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Abstract

In the ultimatum game, two players divide a sum of money. The proposer suggests how to split and the responder can
accept or reject. If the suggestion is rejected, both players get nothing. The rational solution is that the responder accepts
even the smallest offer but humans prefer fair share. In this paper, we study the ultimatum game by a learning-mutation
process based on quantal response equilibrium, where players are assumed boundedly rational and make mistakes when
estimating the payoffs of strategies. Social learning is never stabilized at the fair outcome or the rational outcome, but leads
to oscillations from offering 40 percent to 50 percent. To be precise, there is a clear tendency to increase the mean offer if it
is lower than 40 percent, but will decrease when it reaches the fair offer. If mutations occur rarely, fair behavior is favored in
the limit of local mutation. If mutation rate is sufficiently high, fairness can evolve for both local mutation and global
mutation.
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Introduction

Ultimatum game introduced by Guth et al. [1] is one of the

most influential games in experimental economics that people in

the real world do not behave rational. The setting of the game is

quiet simple. Two players divide a sum of money. The proposer

makes an offer on how to split and the responder decides whether

to accept. If the offer is rejected, both players get nothing. A

rational responder ought to accept any non-zero offer. Therefore,

a selfish proposer who thinks that the responder is rational should

offer the minimal. Game theory predicts the rational outcome,

however, empirical studies in human society, including both

laboratory games and field games, prefer fair outcome. In

hundreds of ultimatum games conducted in different countries in

the last 30 years, proposers on average offer 40 to 50 percent of the

total sum to the responder. Responders usually accept offers

higher than 40 percent and about half of all responders reject

offers below 30 percent [2–7].

How to understand people rejecting positive offers? One well

known economic explanation is that irrational individuals have

preference on fairness [8–9]. In these models, utility functions of

players depend not only on their own payoff but also the payoff of

the others. Responders reject low offers because the disutility of

receiving a payoff less than the proposer is greater than the utility

of getting small monetary benefits. On the other hand, the

rejection of a unfair offer can be seen as a kind of punishment that

inhibits selfish behaviors in later rounds. In iterated ultimatum

game experiments, average offers are much more closer to the fair

share [9–12]. However, this contradicts the equilibrium analysis

since the only subgame perfection is not to reject.

From the perspective of evolutionary game theory, replicator

dynamics, which assumes that successful strategies will always

come to dominate the population, favors low offers and demands

[13–16]. Therefore, to explain fairness using evolutionary

dynamics, additional mechanisms are necessary. One approach

involves reputation system. If proposers can obtain information

about responders’ demands and believe that responders reject

offers lower than their aspiration level, high offers and demands

will prevail the population [14,16]. Spatial structure was also

found to play a key role in the evolution of fairness. Pioneering

work by Page et al. [17] pointed out that ultimatum game on ring

and lattice may evolve to much fairer outcomes compared with

random encounter setting. Subsequent research confirmed that

fairness is enhanced in heterogenous graphs [18]. Furthermore,

spatial ultimatum game with discrete strategies exhibits fascinat-

ingly rich dynamical behavior such as traveling waves and cyclic

dominance [19], and the fair solution is obtained in the limit of a

continuous strategy set [20]. A third approach emphasizes the

importance of randomness [13,21]. By using stochastic evolution-

ary game theory, Rand et al. [21] demonstrated that natural

selection favors fair behavior when sufficient randomness is

present.

In this paper, we study the iterated ultimatum game by a

learning-mutation process. To analyze the game, define individual

strategy as S(x,y,p), meaning giving x of the total sum to the

responder when acting as a proposer and rejecting any offer less

than y with probability p (and accepting offers equal or higher

than y with probability 1) when acting as a responder, where

0ƒx,yƒ1 and 0vpƒ1. The parameter y can be seen as

proposer’s demand or aspiration level. Following this definition,

the rational strategy is written as S(e,e,1), where e is the minimum

offer greater than 0, and the fair strategy is S( 1
2
, 1
2
,1). In our

model, individuals update their strategies through quantal

response learning. We will show that learning-mutation process

leads to oscillations from offering 0.4 to 0.5 and rejecting lower

offers with probability one half.
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Methods

