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Abstract

Background: Analyzing the neuronal organizational structures and studying the changes in the behavior of the organism is
key to understanding cognitive functions of the brain. Although some studies have indicated that spatiotemporal firing
patterns of neuronal populations have a certain relationship with the behavioral responses, the issues of whether there are
any relationships between the functional networks comprised of these cortical neurons and behavioral tasks and whether it
is possible to take advantage of these networks to predict correct and incorrect outcomes of single trials of animals are still
unresolved.

Methodology/Principal Findings: This paper presents a new method of analyzing the structures of whole-recorded
neuronal functional networks (WNFNs) and local neuronal circuit groups (LNCGs). The activity of these neurons was
recorded in several rats. The rats performed two different behavioral tasks, the Y-maze task and the U-maze task. Using the
results of the assessment of the WNFNs and LNCGs, this paper describes a realization procedure for predicting the
behavioral outcomes of single trials. The methodology consists of four main parts: construction of WNFNs from recorded
neuronal spike trains, partitioning the WNFNs into the optimal LNCGs using social community analysis, unsupervised
clustering of all trials from each dataset into two different clusters, and predicting the behavioral outcomes of single trials.
The results show that WNFNs and LNCGs correlate with the behavior of the animal. The U-maze datasets show higher
accuracy for unsupervised clustering results than those from the Y-maze task, and these datasets can be used to predict
behavioral responses effectively.

Conclusions/Significance: The results of the present study suggest that a methodology proposed in this paper is suitable
for analysis of the characteristics of neuronal functional networks and the prediction of rat behavior. These types of
structures in cortical ensemble activity may be critical to information representation during the execution of behavior.
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Introduction

The cerebral cortex is a dynamic network composed of a large

number of neurons joined to each other by synaptic connections.

Early theories maintained that brain information was represented

by the firing rates of single neurons. The new theories of brain

functions propose that the information transmission and process-

ing of the central nervous system are represented by the

spatiotemporal firing patterns of large neuronal populations.

Spatiotemporal patterns refer to a series of regular and ordered

interval spikes among neurons. In recent years, the discovery and

analysis of the spatiotemporal firing patterns have been the focus

of neuroscience research [1–4].

One of the questions addressed in this study is how animals

control the different behaviors that they perform under different

stimulation conditions. This is a crucial issue in developing brain-

computer interface [5]. Studies have shown that a large number of

neuronal activities represent behavioral information in corre-

sponding regions of the cerebral cortex, with different firing

patterns. Studies have suggested that spatiotemporal firing

patterns may be related to these behaviors. Some studies have

taken advantage of these cortical activities to predict different

behavioral outcomes, and control hand trajectory in brain-

machine interface [6–11].

With the development of multi-electrode recording techniques,

the activity of dozens of neurons can be recorded at one time [12–

14]. The development of new methods of analyzing data from

multiple neural spike trains has recently become a challenge in

computational neuroscience [15]. In addition, the analysis of

functional connections between neurons may be more meaningful

than spatiotemporal firing patterns. In this way, research into the

brain functional network, also known as human connectome, is

opening up [16,17]. Over the past few decades, graph theoretical

analysis has been widely used for the analysis of brain functional

networks [18,19]. The brain functional network can be represent-

ed as a graph made up of statistical correlations between brain

signals (e.g., fMRI, EEG, and MEG). Nodes can be neurons or

cortical areas, and the networks can be weighted or unweighted,
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directed or undirected. The traditional brain functional networks

are mainly used to analyze the characteristics of small-world

network structures. They are highly efficient and highly cost-

effective [20,21]. Small-worldness can be used to compare brain’s

differences and as a diagnostic criterion for Alzheimer’s disease

(AD) [22]. They can also be used to analyze sub-modules and

determine whether there is a hub node in the brain [23]. Recently

brain functional network studies have focused fMRI data of the

human brain [24,25]. Other studies have extracted small-world

network topology from neuronal functional networks [26].

Currently, there is no study that includes analysis of the other

characteristics of neuronal functional networks, such as module

structure.

