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Abstract

Linear discriminant analysis (LDA) is one of the most popular classification algorithms for brain-computer interfaces (BCI).
LDA assumes Gaussian distribution of the data, with equal covariance matrices for the concerned classes, however, the
assumption is not usually held in actual BCI applications, where the heteroscedastic class distributions are usually observed.
This paper proposes an enhanced version of LDA, namely z-score linear discriminant analysis (Z-LDA), which introduces a
new decision boundary definition strategy to handle with the heteroscedastic class distributions. Z-LDA defines decision
boundary through z-score utilizing both mean and standard deviation information of the projected data, which can
adaptively adjust the decision boundary to fit for heteroscedastic distribution situation. Results derived from both
simulation dataset and two actual BCI datasets consistently show that Z-LDA achieves significantly higher average
classification accuracies than conventional LDA, indicating the superiority of the new proposed decision boundary
definition strategy.
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Introduction

Brain-computer interfaces (BCI) provide direct connection

channel between brain and external world without any peripheral

muscular activity [1]. It translates brain activity to signals that

control external devices, and there are many augmentative

communication and control systems based on BCI [2–6], which

improves lives of people with severe neuromuscular disorders.

Generally an EEG based BCI consists of four modules [1]: 1)

signal acquisition module to record and amplify EEG signals; 2)

feature extraction module to extract signal features that encode

user’s intent; 3) translation module to translate features into device

command; 4) feedback and control module to synchronize user’s

action and achieve control of external devices. The high

performance EEG amplifier with suitable reference strategy [7]

will increase quality of the recorded EEG signal, and employing

innovative paradigms in the feedback and control module may

obtain higher quality features and better control strategies [8–11].

Once EEG amplifier as well as reference strategy, and the

feedback and control module are determined, feature extraction

and translation algorithms will play important roles in improving

the performance of BCI. Currently, the conventional features used

in scalp EEG based BCI can be attributed to event related

potentials, the sensorimotor rhythm, the transient visual potentials

and the steady state potentials (including visual and audio). To

refine those specific features, many feature extraction algorithms

have been proposed [12–15]. However, as an input-output system,

the final translation module directly determines whether the

subject’s intention is correctly decoded [16]. Compared to the

conventional pattern recognition problems, BCI system requires

the translation module to have ability to handle with the small

sample size training problem, the heteroscedastic class distribution

problem and the nonstationary physiological signals, etc. There-

fore, effective translation algorithms specifically suitable for BCI

application are still required in BCI discipline [17] [18].

Linear discriminant analysis (LDA) is one of the most popular

classification algorithms for BCI application, and has been

successfully used in a great number of BCI systems such as motor

imagery based BCI [19], P300 speller [20] and steady state

movement related potentials based BCI [21]. The original LDA

has two derivations [22], fisher LDA (FLDA) and least square

LDA (LSLDA). FLDA is based on Fisher-Rao’s criterion [22–24],

which is to find the projection w to maximize the objective

function J(w)~DwT SbwD
�
DwT SwwD denoting the ratio of between-

class to within-class variances. LSLDA is derived from a linear

discriminant function y(x)~wT x, where the weight vector w is

supposed to minimize the mean squared error between wT x and

y(x) [25]. The solution of LSLDA will be equivalent to that of

FLDA with a proper label coding scheme adopted in LSLDA [25].

Both the two kind of LDAs are under the homoscedasticity

assumption that different classes follow Gaussian distribution with

same covariance matrices. However, the EEG data recorded from

actual BCI system usually have heteroscedastic class distributions,

which violates the fundamental assumption of LDA and notably

degrades the recognition performance. Heteroscedastic LDA
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(HLDA) is an extension of FLDA, whose between-class scatter is

generalized from Euclidean distance to Chernoff distance with

both effects of the class means and their covariance matrices

considered [26], thus HLDA does not need the homoscedasticity

assumption. Nonparametric discriminant analysis (NDA) is

another extension of FLDA [27], which makes no prior

assumption for the class distributions, the parameters can be

estimated by k nearest neighbor method and then they are used to

define the between-class scatter [28].