Before study the ultimatum game with continuous strategies, we

first consider the iterated mini ultimatum game with only two

possible offers h and l, with 0ƒlvhƒ1 [13–14,16,22–23]. In

each round, the proposer has to choose the high offer h (labeled by

H ) or the low offer l (labeled by L), and the responder has to

decide to reject the low offer l (labeled by H ) or accept (labeled by

L). The payoff matrix is then written as

H L

H

L

1{h,h 1{h,h

0,0 1{l,l

� � , ð1Þ

where the proposer plays rows and the responder plays columns.

The mini game has a strict Nash equilibrium (L,L), and non-

isolated Nash equilibria (H,sHz(1{s)L), where h{l
1{l

ƒsƒ1.

Notice that each equilibrium (H,sHz(1{s)L) is weakly domi-

nated by (H,L), (L,L) is the only subgame perfection. Therefore,

rational players will choose (L,L) according to backward

induction.

Payoff matrix (1) can also be interpreted as the Prisoner’s

Dilemma game with punishment, where higher offer and low offer

correspond to cooperation and defection, respectively, and

rejecting the low offer means paying l to punish defector 1{l
[16,22]. Similarly as the mini ultimatum game, (L,L) is the only

subgame perfection.

There are many ways to model social learning [10,13,24–26]. In

this paper, we apply the well-known quantal response equilibrium

(QRE) introduced by McKelvey and Palfrey [27–29]. In a QRE,

players are assumed boundedly rational and do not always choose

best responses. Instead, they make decisions based on probabilistic

choice functions and believe other players do so as well. A general

interpretation of this model is that players observe random

perturbations on the payoffs of strategies and choose optimally

according to those noisy observations. The most common

specification of QRE is the logit equilibrium, where noises follow

the extreme value distribution [30–32]. Let uij denotes the

expected payoff of player i using strategy j (j[f1,:::,Jig). The

logistic response function is defined as

sij(�uui)~
eluijPJi

k~1 e
luik

, ð2Þ

where sij is the probability that player i adopts strategy j and

�uui~(ui1,:::,uiJi ). If each player uses a logistic response function,

QRE or logit equilibria are the solutions of pij~sij , where pij is

the frequency of strategy j in player i. The logistic response

function has one free parameter 2l, who has been interpreted as

the intensity of selection [16,21]. At 2l~0, players have no

information about the game and each strategy is chosen with equal

probability. As 2l approaches infinity, players achieve full

information about the game and play the best response.

The quantal response method has been widely used to explain

experimental data. For instance, Yi [29] applied QRE to fit data of

high stakes ultimatum games [33]. In iterated games, estimates of

2l usually increase as the game progresses [27–29]. As players

gain experience from repeated observations, they can be expected

to make more precise estimates and finally reach a Nash

equilibrium. To describe this process, consider QRE as a function

of 2l. When 2l~0, the QRE is at the centroid of the strategy

simplex, and when 2l?z?, the QRE set consists of Nash

equilibria only. As pointed out by McKelvey and Palfrey [27], for

almost all normal form games, the graph of logit equilibria

correspondence contains a unique branch which starts for 2l~0
at the centroid and converges to a unique Nash equilibrium as 2l
goes to infinity. This then defines a unique selection from the set of

Nash equilibria by ‘‘tracing’’ the graph of the logit equilibrium

correspondence starting at the centroid. The selected Nash

equilibrium is called the limiting logit equilibrium (LLE) of the game.

Results

For the mini ultimatum game Eq.(1), logit equilibria are

solutions of

p1~
1

1zel(1{l)(q{p2)
,

p2~
1

1zell(1{p1)
, ð3Þ

where pi denotes the probability of player i using his first strategy

and q~ h{l
1{l

. When 2l~0, Eq.(3) has a unique solution (
1

2
,
1

2
),

and when 2l?z?, the QRE set consists of three Nash equilibria

only, (0,0) (1, 1
2
) and (1,q) (see Figures S1 and S2). In general, the

LLE is one of two Nash equilibria, either (L,L), giving the low

offer and accepting the low offer, or (H,H
2
z L

2
), giving the high

offer and rejecting the low offer with probability one half.