The spike activities of these neuronal populations can be used to

construct the WNFNs, and these networks can be divided into sub-

modules. It is not known whether these network features can be

used to represent behavior information. The issue of whether the

functional network measurements can be used to make predictions

of behavioral outcome of single trials is also unresolved. There are

no relevant studies to illustrate these key issues. To solve this

problem, we present a new method for investigation of the

relationship between functional networks and rat behavioral

choice based on the WNFNs and LNCGs obtained from multi-

electrode recordings, and of using functional networks of single

trials to predict the correct and incorrect outcomes of these trials.

We recorded the spike activities of neurons in several rats in three

areas of the cerebral cortex. The rats were trained to perform two

different tasks (Y-maze and U-maze). In each behavioral task, each

rat must select one of two directions in which to move. In the Y-

maze task, the rat was required to choose to move left choice (L-

choice) the first time and right choice the second time (R-choice).

In the U-maze task, their two trial types are clockwise and

counterclockwise direction. Each type is considered a trial. The

spike trains between the start and end of this trial were extracted

and used to construct the neuronal functional network. Each

dataset of each task contained several trials. This method consists

of four parts: construction of WNFNs from recorded neuronal

spike trains, partitioning of these WNFNs into the optimal LNCGs

using social community analysis method, unsupervised clustering

all trials in each task into two different clusters, and predicting the

behavioral outcomes of single trials. The results show that this

method can be used to analyze the characteristics of the network

structure and to predict single trial outcomes for behavior tasks.

To the best of our knowledge, this is the first such study of

functional brain networks and behavior prediction.

Materials and Methods

Figure 1 shows a flowchart of the method proposed in this

paper. First, we divided a recorded spike train’s dataset into

multiple trials in accordance with the start and end times of each

trial. Then, we calculated the functional correlations of pair of

neuronal spike trains and constructed WNFNs for each trial. For a

dataset containing n trials, we constructed n networks. Second, a

method of social network community structure analysis was

adapted for partitioning WNFNs into the corresponding LNCGs.

Third, we used two different unsupervised clustering methods to

spectral cluster WNFNs and LNCGs for all trials of each dataset

into two classes, and calculated the correctness of this partitioning.

Finally, we used two different leave one cross-validation methods

to predict whether the outcomes of single trials would be correct or

incorrect, and to calculate the correctness of the prediction.

Spike train data acquisition
All rat work described in this study have been conducted

according to Animals Act, 2006 (China) and approved by the

Institutional Animal Care and Use Committee of the East China

Normal University and Institutes of Brain Science of Fudan

University.

Seven male Sprague-Dawley rats (8–10 weeks old, 250,350 g

of body weight) were trained. We recorded the neuronal firing

activities from seven adult male rats. The rats were deprived of

drinking water for one day. The rats had to perform the two

different behavioral tasks. Multi-electrode arrays were inserted

into different cortical areas (the prefrontal cortex or anterior

cingulate cortex for the Y-maze task, hippocampus for the U-maze

task). Because the tasks were relatively simple, the rats could learn

the behavior easily and became fully trained after several days.

None of the rats made many incorrect choices, which less than

10%, during the remainder of the experiment. We then began to

record the activity of neurons.

The Y-maze training box is a Y-shaped box. It has three arms at

angles of 120 degrees. The choice arm was 71 cm and the two

award arms were 42 cm. The height of the maze was 20 cm. In

the Y-maze task, the rats ran from the waiting area to left arm or

right arm of the box and received a water reward, indicating the

completion of the trial. The rats were supposed to choose a

different arm in each trial. For example, if the first correct choice

was the right arm of the Y-maze (R-choice), then in the next trial,

the correct choice would be the left arm of the Y-maze (L-choice).

The rats need to go back to the end of the choice arm to start the

next trial after the reward was consumed. The rat was to make an

R-choice and then an L-choice in alternation for the duration of

the test (Figure 2).

The U-maze training box is a rectangular track (100680 cm).

