and P3 waves in response to a

person’s own name in the group ERPs, but no such response in the

individual waveforms of 6 out of 14 healthy subjects, and in 3 out

of 5 patients. There are known factors moderating ERP

components such as the P300. Schiff et al. [28] reported increasing

P300 latencies and decreasing amplitudes with age. In addition,

the authors found higher P300 amplitudes in women than men. In

addition, the repetition of an experiment leads to longer P300

latencies in the elderly. Therefore, the properties of the examined

sample of participants may determine if there is a group-effect or

not.

Despite questioning the use of ERP- and time-frequency

analysis in an active oddball paradigm to detect consciousness in

patients of DOC, our results support the claim for single-subject

analysis in EEG. Sophisticated algorithms and elaborated tools

pave the way for single-subject statistics as a basic requirement in

EEG-research. In the following, we want to describe how our

results give evidence for the need of single-subject analysis.

First, a significant effect may be consistent across some subjects

with respect to time, frequency and electrode position, but it may

differ with respect to direction. That is, subject A may show higher

alpha activity for targets compared to distractors, while subject B

could show higher alpha activity for distractors compared to

targets. If both effects were of similar strength the effect would not

be visible in the group-average time-frequency plot. We illustrated

this situation in Figure 13, and 14, where one subject shows a

higher activity in the alpha range for standards compared to

distractors and targets, while the other subjects show an alpha

decrease. In our earlier research we reported inter-individual

differences in the kind of alpha-response (increase/decrease)

during motor-imagery [15], to self-selected music [29], in the

classic oddball-task [30], and when listening to subject’s own name

[31]. The present results provide further evidence for individual

alpha-response types. However, it is important to note that the

kind of alpha-response might not be a stable trait, but could rather

reflect the state [32] or the developmental stage of a subject. Alpha

Figure 13. Difference spectrogram for standard minus target on electrode Pz. Scale indicates negative values from 25 mV in blue, values
near zero in light green and positive values in yellow and red up to 5 mV .
doi:10.1371/journal.pone.0074572.g013
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power can be altered by many variables, e.g. with age [33], and is

moderated by a number of pathologies [34].

Second, the strength of effects may vary largely between

subjects. There may be 2 subjects in a sample with a large alpha

desynchronization at a certain instance of time. This desynchro-

nization could be so strong that it becomes visible in the group-

average time-frequency plot. However, 2 subjects with significant

effects would only show up slightly on a statistical plot as used in

this study. In contrast, there could be 5 subjects with a very small

alpha synchronization which was highly reliable across trials, and

which would therefore result in a statistically significant effect.

Such an effect would not show up in the group-average time-

frequency plot but would be visible in the statistical plot. The

individual strength of power-changes is only rarely reported.

Pfurtscheller et al. [35] reported variable power changes in a

motor-imagery task; e.g., one subject showed a band power

change of 245%, another subject showed only 21%. To solve this

problem one can normalize the data or calculate single-subject

statistics. A statistical method like the single threshold permutation

test which treats the frequency bands individually has the

additional advantage that no normalization of frequency bands

is needed. Thus, the problem that alpha oscillations show up with

higher amplitudes than gamma-oscillations is handled by the

statistical procedure.

Interindividual variance is a problem for both ERPs and time-

frequency data, if analyzed on group level. On the background of

documented variance, group-level effects cannot be generalized to

clinical populations without testing the consistency of the effect in

single subjects. The possible value of single trial and single-subject

analysis was recognized at least 25 years ago [36]. Recently

developed algorithms and freely available software boost the use of

single-subject analysis in EEG [37–40].

Conclusions

Before the active oddball paradigm can be applied clinically for

detecting voluntary brain activation in patients with DOC a

reliable analysis of the response must be established in healthy

subjects. We found that the distinction between target and

distractor was highly inconsistent between subjects in the ERPs

as well as in time-frequency data. Given the results of the present

study, we would not recommend analyzing an active oddball

paradigm with ERPs or time-frequency representations to assess

voluntary brain activation (i.e., active counting of the target) in

unresponsive patients. However, a limitation of the study is that we

used a rather specific semantic oddball, which may have

confounded the results. Future experiments should clarify whether

the distinction between P3a and P3b in the ERP shows less inter-

individual variability with other stimulus qualities and whether the

late negative component can distinguish conscious from uncon-

scious target processing. In addition, examination of other analysis

techniques could be promising.

However, our results give further evidence that single-subject

statistics are necessary in EEG research. Plotting the ERP and

analyzing group effects may be misleading if the consistency across

subjects is poor. In functional magnetic resonance imaging it is

standard to apply analysis to single subjects as well as on group

Figure 14. Difference spectrogram for standard minus distractor on electrode Pz. Scale indicates negative values from 25 mV in blue,
values near zero in light green and positive values in yellow and red up to 5 mV .
doi:10.1371/journal.pone.0074572.g014
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level. Fast algorithms and freely available tools make single-subject

analysis of EEG-data feasible. We believe that future research will

rely stronger on single-subject analyses of EEG-data because

results obtained on a group level often reflect effects which are

only present in a specific subgroup of the tested participants,

making general inference to population unwarranted.