Approximately, the LLE is (H,H
2
z L

2
) if and only if

2hvlz1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(1{l)

p
: ð4Þ

(See Text S1).

If the high offer is the fair offer, i.e., h~ 1
2
, Eq.(4) tells us that

social learning chooses the low offer. In fact, any high offer equal

or greater than 1
2

is unfavored. On the other hand, if the low offer

is the rational decision, i.e., l~e, any high offer smaller than
1{

ffiffi
e

p

2

is selected. Therefore, social learning does not always prefer the

rational outcome. For convenience, we say that offer x1 dominates

offer x2 if x1 is the LLE of the mini ultimatum game with two

offers x1 and x2. Dominant regions of x1 and x2 are shown in

Figure 1. Offers lower than 1
2

are dominated by slightly higher

offers. For lv 1
2
, the right side of Eq.(4) is a convex function, where

at the minimum l�~ 2{
ffiffi
2

p

4
&0:15 and h�~ 3{

ffiffi
2

p

4
&0:4. This

implies that if h�ƒxv 1
2
, x is also dominated by some low offers.

In particular, h� dominates almost all lower offers (the only

exception is l�, see the red point in Figure 1).

Let us now introduce the learning-mutation process on the

continuum of all strategies. Consider a population of N players. In

each generation, players are randomly paired and play the iterated

mini ultimatum game. We begin by considering the single role

mode, in which roles of two members in a group are decided

randomly before the game starts and do not change in an

interaction, and discuss later that main results are qualitatively

unchanged if they play both roles. Two players update their

strategies by the quantal response learning and the iterated game

will stop if they reach a Nash equilibrium since in this situation

both are unwilling to change. Mutations happen after all the

groups reach Nash equilibria. With probability m, players adopt a
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new strategy. In local mutation scenario, they plus or minus a

small random value on their former strategies, and in global

mutation scenario, all strategies are drawn with equal probability

(See Figure 2).

We first look at the learning process in one generation. Denote

the mini ultimatum game where the proposer using strategy

S(x1,y1,p1) and the responder using strategy S(x2,y2,p2) by

UG(S(x1,y1,p1),S(x2,y2,p2)). In this game, the proposer offers x1
and the responder rejects offer lower than y2 with probability p2.

The payoff of this game is described by (1), where h~maxfx1,y2g
and l~minfx1,y2g. At the beginning, both players have the

motivation to adjust their strategies. If y2wx1, y2 is the high offer

h and x1 is the low offer l. The proposer tends to increase his offer

from x1 to y2 in order to avoid being refused, and meanwhile, the

responder tends to decrease his demand from y2 to x1. Conversely,

if x1wy2, the proposer wants to decrease his offer from x1 to y2
and the responder wants to increase his demand from y2z to x1.

According to the quantal response learning, both players choose

their initial action randomly, i.e., the proposer suggests the lower

offer with probability one half and the responder rejects this offer

with the same probability. An approximated formula to decide the

LLE is provided by Eq.(4). At the LLE, the responder either

accepts the low offer or rejects the low offer with probability one

half. This implies that the rejection rate p will converge to 1
2

in the

long run. For simplicity, we write S(x,y)~S(x,y, 1
2
) in later

discussions. At the end of game UG(S(x1,y1),S(x2,y2)), if x1
dominates y2, the proposer keeps his strategy unchanged but the

responder adopts a new strategy S(x2,x1). However, if y2
dominates x1, the responder’s strategy does not change but the

proposer adopts a new strategy S(y2,y1). We observe that the

diversity of offers decreases from one generation to another since

in each mini game, one dominated offer is eliminated. In fact, for

any (heterogenous) population, quantal response learning will

eventually lead to a homogenous self-consistent population in

which each player’s offer equals to his demand.