The rat had to run back and forth along the track. The rat ran

from the start point (red dot) to the end point (green dot) in the

correct direction (clockwise or the counterclockwise). This was

Figure 1. Flowchart of the method proposed in this paper.
doi:10.1371/journal.pone.0074298.g001
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considered one trial. The rat received the water reward at both

ends of the track. The experimental platform is shown in Figure 3.

The activities of neuronal populations were recorded using

multi-electrode arrays (cerebus-128 of blackrock microsystems

technology company, USA or Plexon Inc., TX, USA). The arrays

were inserted into the cerebral cortex vertically. In the Y-maze

task, a microdrive array was implanted in the PFC (2.5,4.5 mm

anterior to bregma and 0.3,0.8 mm lateral to the bregma, 2 mm

ventral from brain surface). After surgery, the rats were allowed to

recover for several days and then signals were recorded. In the U-

maze task, a 64-channel (a bundle of 16 tetrodes) electrode was

positioned above the bilateral dorsal hippocampi (3.0 mm lateral

to the bregma and 4.5 mm posterior to the bregma). The

electrodes were then reached the hippocampal CA1 region for

recording. Offline sorter software (Plexon Inc., TX, USA) was

used to cluster the neuronal firing waveforms of each electrode and

distinguish the individual neuronal action potentials. For each

neuron, the spikes constituted spike trains of that single neuron.

All experiments were performed in accordance with animal

protocols approved by the United States National Institutes of

Health (NIH). All experimental process and recording process was

controlled by computer. The experimental process was monitored

by a video system.

In this study, a total of ten spike trains datasets were used. Five

datasets were selected from the Y-maze task and five others from

the U-maze task. The number of neurons, site of the cortical

recording, and number of trials per each dataset are displayed in

Table 1.

In the above datasets, Data 1–5 were recorded from five

different rats at different times. Data 6 was recorded from another

rat, and Data 7–10 were recorded from the same rat at different

times. Due to the different times of the recordings, the number of

neurons and trials in each dataset are different.

Figure 2. Method overview of construction of WNFNs of two trials of a Y-maze task dataset. (A) A rat performed the L-choice trial. (B)
Raster plot of thirteen neurons recorded in this trial. (C) Pearson correlation matrix between pairs of neurons. (D) Neuronal functional network of
these neurons. (E) – (H) Illustration of the procedure for construction of neuronal functional networks for the R-choice trial.
doi:10.1371/journal.pone.0074298.g002

Figure 3. Two different trial types in the U-maze task. The rat
ran back and forth along a rectangular track and received the
water rewards at both ends of the track (the green and red
points). (A) A rat running from the start point to the end point of the
track in a clockwise direction, indicating the completion of a trial. (B) A
rat finishing a different trial, having moved in a counterclockwise
direction.
doi:10.1371/journal.pone.0074298.g003

Table 1. Datasets description of two behavioral tasks.

Dataset Task
Place of
recording

Number of
neurons

Number of
trials

Data 1 Y-maze PFC 13 34

Data 2 Y-maze PFC 10 106

Data 3 Y-maze PFC 10 144

Data 4 Y-maze ACC 15 62

Data 5 Y-maze ACC 16 30

Data 6 U-maze Hippocampus 9 80

Data 7 U-maze Hippocampus 9 178

Data 8 U-maze Hippocampus 17 142

Data 9 U-maze Hippocampus 10 72

Data 10 U-maze Hippocampus 13 90

doi:10.1371/journal.pone.0074298.t001
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Construction of neuronal functional networks
Each trial was composed of neuronal spike trains. Multiple

neuronal spike trains per trial were built into a neuronal functional

network. Several networks can be constructed for each dataset.