In essence, LDA linearly transforms data from high dimensional

space to low dimensional space, and finally the decision is made in

the low dimensional space, thus the definition of the decision

boundary plays an important role on the recognition performance.

Conventional LDA defines the mean of the projected data as the

decision boundary due to the homoscedasticity assumption [25].

Nearest neighbor of classes has also been proposed to serve as the

decision boundary [29]. Different from LDA, support vector

machine (SVM) firstly maps the data to a high dimensional space,

and then finds a hyperplane in the high dimensional space so that

the distance from the hyperplane to the nearest data point on each

side is maximized [30], theoretically the hyperplane is determined

only by a small amount of the training data which are called

support vectors. During the classification procedure of LDA, the

heteroscedastic class distributions will be still kept in the projected

space. Therefore, we argue that if the mean and variance of the

projected data could be considered for the definition of the

Figure 1. The decision boundaries of Z-LDA and LDA defined from training set. Blue circles are the weight sum y(x) of the first class, blue
solid line denotes the Gaussian distribution curve they subject to; red stars are the weight sum y(x) of the second class, red solid line denotes the
Gaussian distribution curve they subject to; green dashed line denotes the decision boundary of LDA, c~0, and green solid line denotes the decision
boundary of Z-LDA, c�~{0:34.
doi:10.1371/journal.pone.0074433.g001

Table 1. Classification accuracies (%) of Z-LDA and LDA on simulation dataset.

Difference of
SDsa 0 0.1rb 0.2r 0.3r 0.4r 0.5r 0.6r 0.7r 0.8r 0.9r

LDA 99.99±0.05 99.9160.22 99.5160.49 98.7960.77 97.5661.09 96.2761.39 95.1561.39 93.9861.38 92.7061.94 91.7061.72

Z-LDA 99.99±0.05 99.97±0.13 99.78±0.35 99.39±0.63 98.95±0.72 98.16±0.97 97.09±1.18 96.22±1.37 95.01±1.53 93.85±2.19

p-value 0.0153 ,1025 ,1028 ,10220 ,10222 ,10220 ,10223 ,10217 ,10212

adenotes the norm of the difference of SDs between the two simulated dataset.
br is a constant value, equals to

ffiffiffi
2
p

.
doi:10.1371/journal.pone.0074433.t001
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decision boundary, it may extend LDA to deal with the practical

heteroscedastic distribution data, which is the derivation point for

the proposed Z-LDA in this paper.

The paper is organized as follows. Section Methods and Materials

provides a detailed description of z-score LDA (Z-LDA); The

results of simulation dataset and motor imagery EEG datasets are

showed in section Results; In section Discussions, there is a general

discussion of the proposed algorithm; Section Conclusion gives a

summary of this work.

Materials and Methods

1. Linear Discriminant Analysis
To simplify the description of the algorithm, we only consider

the case of two classes. Assume (x11,x12,:::,x1m)[C1 and

(x21,x22,:::,x2n)[C2, with m and n being the number of samples,

are the samples in the two class sets C1 and C2.

LetX~(x11,x12,:::,x1m,x21,x22,:::,x2n), then the simplest represen-

tation of a linear discriminant function is obtained by taking a

linear function of the input vector so that

y(X)~wTXzw0 ð1Þ

where w is called a weight vector, and w0 is a bias. Using vector

notation, equation (1) can be converted to

y(~XX)~ ~WWT ~XX ð2Þ

where ~WW~
w
w0

� �
and ~XX is the corresponding augmented input

vector XT,1
� �T

with a dummy input x0~1. Accordingly, the least

square solution of equation (2) is [25]

~WW~ ~XXT ~XX
� �{1 ~XXTy ð3Þ

With ~WW estimated in equation (3), the corresponding weight sum

y(x) can be achieved. For conventional LDA, classification for an

input x is based on the comparison of y(x) and threshold, i.e., the

decision boundary. If we consider c1 as the label of class C1,c2 as

the label of class C2, the corresponding decision boundary can be

defined by c~(c1zc2)=2.

2. Z-score Linear Discriminant Analysis
Theoretically, the decision boundary of LDA is derived by

assuming the homoscedasticity distribution for the two classes.