The same result arises if players act both roles. To see this,

suppose that two players using strategies S1(x1,y1) and S2(x2,y2)
are randomly paired. In the interaction, they will play two games

UG(S1(x1,y1),S2(x2,y2)) and UG(S2(x2,y’2), S1(x’1,y1)), where

player 1 acts as a proposer in the first game and acts as a responder

in the second game, and x’1 and y’2 denote respectively the offer of

player 1 and the demand of player 2 after the first game. Notice

that x1 competes with y2 in the first game and x2 competes with y1
in the second game, the final outcome does not change with the

order of two games, and two dominated offers are eliminated at

the end of the interaction. Thus, similarly as the single role mode,

the diversity of offers decreases and the population will converge to

a homogeneous state.

Let us now add the possibility of mutation. We first look at the

limit of weak mutation rate m?0. As in the adaptive dynamics

model, mutations occur rarely so that a mutant will either vanish

or has taken over the population before the next mutation happens

[15,34–35]. Under weak mutation, the population is homogeneous

in most of time, and we represent the strategy of the residents

S(xr,xr) by xr. Eq.(4) indicates that (a) if xrvh�, the population

could only be replaced by mutants using offers higher than xr, (b) if

h�ƒxrv
1
2
, both higher and lower offers may invade, (c) if 1

2
ƒxr,

any lower offer could take over the population and higher offer

can not invade (See Figure 1). Generally speaking, the learning-

mutation process leads to oscillations in interval ½h�, 1
2
), where

proposers offer 40 to 50 percent of the total sum to responders and

responders reject offers below their expectation with probability

one half. Once the resident strategy leaves the interval, learning

and mutation will push it back (see Figure 3).

The long-term mean offer of the population depends signifi-

cantly on the range of mutation. In local mutation scenario where

the mutational jumps are small such that the resident strategy

Figure 1. Pairwise invasibility plot. x1 and x2 are dominant in
white and gray regions, respectively. The red dash line denotes x1~0:4
and the red point denotes (x1,x2)~(0:4,0:15). Every offer x1 lower than
0.5 is dominated by some higher offers and x1 equal or greater than 0.4
is also dominated by lower offers. In particular, x1~0:4 dominates
almost all lower offers, the only exception is x2~0:15 (the red point).
doi:10.1371/journal.pone.0074540.g001

Figure 2. An example for the learning-mutation process. An
example for the learning-mutation process in a population of four
players from generation T to generation Tz1. In generation T , three
players adopt S(0:1,0:1) and one adopts a mutant strategy S(0:1,0:4).
At the beginning, they are divided into two mini ultimatum games,
UG(S(0:1,0:1),S(0:1,0:1)) and UG(S(0:1,0:1),S(0:1,0:4)), and update
their strategies by the quantal response learning (P means proposers
and R means responders). In the first group, players do not change
their original strategies, while in the second group, the proposer will
change his strategy to S(0:4,0:1) since 0.4 dominates 0.1. Mutations
happen after all the pairs reach Nash equilibria. The responder in the
first pair mutates to S(0:5,0:1) (the red number). As a result of learning
and mutation, strategies in generation Tz1 are S(0:1,0:1), S(0:5,0:1),
S(0:4,0:1) and S(0:1,0:4).
doi:10.1371/journal.pone.0074540.g002
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changes continuously, the time evolution of xr could be described

by the adaptive dynamics [15,34–35]. It is easy to verify that
dxr
dt
w0 if xrv

1
2

but dxr
dt
v0 if xr§

1
2
. xr~

1
2

is a degenerate point of

the adaptive dynamics, i.e., the resident strategy will decrease

when it reaches the fair offer. In this case, the long-term mean

offer is slightly lower than 0.5 (see Figure 4A). In contrast, if

mutations are global that are picked from the uniform distribution

[0,1], xr may drop dramatically when it is greater than 0.4 (see

Figure 3B). Thus, broader range of mutation leads to lower mean

offer. To illustrate this intuition, suppose that mutant strategies in

xr population are picked from a b-distribution Beta(a,b), where

a~ xr2c{2xrz1
1{xr

and b~2c [21]. The particular values of a and b

are chosen such that the modal value of the distribution is xr. The

inverse of 2c measures the range of mutation, where 2c~1 means

uniform distribution on [0,1] and 2c?z? means local mutation.