Each neuronal spike trains were divided into short, non-

overlapping time windows (referred to as bins) and the number

of spikes in each time window was calculated. In this way, the

original spike trains were represented with multi-dimensional

vectors. Then, the correlations between pairs of neurons were

calculated using Pearson correlation coefficient [27–29]. The

Pearson correlation coefficient is a simple linear method, but it

Figure 4. Description of procedure for dividing two networks into the best community structures. (A) WNFN in the L-choice task
(Figure 2D). (B) WNFN in the R-choice task (Figure 2H). (C) Different Q values corresponding to the different number of communities in the L-choice
task. (D) Different Q values corresponding to the different number of communities in the R-choice task. (E) LNCGs based on the maximum Q value in
the L-choice task. (F) LNCGs based on the maximum Q value in the R-choice task.
doi:10.1371/journal.pone.0074298.g004
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requires bin spike activity. Binless methods have also been used

[30]. In recent years, the nonlinear methods have been used to

measure synchronization in the brain [31]. For the sake of

generality, we have avoided creating a fully weighted network and

reduced its edges. We only focused on positive Pearson correlation

coefficients, although negative coefficients were also detected.

rxy~

Pn
k~1 (xk{x)(yk{y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1 (xk{x)2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1 (yk{y)2
q {1ƒrxyƒ1: ð1Þ

Here, xk and yk denote the number of spikes of the xth and yth

neurons in the kth bin, which have means of �xx and �yy, respectively.
A weight matrix R is created. Rxy~rxy, if rxyw0. The resulting

network can be represented mathematically using an adjacency

matrix R. The value of the correlation coefficient rxy is between 0

and 1. A value of 1 indicates a strongest functional connection

between a pair of neurons, and 0 indicates no connection.

For simple studies, traditional methods of analyzing brain

functional networks usually involve converting the network into a

binary network, formed by thresholding matrix R by a threshold

T. All values of the correlation matrix .T were then set to 1, and

others were set to 0 [32]. The threshold T is difficult to choose.

The resulting network may not be in accordance with the actual

network. In order to improve analysis, we directly analyzed the

weighted functional connection matrix R. The weighted matrix

may be of more practical significance than a binary matrix. In this

way, the importance of connecting edges is represented by

thickness of the lines (the thicker of lines, the stronger correlation).

Partitioning WNFNs into LNCGs
The networks shown in Figure 2 were constructed using whole-

recorded neurons in a behavior task. We refer to these as whole-

recorded neuronal functional networks (WNFNs). In order to

analyze the impact of local neuronal functional network on the

animal behavioral types, we used the community structure analysis

to divide the WNFNs into several sub-modules, which are here

called local neuronal circuit groups (LNCGs). In social networks, a

community structure is defined as a group of nodes with a high

density of intra-group connections and a low density of inter-group

connections.

To assess the best division of the WNFNs into LNCGs, we used

a widely used modularity function Q, which was proposed by

Newman [33,34]. The modularity Q for a given partition of a

weighted network is defined as follows:

Q~ 1
l

P
ij

(wij{
kikj
l
)dij : ð2Þ

Here, l is the total weight of all connections in the network, wij =

Rij, and ki and kj are the degrees of each node. dij is the Kronecker

delta symbol and dij~1, if nodes i and j are in the same

community and 0 otherwise.

Given a partitioning, Q represents the difference between the

actual connections and randomly connected networks with the

Figure 5. Implementation of the predictive classifier proposed
in this paper. A number of trials containing R-choices and L-choices
will be trained into a two-cluster classifier. If there is a new trial which
we do not know its trial type in advance, connection patterns of this
trial will be measured in the pattern layer to decide its trial type.
doi:10.1371/journal.pone.0074298.g005

Figure 6. Unsupervised clustering partitioning accuracy of Y-maze and U-maze datasets in the WNFNs using NJW and Ncut. (A)
Results of Y-maze datasets. (B) Results of U-maze datasets.
doi:10.1371/journal.pone.0074298.g006
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same partition. Therefore, if a brain network is not a random

network, we can divide the network into different sub-modules by

maximizing the value of Q. The process consists of two steps. The

first step is to obtain two partitioning results. We used a

hierarchical clustering algorithm to obtain a division of neuronal

functional network using the functions ‘‘linkage’’ and ‘‘dendro-

gram’’ in the MATLAB Toolbox. Of course, other spectral

clustering methods can also be used [35]. In the second step, we

calculated the corresponding Q value. We repeated these two steps

using increasing number of communities and until the maximum

value of Q was reached. Recently, community structure analysis

methods based on modularity function Q have been used in fMRI

networks [36–38].