Materials and Methods

Ethics
Written informed consent was obtained from each subject

according to the ethical guidelines of the Declaration of Helsinki.

The experiment was part of a larger project which has been

approved by the ethics committee of Salzburg.

Subjects
We recruited 29 healthy subjects, of whom 23 participated in

this experiment, 6 participated in a variant of the experiment.

Because of technical reasons, 5 subjects were excluded from data

analysis. Data collected from 18 high school graduated subjects

(age: 20–26 years; mean = 23 years; SD = 1.95; 6 male) was

analyzed. None of the participants reported any history of

neurological or psychiatric diseases, and they were not receiving

any psychoactive medication.

Experiment
The experiment was split in two parts, each preceded by an

instruction (duration = 18 sec) which was presented via head-

phones. In both parts an equal number of stimuli were presented.

A frequently presented (total: 300 trials) beep-tone served as

standard. Additionally, the rarely presented (total: 50 trials each)

sound of a cat and the sound of a doorbell served as deviants. Each

deviant was preceded by 2–7 standards. The instruction asked the

subjects to count the sound of the cat and to ignore all other

stimuli. Each trial lasted 1500 ms and a variable timespan of 34–

480 ms to avoid expectancy effects.

Data Registration
EEG-Data was recorded using a BrainCap with a 10–20 system

and a BrainAmp (Brain Products GmbH, Germany) 16-bit ADC

amplifier. The sampling rate was 250 Hz. Of the 32 recorded

channels, 2 were used to monitor the left and right horizontal

electrooculogram. One was used to monitor lower-site vertical

electrooculogram. Two were positioned at the mastoids for re-

referencing purposes to remove the bias of the original reference,

which was placed at Fcz. The other electrodes were Fp1, Fp2, F3,

F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz,

FC1, FC2, CP1, CP2, FC5, FC6, CP5, and CP6. Data analysis

was conducted for data collected from the electrodes F3, F4, C3,

C4, P3, P4, O1, O2, F7, F8, P7, P8, Fz, Cz, and Pz. Impedances

were kept below 10 kV.

Data Preparation
Data pre-processing was done with Brain Vision Analyzer

(Version 1.05.0005, Brain Products GmbH). First, mastoid

electrodes were used to build a new averaged reference for all

Figure 15. Difference spectrogram for target minus distractor on electrode Pz. Scale indicates negative values from 25 mV in blue, values
near zero in light green and positive values in yellow and red up to 5 mV .
doi:10.1371/journal.pone.0074572.g015
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other channels. The average of Fp1 and Fp2 was used as a

reference for the lower-site vertical electrooculogram to obtain a

bipolar vertical signal. To reduce noise, Butterworth Zero Phase

Filters from 1 to 48 Hz (time constant 0.1592 s, 48 dB/oct) were

applied.

Independent component analysis (ICA) was applied, since this

procedure has been shown to effectively detect, separate, and

remove ocular, muscular, and cardiac artifactual sources in EEG

data [41–43]. The ICA was calculated on all channels, including

the prepared electrooculographic channels. After visual inspection

of the ICA components, those components containing ocular or

muscle artefacts were determined and removed by performing the

corresponding ICA back-transformation.

An automatic data inspection was carried out in order to

exclude remaining artefacts. Maximal allowed voltage step per

sampling point was 50 mV (exceeding values were excluded with a

surrounding of 6100 ms); maximal allowed absolute difference on

an interval of 200 ms was 200 mV and lowest allowed absolute

difference on an interval of 100 ms was 0.5 mV (exceeding values

were excluded with a surrounding of 6500 ms).

To perform frequency analysis on individual trials, data was

segmented into 2.2 sec epochs for each trial. These segments

started 2600 ms before begin of the stimulus and ended 1600 ms

after begin of the stimulus. The preprocessed segments were

exported into a generic data format and imported to MATLABH
(The Mathworks). All of the following steps (analysis of ERPs and

time-frequency data, and the respective statistics) were carried out

in MATLAB.

Event Related Potentials (ERP)
All segments were band-pass filtered from 1–20 Hz and then

truncated from 0 to 1000 ms. These segments were then analyzed

using the statistical methods described in the Statistics section.

For the purpose of plotting graphs, the means of all trial-types

were built. The ERPs with three lines for the three trial types

(target, distractor, and standard) were drawn. To illustrate inter-

individual variance, global field potentials (GFPs) were computed

and drawn for each subject individually. In addition, difference

scalp maps were plotted for each 20 ms step between 300 and

400 ms for the comparison between standards and distractors or

targets, and between 200 and 400 ms between targets and

distractors. The different time-ranges were chosen to catch the

P300 between 300 and 400 ms and the earlier occurring P3a

together with the P3b between 200 and 400 ms.