Figure 4A shows clearly that the long-term mean offer of the

population is monotonically increasing in 2c. When 2c~1, the

mean offer is about 0.32, and when 2c?z?, it converges to the

fair outcome 0.5.

In the high mutation limit m?1 with global mutation 2c~1, all

strategies are present in the population simultaneously with

approximately equal frequency and therefore the long-term mean

offer is exactly 0.5 [21]. As 2c increase, the mean offer will first

decline to below 0.4. This follows from the fact that a successful

strategy should maximize the winning probability when playing

against a randomly chosen strategy. As shown in Figure 1, offers

around 0.4 have smaller dominated regions therefore are preferred

in a random world. However, when the mutation range becomes

narrow, the mean offer will increase since any offer lower than 0.5

are dominated by slightly higher offers. Finally, it converges to 0.5

as 2c?z? (see Figure 4C).

At intermediate mutation rates 1vNmvN where mutations

happen frequently and the population has a high diversity of

strategies, the time evolution of the one generation population

mean offer could be characterized by the theoretical predictions of

the weak mutation limit [15]. That is, the one generation mean

offer increases if it is smaller than 0.4 but oscillates if it is between

0.4 to 0.5 (see Figure 3C). Although a smaller population

converges to homogeneous state easier than a larger population,

numerical simulations suggest that the long-term mean offer is

robust to different population sizes (see Figure 4). In particular,

intermediate mutation rates result in intermediate mean offer. For

global mutation 2c~1, the long-term mean offer is higher than

Figure 3. Time evolution of the population mean offer. The population size is 100 and evolves under the learning-mutation process. Mutation
rates are taken as m~0:001 (weak mutation rate) in Figures 3A and 3B and m~0:1 (intermediate mutation rate) in Figure 3C. Mutant strategies follow
b-distributions, where 2c~100 (local mutation) in Figures 3A and 3C, and 2c~1 (global mutation) in Figure 3B. Red dash lines denote x~0:4. In all
figures, the population mean offer increases if it is smaller than 0.4 but oscillates if it is between 0.4 to 0.5.
doi:10.1371/journal.pone.0074540.g003

Figure 4. Effects of mutations and population sizes on the long-term mean offer. Mutation rates are taken as m~0:001 (weak mutation
rate), m~0:1 (intermediate mutation rate) and m~1 (high mutation rate) in Figures 3A, 3B and 3C, respectively. The long-term mean offer depends
significantly on the mutation rate and the mutation range, but is robust to different population sizes.
doi:10.1371/journal.pone.0074540.g004
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that of weak mutation limit 0.32 but lower than that of high

mutation limit 0.5, and when 2c?z?, the long-term mean offer

goes to 0.5 as the two extremes (see Figure 4B).

Discussion

Similarly as [14], we assume that a proposer knows what offers

have been accepted by the responder in the last generation. This

information can be easily obtained since every group reaches an

agreement on a certain offer at the end of a generation. Given this

information, the proposer should either to stay unchanged or to

adopt the responder’s strategy. In fact, switching to any other offer

is unreasonable: giving offers lower than the demand will face the

risk of being rejected and giving offers higher than the demand is

inefficient. If the ultimatum game is anonymous such that the

responder’s demand is unknown to the proposer, the proposer

then chooses offers from interval [0,1]. In this case, the LLE of the

ultimatum game is the rational equilibrium, where the proposer

offers the minimal and the responder accepts any non-zero offer

[29].