As shown in Figure 4, a neuronal functional network of the L-

choice task can be divided into seven optimal sub-modules, while

the R-choice network has five sub-modules. The numbers of sub-

modules of two networks are different. Nodes lacking connections

become outlier nodes.

Unsupervised clustering multiple trials
Each dataset consisted of multiple trials of each behavioral task.

These can be represented by multiple neuronal functional

networks. Whether these networks have a relationship with the

behavior choices of the rats remains unclear. This was because

each behavioral task only contained two different behavioral trial

types. In this way, this is a typical two-way partitioning problem.

Assuming that we do not know the rat’s choice of action in

advance, there is some question regarding whether we can divide

all trials in each dataset into two groups corresponding to the two

types of behavioral choice processes. Here, we used unsupervised

clustering methods to divide the WNFNs and LNCGs of a dataset

into two groups, and to calculate the accuracy of the clustering

results.

For a dataset consisting of k trials on N neurons,

Ri(N|N) , 1ƒiƒk represents the connection matrix of the ith

trial. The functional similarity between the ith trial and jth trial is

defined as Gaussian kernel function, which is commonly used in

graph-based approaches.

S(i,j)~e
{(

Ri{Rj

�� ��
s2

)
: ð3Þ

Here, Ri{Rj

�� �� is given by

Ri{Rj

�� ��~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
p~1

PN
t~1

(Ri(p,t){Rj(p,t))
2

s
:

Because neuronal functional networks are represented by a

graph, graph theory is a superb tool for partitioning networks. To

compare the experimental results of the different methods, we

realized two state-of-the-art graph-based partitioning approaches,

the Ng-Jordan-Weiss (NJW), and the normalized cut (Ncut)

spectral clustering algorithm [39,40]. NJW is a classic spectral

clustering algorithm. The main idea underlying this method is to

convert the weight matrix to Laplace matrix.

L~D{1=2WD{1=2: ð4Þ

Figure 7. Unsupervised clustering partitioning accuracy of Y-maze and U-maze datasets in the LNCGs using NJW and Ncut. (A)
Results of Y-maze datasets. (B) Results of U-maze datasets.
doi:10.1371/journal.pone.0074298.g007

Figure 8. Error bar of partitioning results of ten datasets in the
WNFNs, and LNCGs conditions using the NJW algorithm. Error
bar represents the standard error.
doi:10.1371/journal.pone.0074298.g008
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Here, D is a degree matrix and W is the similarity matrix, W=S.

The W matrix can be projected onto a low-dimension sub-space

by finding the k largest feature vectors V (v1, v2, vk) and then using

a traditional K-means algorithm to divide the new vectors V into k

clusters. The Ncut algorithm is very relevant to the spectral

clustering algorithm. It actually used the second small eigenvectors

of Laplace matrix (the Fiedler vector). A two-way normalized cut is

defined as follows:

min Ncut(A,�AA)~ cut(A,�AA)
vol(A)

z cut(A,�AA)
vol(�AA)

: ð5Þ

Here, cut(A,�AA)~
P

vi[A,vj[�AA
S(i,j). vol(A) is the volume of the set A.

vol(�AA) is the volume of the set �AA. The Ncut spectral method has

the strong advantage of being less sensitive to outliers than other

graph clustering methods. It has been used in Resting-State fMRI

networks [41]. We compared the clustering results of trials to the

actual rat behavioral types and computed the correctness of

unsupervised partitioning. If the label of a trial was the same as the

rat’s actual type, the clustering result was considered correct,

otherwise, the clustering result was considered to be in error.

Predicting the behavioral outcomes of single trials
Unsupervised clustering methods can be used to divide multiple

trials of each dataset into two groups according to their self-

similarity, corresponding to two different kinds of trial types. It

remains unknown, however, whether these neuronal functional

networks can be employed to predict the behavioral choices in a

single trial. The prediction realization procedure can serve as a

classifier for the final prediction stage of the methodology, as

shown in Figure 5. The next issue was to determine whether the

prediction outcomes of single trials were correct or incorrect. If the

predicted result was the same as the rat’s actual choice, the

prediction was considered correct, otherwise, the prediction was

considered to be in error.