Thus it may not be competitive to the heteroscedastic distribution,

and we will develop the following strategy to define a more robust

decision boundary.

Figure 2. The classification performance of Z-LDA and LDA on test samples. Blue circles are the test samples of the first class; red stars are
the test samples of the second class; green dashed line denotes the decision boundary of LDA; green solid line denotes the decision boundary of Z-
LDA.
doi:10.1371/journal.pone.0074433.g002
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Based on the estimated ~WW obtained by equation (3), the weight

sum y(x) for each training sample can be calculated from equation

(2), and then the parameters of the Gaussian distributions of the

weight sum y(x) related to the two classes can be estimated as,

m1~
1

m

X
x[C1

y(x)

m2~
1

n

X
x[C2

y(x)

s1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

X
x[C1

(y(x){m1)2

r

s2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
x[C2

(y(x){m2)2

r
ð4Þ

where mk,sk(k~1,2) are the corresponding mean and standard

deviation (SD) of the weight sum y(x) for training set Ck(k~1,2).
During classification, when a new sample x� is input, firstly

calculate the weight sum y(x�) by equation (2), then perform the

following normalization procedure,

z1~
y(x�){m1

s1

z2~
y(x�){m2

s2

ð5Þ

In essence, z1 and z2 are the transformed z-scores to measure how

much the weight sum y(x�) of the newly input sample is close to

the two weight sum distributions predefined by the training set,

thus the method is called z-score linear discriminant analysis (Z-

LDA). Finally, if Dz1DvDz2D, the sample is classified into C1,

otherwise, the sample belongs to C2. Assume the weight sum of

samples in the two classes subject to Gaussian distribution with

parameters mk,sk(k~1,2), then the proposed decision boundary is

the intersection of the two Gaussian distribution curves.

The above descriptions are based on LSLDA, since the only

difference between LSLDA and FLDA is the way to estimate the

weight vector w, and the solutions of them are substantially equal.

Therefore, the proposed decision boundary definition strategy can

be extended to FLDA, too.

3. Relationship between LDA and Z-LDA
Theoretically, the decision boundary of conventional LDA is

defined by

c{c1~c2{c ð6Þ

Based on equation (6), the decision boundary of conventional

LDA is the mean of labels of two classes, i.e. c~(c1zc2)=2.

Obviously, when the SDs are combined into classification, the

decision boundary of Z-LDA is defined as

(c�{m1)=s1~{(c�{m2)=s2 ð7Þ

which deduces a value

c�~(s1m2zs2m1)=(s1zs2) ð8Þ

Apparently, the decision boundary c� of Z-LDA is defined by both

the mean and SD of the weight sum of two classes.

In the binary classification, the expectation of mean of the

weight sum y(x) for training set is E(m1)~c1and E(m2)~c2, the

decision boundary of conventional LDA is theoretically equal to

c~(m1zm2)=2. When the weight sum of two classes have equal

SDs, the decision boundary of Z-LDA will also reduce to

c�~(m1zm2)=2. Therefore, the conventional LDA is a particular

case of Z-LDA.

Results

1. Evaluation on Simulation Dataset
1.1. Simulation dataset description. In this section, we

constructed a simulated dataset in order to investigate the

capability of Z-LDA in dealing with the two class classification

with heteroscedastic class distributions. The simulation was

performed by using the fundamental two 2-dimensional Gaussian

distributions, where the samples in the first class follow a Gaussian

distribution with mean (21, 20.6) and standard deviation (0.3,

0.3), and the samples in the second class follow a Gaussian

distribution with mean (1, 0.6) and standard deviation (0.3, 0.3).

To generate datasets with heteroscedastic class distributions, we

Table 2. Classification accuracies (%) comparison on Dataset
IVa of BCI Competition III.

Subjects aa al av aw ay Mean±Std

LDA 76.8 100 67.3 97.8 56.7 79.7618.9

Z-LDA 77.7 100 68.4 99.6 59.9 81.1618.2

SVM 75.9 100 71.9 98.2 53.6 79.9619.4

NDA 75.9 100 64.3 97.8 70.6 81.7616.2

HLDA 57.1 100 46.9 97.3 72.2 74.7623.7

doi:10.1371/journal.pone.0074433.t002

Table 3. Classification accuracies (%) comparison on Dataset recorded by our BCI system.