A difference between our model and [14] is that we include the

possibility that responders accept lower offers. Consequently,

proposers have to evaluate whether to satisfy responders’

demands. According to quantal response learning, two players in

a group choose their initial strategies randomly. The motivation is

twofold. On the one hand, each player faces a new game in a new

interaction since the payoff matrix of the mini ultimatum game is

decided by the strategies of both players. On the other hand,

empirical evidences from the repeated Prisoner’s Dilemma games

(with punishment) support this consideration. The frequency of

cooperation (which corresponds to the frequency of high offer in

the mini ultimatum game) in the initial round of each interaction is

nearly the same and decreases over rounds [3,25,36–37]. We can

then expect that players are affected little by past experience and

update their strategies entirely by social learning.

We consider that players are boundedly rational and choose the

best response according to noisy observations. In an interaction,

two players update their strategies simultaneously. At the

beginning, the proposer is inclined to make the high offer due to

the high rejection rate and the responder tends to accept the lower

offer since rejecting is costly. Observation errors decrease as the

game progresses and two players will finally reach a Nash

equilibrium. Intuitively, their strategies converge to the high offer

if the proposer learns faster than the responder, i.e., the proposer

stops making the low offer before the responder stops rejecting.

This happens when the low offer is small, which means the

rejection of the low offer causes a greater loss to the proposer than

to the responder. Thus, mistakes in evaluating the payoffs of

strategies lead to fairer outcome.

We note that there exist at least two theoretical papers

investigated the effects of randomness on ultimatum game

[13,21]. Gale et al. [13] studied noisy replicator dynamics with

asymmetric mutation structure in which responders attempt to

adopt new strategies more often than proposers. The greater

variation in responder behavior then forces proposers to make

higher offers. Rand et al. [21] analyzed the stochastic evolutionary

dynamics under weak selection. They showed that larger mutation

rate could lead to a heterogeneous population with higher average

offer and acceptance level. In the high mutation limit, as has been

shown in [17], the prevailing strategy is (x,y)~( 1
2
,0), while in the

low mutation limit, the prevailing strategy is (x,y)~( 1
3
, 1
3
).

Furthermore, their results are robust to the range of mutation.

In our paper, the intensity of selection is weak at the beginning

of an interaction and increases as players gain experience from

repeated observations. At the end of the interaction, the selection

is strong and players only choose the strategies with the highest

payoff. Different from [21], the long-term mean offer is affected by

both the mutation rate and the mutation range. For low and

intermediate mutation rates, the mean offer increases with

decreasing mutation range, and fair behavior is favored in the

limit of local mutation. In contrast, for high mutation rates, both

global mutation and local mutation lead to fair outcome.

The emergence of equity is as complicated as the evolution of

human society. Our model excluded many important issues, such

as preference on fairness [8–9] or punishment [38–40], social

networks [17–20], emotions [41–42] and culture difference [4–

6,43]. Based on learning and mutation, we show that individuals

entirely motivated by self interests can evolve toward fairness.

Supporting Information

Figure S1 Graph of QRE correspondence. Parameters are

taken as l~0:05, h~0:4 in Figure S1A and h~0:5 in Figure S1B.

Blue curve and red curve are p1 and p2, respectively. In Figure

S1A, since 0:4 dominates 0.05, (1, 1
2
) is the LLE. In Figure S1B,

since 0.5 is dominated by 0.05, (0,0) is the LLE.

(TIF)

Figure S2 Graph of Eq.(S7). Parameters are taken as h~ 3
8

and l~ 1
6
, i.e., q~ 1

4
. 2l§0 on solid curves but 2lv0 on the

dashed curve. Black points are Nash equilibria and the red point is

the LLE. The graph of Eq.(S7) consists of two branches, where one

passes through the Nash equilibrium (1, 1
4
) and the other passes

through the centroid ( 1
2
, 1
2
). Since (1, 1

2
) and ( 1

2
, 1
2
) are on the same

branch, higher offer is the LLE.

(TIF)

Text S1 Supporting Information for Social learning in
the ultimatum game.

(PDF)
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