We used the leave one cross-validation method (LOO) to

evaluate the accuracy of the predictions made using the proposed

classifier. Each time that the cross-validation method used a trial as

a test data, the remaining N-1 trials served as the training set and

trained into a two-cluster classification. This process was repeated

Figure 9. Predictions of trial outcomes in the WNFNs. (A) Results of Y-maze datasets. (B) Results of U-maze datasets.
doi:10.1371/journal.pone.0074298.g009

Figure 10. Predictions of trial outcomes in the LNCGs. (A) Results of Y-maze datasets. (B) Results of U-maze datasets.
doi:10.1371/journal.pone.0074298.g010

Prediction of Rat Behavior Outcomes

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e74298



N times. Prediction accuracy was here defined as the number of

correctly classified trials over the total number of trials. The

average accuracy of classification determines the overall accuracy

of the prediction classifier. We also realized two methods: pattern

matching prediction method and KNN prediction method.

The process of predicting pattern recognition is computed using

the following steps: The first step is to select the ith trial (1#i#N).

Then the other N-1 trials were classified into two groups (N1, N2,

N1+N2=N–1 (N1 and N2 are numbers of trials in group 1 and 2,

respectively) depending on the rat’s actual choices. The similarity

of ith trial to each group was determined by averaging its

similarities to all functional connectivity patterns in that group.

S1(i)~

PN1

t~1

S1(i,t)

N1
ð6Þ

as the average similarities of ith trials to all N1 trials of group 1.

S2(i)~

PN2

t~1

S2(i,t)

N2
ð7Þ

as the average similarities of ith trial to all N2 trials of group 2. In

the matching section, the ith trial belonged to the group with

maximum similarity argmax j s j (i).

Another method of classification is k-nearest neighbor (KNN)

method. The basic idea underlying this algorithm is, for the ith

trial, selecting the k neighbor trials which have the maximum

similarity to the ith trial. c(j)~ argmaxjfS(i,j)g, 1ƒjƒk If the

number of trials of c(j) belonging to group 1 is greater than the

number of trials belonging to the group 2, then the label of ith trial

is assigned to group 1. Otherwise, it is assigned to group 2.

Performance Evaluation
In order to calculate the correctness of unsupervised clustering

of all trials into two classes and the accuracy of predictions of trial

outcomes made using the classifier, we used the Jaccard coefficient

measure to evaluate the experimental results. The Jaccard

coefficient is an intuitive and effective performance evaluation

method. In our experiments, unsupervised clustering and predic-

tion classification were all two-way classification problems. Given

an initial partition, let z~½z(1),z(2),z(3),:::,z(N)� denote the label

vector for N trials, 1ƒz(i)ƒ2. The probability of ith trial vi being

classified as group 1 is given by the ratio of the number of the

correctly classified trials in group 1 to the number of all trials.

pr(vi~1)~

P
s

d(z(i),1)

N
ð8Þ

The entire Jaccard coefficient is defined by the sum of the

coefficients of label 1 and 2, respectively.

s~
P2
c~1

pr(vi~c) ð9Þ

Figure 11. Predictions of trial outcome were based on WNFNs
and LNCGs using the KNN prediction method. Error bar
represents the standard error.
doi:10.1371/journal.pone.0074298.g011

Figure 12. Relationship of Ncut results to KNN results. (A) Results in WNFNs of ten datasets. (B) Results in LNCGs of ten datasets.
doi:10.1371/journal.pone.0074298.g012
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The value of s is between 0 and 1. The larger the value of s, the

better the performance of the experimental results.

Statistical Tests
One-way ANOVA statistical test was used for statistical

comparisons. A p value ,0.001 was used as the criterion for a

significant statistical difference. A linear regression analysis was

conducted to compare the relationship between results of

unsupervised clustering and results of single-trial predictions.