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mean±Std

LDA 94 84 95 69 82 63 78 87 70 56 84 81 63 99 78.9613.1

Z-LDA 95 85 95 71 83 66 80 87 73 59 84 82 65 99 80.3612.1

SVM 94 77 93 69 84 61 71 87 75 59 84 83 67 99 78.8612.4

NDA 92 81 96 62 82 63 70 87 67 55 81 81 59 98 76.7614.1

HLDA 51 79 90 51 49 47 48 49 42 48 63 43 55 55 55.0613.7

doi:10.1371/journal.pone.0074433.t003
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changed the SD of the second class step by step, and then

performed the comparison between LDA and Z-LDA on those

datasets. Training set and test set with each consisting of 200 2-

dimensional samples (100 for each class) were generated respec-

tively.

1.2. Classification performance of LDA and Z-

LDA. After the simulated datasets with heteroscedastic class

distributions are generated, the training model of LDA and Z-

LDA were estimated from the training set respectively, and the

models were then applied to classify the samples in the test set. The

above procedure was repeated 100 times to lower the random

effect, and paired t-test was performed to investigate whether the

statistical difference exists between the two classifiers. Table 1

listed the mean and standard deviation of classification accuracies

for the 100 runs. Figure 1 visually gived the decision boundary

definition procedure for the two classifiers when the standard

deviation of the first class is (0.3, 0.3), and (1.0, 1.0) for the second

class. Figure 2 intuitively showed the difference of recognition

performance for the test dataset based on the two decision

boundaries in Figure 1.

When SDs of two classes are same, LDA and Z-LDA achieved

equal classification accuracy. But while we changed the SD of the

second class with that of the first class kept, though the

classification accuracies for both two classifiers are lowered, Z-

LDA achieved higher classification accuracy than LDA. Paired t-

test revealed that when the difference of SD between the two

classes exists, Z-LDA would achieve the significantly higher

classification accuracy than that of LDA (p,0.05), where the more

obvious improvement could be observed for those simulations with

more differences in SD.

2. Evaluations on Real BCI Dataset
2.1. BCI dataset description. 1) Dataset IVa of BCI Com-

petition III. This dataset contains EEG signals recorded from five

subjects using 118 electrodes [31]. In each trial, a visual cue was

shown for 3.5 s, during which three motor imageries were

performed, i.e., left hand, right hand and right foot. The motor

imageries of right hand and foot were needed to be classified. The

total number of EEG trials for each subject was 280. Specifically,

168, 224, 84, 56, and 28 trials were used as training data

corresponding to the five subjects: aa, al, av, aw, and ay,

respectively. The data were band-pass filtered between 0.05 and

200 Hz and down-sampled at 100 Hz for succedent analysis.

2) Dataset recorded by our BCI system. This dataset comes from our

group, consists of EEG data from 14 subjects (11 males and 3

females, right handed, 19–25 years old). The experimental

protocol was approved by the Institution Research Ethics Board

at University of Electronic Science & Technology of China. All

Figure 3. Distribution of the weight sum y(x) of subject 1. Blue dashed line is the Gaussian distribution curve according to the characteristic of
weight sum y(x) with left hand motor imagery in training set; red dashed line is the Gaussian distribution curve according to the characteristic of
weight sum y(x) with right hand motor imagery in training set; blue circles denote the weight sum y(x) with left hand motor imagery in test set; red
stars denote the weight sum y(x) with right hand motor imagery in test set; blue solid line is the Gaussian distribution curve derived from the blue
circles; red solid line is the Gaussian distribution curve derived from the red stars; green dashed vertical line is the decision boundary defined by LDA
from training set; green solid vertical line is the decision boundary defined by Z-LDA from training set; black solid vertical line is the theoretical
boundary of test set.
doi:10.1371/journal.pone.0074433.g003