Frequency Analysis
The 2.2 sec segments were transformed into time-frequency-

domain by applying a short time Fourier transform on 128 ms

subdivisions of the segments using a Hamming window. The

segments overlapped for 64 ms. The frequency resolution was

chosen to be 2 Hz, beginning from 1 Hz up to 45 Hz. For each

trial the baseline was estimated by calculating the mean of the

estimate of the short-term, time-localized frequency content at the

subdivisions from 2200 ms to 0 ms. This baseline was subtracted

from the values from time 0 ms to 1000 ms. The segments were

then truncated from 0 ms to 1000 ms. These time-frequency

representations for all trials were then analyzed with the statistics

described in the Statistics section.

For graphical purposes, the means of all target-, distractor-, and

standard-trials were built. Then, the mean of targets was

subtracted from the mean of standards, the mean of distractors

was subtracted from the mean of targets, and the mean of

distractors was subtracted from the mean of targets. The values of

the 3 difference-matrices were normalized to a range from the

minimum to the maximum of all 3 difference-matrices and

displayed as images. To illustrate inter-individual variability these

difference-plots were given for a single electrode position,

individually for each subject.

Statistics
Single threshold permutation tests as described by Nichols and

Holmes [44] for functional neuroimaging were implemented in

MATLABH and performed on a single subject level. Similar

approaches for the EEG are described by Maris and Oostenveld

[39] and Koenig et al. [38]. The single threshold permutation test

works as follows:

1. The trials of two conditions are collected in a single set.

2. This set is shuffled and partitioned into two sets which have the

same size as the original trial sets of the two conditions.

However, these random partitions now include trials from both

conditions.

3. A test statistic, in our case a t-test, is calculated for each data

point (i.e., each time-electrode or each time-electrode-frequen-

cy combination) on this random partition. The most negative

and the most positive of the resulting t-values are recorded.

4. Steps 2 and 3 are repeated for 1000 times and a histogram is

constructed of the 1000 recorded t-values separately for the

most negative and the most positive t-values.

5. A t-test is calculated on the original trial sets (that is, each trial

set contains only trials from one condition). Based on the

histograms calculated in step 4, the proportion of random

partitions that resulted in a more extreme (i.e. more negative or

more positive) t-value than the observed one is calculated. This

proportion is the p-value of the permutation-t-test.

6. If the p-value is smaller than the critical alpha-level we

conclude that the test result is significant.

This test was applied to all data points, i.e. to each time-point at

each electrode of the ERPs, and to each time-frequency point at

each electrode in time-frequency maps. Note that this usually

yields the multiple-comparisons problem. In fact, the described

permutation t-test is designed to deal with this problem by

recording all t-values of all t-tests (i.e. all t-tests for each time-

(frequency)-electrode-combination) and calculating the p-value

based on the distribution of these t-values. Thus, the critical alpha

level directly indicates the probability that the difference happened

by chance, since the calculated p-value indicates the probability of

more extreme results under random conditions.

An additional advantage of this test is that no further

normalization is needed. By applying t-tests individually to each

time-frequency point, the frequencies are all treated individually.

The differences between two conditions may be larger for the

alpha range than the gamma range, for example, but are

normalized by calculating the t-values of these differences.

Such a single threshold permutation t-test was applied to all

possible pairs of conditions; that is, beep vs. cat(t), beep vs. door(d),

and cat(t) vs. door(d). Because we carried out three permutation t-

tests, a corrected critical alpha level of pv:05=3~:016 was

applied. The corresponding t-values for this critical alpha level

according to the above described histograms are determined

individually for each subject and were on average across subjects

tmin~{4:23; tmax~4:29, for beep vs. cat(t), tmin~{4:26;
tmax~4:29, for beep vs. door(d), and tmin~{4:40; andtmax~

4:38, for cat(t) vs. door(d) for ERPs and tmin~{4:77; tmax~4:13,
for beep vs. cat(t), tmin~{4:74; tmax~4:10, for beep vs. door(d),
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and tmin~{4:30; tmax~4:26 for cat(t) vs. door(d) for time-

frequency data.

The spectrogram-statistics were finalized by counting the

number of subjects showing significant t-values for each time-

frequency step and each electrode position. Statistics for ERPs

were done analogously in the dimensions of time and electrode

position. The resulting numbers were plotted to give an estimate of

the consistency of the effect across participants.

However, this illustration represents only the numbers of

participants showing simultaneously significant effects. We count-

ed the numbers of significant time-bins in certain time-ranges to

see if an effect occurred in each of the participants, e.g. between

300 and 400 ms for the comparisons with the standards (beep, i.e.

to catch the P3 effect) and between 200 and 400 ms for the

comparison cat(t) vs. door(d) (i.e. to catch the earlier P3a together

with the P3b) in the ERP for each participant, for each electrode

and each comparison individually. Then we evaluated if there

were subjects without significant time-bins. We examined which

electrode showed the highest sum across subjects in each

comparison and determined the range of significant time-bins

across participants at this position.

In order to evaluate the number of subjects showing significant

differences on group level we applied binomial tests (e.g. as used in

[37]) by use of the free Matlab function myBinomTest with n = 18

(number of subjects), p = 0.05 and s expressing the number of

subjects with a significant p-value as determined with the

individual permutation tests. We chose to apply one-sided tests

because we wanted to test if the observed number was greater than

the expected number of successes.
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