Results

Unsupervised clustering results
We applied the NJW algorithm and the Ncut algorithm to the

ten datasets (using 1 s bins). Gaussian scale parameter was set as

s=4.

Average clustering accuracy of Y-maze vs. U-maze
Figures 6 and 7 are unsupervised two-way clustering results in

different network connection structures for Y-maze and the U-

maze datasets. The NJW algorithm and Ncut algorithm showed

similar results. As shown in Figure 8, results based on the U-maze

task were significantly better than those based on the Y-maze task

(one-way ANOVA, p,0.001). However, the accuracy of the Y-

maze datasets is generally between 50% and 60%.

Single-trial prediction results
We applied the pattern matching method and KNN method to

predictions of the behavioral outcome. The parameter of the

number of k nearest neighbor was set as k = 7.

Average accuracy of predictions of Y-maze vs. U-maze
Figures 9 and 10 show the prediction accuracy of the datasets

from two different tasks, respectively. As shown in Figure 11, the

accuracy of the prediction Y-maze data sets is low. The value of

the Jaccard coefficient was between 0.4 and 0.6, showing that the

prediction accuracy rate was generally at about 50%, which is

similar to the results generated by chance (one-way ANOVA,

p= 0.653). The results of U-maze datasets were higher. The value

of the Jaccard coefficient for U-maze datasets was between 0.7 and

1. Trial outcomes were predicted significantly above chance due to

the occurrence of different functional connections in two trial types

(one-way ANOVA, p,0.001). The results showed that when the

rats performed the U-maze task, we were able to more easily take

advantage of the functional connectivity among neurons to predict

behavior outcomes. For U-maze datasets, the methods proposed in

this paper could not only be used to partition two different

behaviors effectively, but were also able to predict whether the

outcomes of single trials were correct or incorrect.

Results of unsupervised clustering vs. results of single-
trial predictions
To indicate whether certain functional connections were

associated with particular behavioral choices, we gave out the

relationship of Ncut results to KNN prediction accuracy of Y-

maze and U-maze datasets.

As shown in Figure 12, a linear regression analysis indicated

that Ncut unsupervised classification accuracy had a strong

correlation with KNN prediction accuracy. If we need to

determine whether a recorded spike trains dataset can be used

to predict behavioral outcomes of rats, the dataset must exhibit

obvious differences in functional connectivity between two

different kinds of behaviors, and it must have a higher correct

rate when it is divided using unsupervised clustering.

WNFNs vs. LNCGs
Figure 13 shows a comparison of Ncut and KNN in WNFNs

and LNCGs. Results indicate that the two kinds of network

conditions did not differ significantly with respect to accuracy. In

the present study, the number of recorded neurons is very limited.

The performance did not show significant differences when the

neuronal functional networks were divided into sub-networks (one-

way ANOVA, Ncut, p= 0.8694; KNN, p= 0.9542).

Discussion

A large number of studies have shown that there are precise

time relationships between neuronal firings in cerebral cortex

correspondence to behavior [42]. Functional connectivity can be

inferred from these neuronal spike trains [43]. The issue of how to

use the structure of neuronal networks to predict the functions of

the brain has plagued neuroscientists for a long time [44,45].

Figure 13. Unsupervised clustering trials and predictions of trial outcomes based on WNFNs and LNCGs. (A) Ncut results. (B) KNN
results.
doi:10.1371/journal.pone.0074298.g013
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Using the functional connections among neurons to predict the

functional behavior of the animal is another serious matter. In this

study, we present a new method, based on graph theory

technology, for analyzing task-related functional networks from

multi-electrode recordings. The results show that the presence of

certain especially functional structures in cortical neurons is

associated with subsequent behavior.

Our study expanded upon earlier works, which used the

spatiotemporal activity patterns of rat cortical neurons to predict

rat behavior. In our study, the analysis is based on functional

connections between pairs of simultaneously recorded neurons on

single trials. These correlations are then used to build whole-

recorded neuronal functional networks. These networks are then

used to divide into local neuronal circuit groups for each trial

based on the maximization of modularity Q. To our knowledge,

there are no published reports in which the functional connections

of neurons were used to study rat behavioral choices.