Z-Score Linear Discriminant Analysis

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e74433



participants were asked to read and sign an informed consent form

before participating in the study. After experiment, all the

participants received a monetary compensation for their time

and effort. Subjects sat in a comfortable armchair in front of a

computer screen, they were asked to perform motor imagery with

left hand or right hand according to the instructions appeared on

the screen. Motor imagery lasts for 5 seconds, and follows a 5

seconds rest. 15 Ag/AgCl electrodes covers sensorimotor area

were used for EEG recordings with Symtop Amplifier (Symtop

Instrument, Beijing, China), the signals were sampled with

1000 Hz and band pass filtered between 0.5 Hz and 45 Hz. 4

runs on the same day were recorded for each subject, each run

consists of 50 trials, 25 trials for each class, and there is a 3 minutes

break between the consecutive two runs. The first 2 runs are

treated as training set and the last 2 runs are treated as test set.

2.2. Preprocessing. We used the EEG segments recorded

from 0.5 s to 3.75 s after the visual cue for the following analysis

according to [32] on the first dataset. For the second dataset, all

the EEG segments during motor imagery were selected for

analysis, and those trials with absolute amplitude above 300 mv

threshold were considered to be contaminated with strong ocular

artifacts and will be removed from analysis. Next, the specific

optimal frequency band for each subject was obtained by r2 [33],

and then it was used to design band pass filter for the selected EEG

segments.

2.3. Feature extraction. Common spatial pattern (CSP)

analysis was used to estimate the spatial projection matrix, which

projects the EEG signal from original sensor space to a surrogate

sensor space [13,19]. Each row vector of the projection matrix is a

spatial filter, which maximizes the variance of the spatially filtered

signal under one task while minimizing the variance of the

spatially filtered signal under the other task. The most discrim-

inative 3 pairs of optimal spatial filters in the projection matrix

were selected to transform the band pass filtered EEG signal, then

the logarithm of the variance of the transformed surrogate channel

EEG signals were served as the final features for task recognition.

In general, each EEG segment was transformed to a 6-

dimensional vector feature after the above procedure.

2.4. Classification results. In this section, we will compare

the classification performance of Z-LDA to LDA, SVM, NDA and

HLDA. LIBSVM with default parameter was served as SVM

classifier [34]. NDA in reference [28] with 5 as the number of k

nearest neighbors, and HLDA in reference [26] were used for

evaluation in current work.

The classification results of Dataset IVa of BCI Competition III

were summarized in Table 2. Z-LDA and NDA achieved higher

average accuracy than LDA, SVM and HLDA. Though the

average accuracy of NDA is slightly larger than that of Z-LDA, Z-

LDA had the better performance for 4 of 5 subjects with exception

for subject ay, and the paired t test did not show the statistical

difference between them (p = 0.4146). There are only 28 training

samples for subject ay, which is a small size training problem. NDA

is good at dealing with the small size training problem, resulting in

the obvious improvement for subject ay. Across the 5 subjects,

when LDA is regarded as the baseline for evaluation, only Z-LDA

showed the consistent improvement for all the 5 subjects, and the

paired t test also revealed that only the accuracies obtained by Z-

LDA is significantly higher than that of LDA (p = 0.0293).

The classification results of Dataset recorded by our BCI system

were summarized in Table 3. Z-LDA achieved the highest mean

accuracy among the tested 5 classifiers. Paired t test also showed

that the accuracies obtained by Z-LDA is significantly higher than

LDA (p = 0.0004), NDA (p = 0.0006) and HLDA (p,1025), but no

statistical difference between Z-LDA and SVM (p = 0.0654).

The overall mean accuracies obtained by Z-LDA are 1.4%

higher than that of LDA on both of the two BCI datasets. As

shown in Table 2 and 3, we could also see that the accuracies

obtained by Z-LDA is consistently better than (or at least equal to)

LDA in all of the subjects.

Subject 1 from Dataset recorded by our BCI system was used as

an example to briefly reveal why the classification performance of

Z-LDA becomes better than conventional LDA in the actual

situation. The distribution of weight sum y(x) when subject 1

performed the motor imagery with left hand and right hand were

plotted in Figure 3 for the training and test sets, respectively. The

decision boundaries of Z-LDA and LDA were also marked in

Figure 3.

Discussion

Translation module of BCI receives features from previous

feature extraction module and translates them to device command

by using certain classification algorithms. In practical BCI

situations, the concerned tasks may have heteroscedastic class

distributions. Therefore, the consideration of effect of distribution

variances may provide more robust ability to recognize the tasks.