We found that datasets of U-maze task to have a significant

difference from the Y-maze task with respect to functional

connections in the two different trial types. The accuracy of

unsupervised clustering trials and prediction outcomes of trials was

found to be very high, as indicated using different forms of

analysis, indicating obvious differences in neuronal functional

connections when rats perform clockwise and counterclockwise

tasks. However, the accuracy of the Y-maze datasets is low,

indicating that there are no particularly obvious differences among

the neuronal functional connections associated with the L-choice

task and R-choice task.

In the U-maze task, the two different trajectories (from point A

to B or from point B to A) are represented much like two different

locations would be. This may be related to the place cells within

the hippocampus [46]. These cells were found to be sensitive to

direction and cells fire at certain location fired when the rat went

through the location in a specific direction but not when the rat

went through in the opposite direction. The sequential firing

patterns may be different at particular locations along the rat’s

trajectory [47]. It is well established that the spatial representation

made by hippocampal neurons on a track differs depending on the

running direction of the rat [48,49]. This may lead to the changes

in neuronal functional connections. Our study is consistent with

the results of these neuroscience studies. Due to the U-maze task is

a simple task and there are place cells in the hippocampus,

whether the successful performance of the U-maze task is due to

the brain region being recorded or to the task performed by the

animal is still not known. These two possibilities all may be existed.

In our experiments, the number of recorded neurons was

limited. The constructed neuronal functional networks were

relatively simple, and the corresponding generated neuronal

circuit groups were also relatively simple. The results of analysis

of two functional connectivity cases showed them to have no

significant differences. However, the method proposed in this

paper still provides meaningful information that may be suitable

for future analysis of large-scale neuronal networks. As the number

of recorded neurons increased, the partitioning of neuronal

networks into circuits became more complex [12,13]. More

complex methods of analysis methods are urgently needed. The

greater number of neurons recorded, the more clearly the

relationships between the neuronal functional networks and

behavior could be revealed.

Although the results of studies that use electrodes to record

neuronal activity cannot be translated directly to the human brain

functional network, the method proposed in this paper can also be

used to analyze the functional community of the brain and

investigate human brain disease pathology based on EEG and

fMRI [50,51].

In the present study, the experimental results were controlled by

the three parameters, the size of the time window of the bins, the

value of the nearest neighbor k, and Gaussian scale parameter s.
In this way, the structures of the neuronal functional networks

differed as the size parameters differed. These parameters were

found to directly affect the results of the experiment, and we

constructed a number of networks using different parameters.

Although some variations appeared in the results, these did not

contradict the conclusions of this paper, so no details of these

results are provided here. Parameter selection was the most

difficult part of the study, and most decisions were based on trial

and error. The best way to improve this study would be to reduce

the use of parameters.

The current study was limited by the multi-electrode recordings

and the method of online spike sorting. In our experiments,

although the neuronal activity was observed in vivo, individual

neurons were sorted offline by hand, which was highly subjective.

In this way, it also limits the ability to predict animal behavior by

using online firing patterns of neurons. In addition, a community

structure partitioning method based on the maximization of

modularity Q has the limitations as a ‘‘resolution limit’’ [52,53].

In conclusion, using the activity patterns of cortical neurons to

predict animal behavior of the animals is a key issue in

neuroscience. The achievements made in this area may help to

solve the brain machine interface problems and facilitate the

development of techniques that could promote the recovery of

behavioral function after brain disease. This paper presents a new

method that incorporates the neuronal functional networks to

predict the trial types of rats. We performed an experimental

comparison of two kinds of cognitive behavioral tasks datasets.

The results show that this method can predict the behavior of

different rats effectively. The results presented here provide

definite evidence that neuronal functional networks exist in the

cortex of moving rats of a behavioral task and that the different

networks become active during different tasks. We believe that

these results, along with the progress that has recently been made

in neuronal recording techniques and in prediction methods, may

improve the researchers’ ability to predict animal behavior

through the functional networks.
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