However, the conventional LDA assumes homoscedastic class

distributions, which may not be competitive to handle with actual

BCI dataset with heteroscedastic class distributions. Inspired by

this, we develop Z-LDA by including the variance information in

the classification procedure in order to provide more robust

classification for BCI tasks.

As shown in Section Methods and Materials, the decision boundary

of conventional LDA is decided by the labels of classes, while the

decision boundary of Z-LDA is defined by both mean and SD of

the weight sum, which is more potential to capture the distribution

information of classes and provide better classification perfor-

mance for heteroscedastic distribution situation.

The difference of decision boundaries between the two

classifiers can be clearly observed in Figure 1. Assume we define

the label of the two classes as 21 and 1, the decision boundary of

LDA is fixed as c~0, while the decision boundary of Z-LDA is

determined by equation (8). If the SD of two classes are same, the

decision boundary of Z-LDA is also c�~0, but when the SDs of

two classes are different, the decision boundary of Z-LDA will

move toward the class with smaller SD. From Figure 1 we can find

that because of the small SD of the first class, the SD of weight sum

y(x) is also small, resulting in the more concentrated distribution

compared to the relatively divergent distribution of class 2 with

larger SD. Considering the areas under the two Gaussian curves

between the two decision boundaries, the area corresponding to

the second class is obviously large than that of that of the first class,

which denotes that with the new defined decision boundary, more

samples can be correctly recognized. Figure 2 further reveals that

if the decision boundary of LDA is used in the test dataset, many

samples belong to the second class will be incorrectly assigned to

the first class. But if we use the decision boundary of Z-LDA to

classify the samples, the number of samples which incorrectly

assigned to the first class will be reduced at the cost that some

samples belong to the first class will be incorrectly assigned to the

second class.

When applied to the actual BCI datasets, Z-LDA consistently

shows the best average accuracies among the concerned five

classifiers as shown in Table 2 and Table 3. Figure 3 clearly shows

us that the weight sum for the two types of tasks actually follow

different Gaussian distributions in practical BCI application. In

this case, the decision boundary of Z-LDA obtained from the

training set is the green solid line, which is smaller than 0, and the

Z-Score Linear Discriminant Analysis
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decision boundary of LDA is the green dashed line, which equals

to 0. The black solid line in Figure 3 denotes the theoretical

boundary for the test dataset. Obviously, the decision boundary of

Z-LDA determined by the training set is more close to the

theoretical boundary of the test dataset, leading to the better

classification achieved by Z-LDA compared to LDA. Therefore,

we can conclude that the proposed decision boundary definition

strategy outperforms the conventional decision boundary defini-

tion strategy in actual BCI applications, where concerned samples

usually have the heteroscedastic distribution.

Another concerned aspect is the algorithm complexity for the

online BCI system. In current work, the algorithm is implemented

with Matlab R2011b running on Windows 7 Ultimate SP1 64 bit

with Intel Core i5-3470 CPU 3.2 Ghz. The mean time for 200 2-

dimensional samples in the simulation study using Z-LDA is

0.0004 s, and 0.0001 s for LDA. It indicates Z-LDA is applicable

in the practical real time BCI.

Conclusion

Both the simulation and actual BCI datasets confirm that Z-

LDA is a more robust classification method. In essence, Z-LDA is

an enhanced version of LDA, and it can be reduced to the

conventional LDA by assuming homoscedastic class distributions.

Moreover, the probability indicates how reliable the classification

is performed could be derived from the z-score transformed weight

sum, which may be helpful to handle with the adaptive calibration

problem [17,33,35].

There are various algorithms have been proposed based on

LDA in BCI application, such as regularized LDA [36,37],

Bayesian LDA (BLDA) [38] and enhanced BLDA [33]. Unlike Z-

LDA, these algorithms improved LDA’s performance from other

aspects like regularization, Bayesian frameworks. It is possible to

combine the proposed decision boundary definition strategy with

these algorithms, which is our future work. Moreover, we will also

implement the proposed Z-LDA to our online BCI system.
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