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Abstract

The osteoprotegerin (OPG) and receptor activator of nuclear factor-kB ligand (RANKL) cytokine system, not only controls
bone homeostasis, but has been implicated in regulating vascular calcification. TNF–related apoptosis-inducing ligand
(TRAIL) is a second ligand for OPG, and although its effect in vascular calcification in vitro is controversial, its role in vivo is
not yet established. This study aimed to investigate the role of TRAIL in vascular calcification in vitro using vascular smooth
muscle cells (VSMCs) isolated from TRAIL2/2 and wild-type mice, as well as in vivo, in advanced atherosclerotic lesions of
TRAIL2/2ApoE2/2 mice. The involvement of OPG and RANKL in this process was also examined. TRAIL dose-dependently
inhibited calcium-induced calcification of human VSMCs, while TRAIL2/2 VSMCs demonstrated accelerated calcification
induced by multiple concentrations of calcium compared to wild-type cells. Consistent with this, RANKL mRNA was
significantly elevated with 24 h calcium treatment, while OPG and TRAIL expression in human VSMCs was inhibited.
Brachiocephalic arteries from TRAIL2/2ApoE2/2 and ApoE2/2 mice fed a high fat diet for 12 w demonstrated increased
chondrocyte-like cells in atherosclerotic plaque, as well as increased aortic collagen II mRNA expression in TRAIL2/2ApoE2/2

mice, with significant increases in calcification observed at 20 w. TRAIL2/2ApoE2/2 aortas also had significantly elevated
RANKL, BMP-2, IL-1b, and PPAR-c expression at 12 w. Our data provides the first evidence that TRAIL deficiency results in
accelerated cartilaginous metaplasia and calcification in atherosclerosis, and that TRAIL plays an important role in the
regulation of RANKL and inflammatory markers mediating bone turn over in the vasculature.
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Introduction

Atherosclerosis, a chronic arterial disease that affects the entire

artery tree can lead to myocardial infarction, stroke and gangrene,

and is the most common cause of mortality worldwide. Athero-

sclerosis is associated with extracellular calcium and calcium

accumulation in the plaque. In fact, calcified tissue represents 15-

20% of total plaque area with vascular calcification being

increasingly recognised as a risk factor for cardiovascular disease,

suggesting that calcium may be a marker of atherosclerosis [1].

Studies in the last decade suggest that calcification in the vessel

wall is an active process, regulated in a manner analogous to

orthotopic bone formation [2]. Osteochondrogenic cells have been

identified in calcified vascular tissue [3,4,5,6,7] and it is suggested

that the triad cytokine system of osteoprotegerin (OPG), receptor

activator of nuclear factor-kB ligand (RANKL) and its receptor

RANK, may act as a link between vascular calcification and bone

metabolism [8]. RANKL binds its cellular receptor RANK

expressed on osteoclasts to initiate osteoclastogenesis [8,9].

RANKL can also bind its soluble decoy receptor, OPG. Binding

of RANKL to OPG inhibits differentiation, maturation, activity

and survival of osteoclasts, subsequently inhibiting mineralisation

[10].

While the role of OPG and RANKL in bone metabolism is

clear, their role in vascular calcification is still elusive. For

example, treatment of OPG and RANKL to vascular cells can

either have no effect, promote, or inhibit vascular calcification in

vitro [6,11,12,13,14,15,16]. In vivo, RANKL2/2 mice develop

severe osteopetrosis and have no osteoclasts due to a lack of

osteoclastogenesis [17] and recent studies using transgenic mice

overexpressing RANKL in vascular smooth muscle cells (VSMCs)

however, demonstrated enhanced vascular mineralisation poten-

tial [18]. The RANKL neutralizing antibody Denosumab, is

currently used to treat osteoporosis; studies show that it may also

inhibit vascular calcification in vivo [11]. This suggests the possible

involvement of RANKL in vascular calcification. Contrarily,

OPG-deficient mice develop osteoporosis, but also develop

vascular calcification of great arteries (aorta, renal arteries),

suggesting a protective role for OPG in the vasculature [19].

Moreover, in cardiovascular diseases and diabetes, RANKL is

positively associated with circulating OPG [20,21,22,23]. We
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recently demonstrated that OPG can inhibit calcification of

VSMCs in vitro and that OPG accumulates in calcified human

atherosclerotic tissue [16]. OPG is also a soluble receptor for TNF-

related apoptosis-inducing ligand (TRAIL) [24].

TRAIL is a type II transmembrane protein of the TNF family of

ligands that can also be cleaved to produce a soluble form. TRAIL

was discovered in 1995 for its ability to induce apoptosis in cancer

cells, without affecting other normal cells [25]. In humans, TRAIL

initiates apoptosis by binding its death-domain containing

receptors DR4 and DR5. Decoy receptors for TRAIL, either

lacking a death-domain (decoy-receptor-1; DcR1) or containing a

partial death-domain (decoy-receptor-2; DcR2), have also been

identified. Decoy receptors have the ability to compete with death-

receptor binding, and subsequently inhibit the induction of

apoptosis; these include not only DcR1 and DcR2, but also

OPG. In mice however, only one death-receptor has been

identified, mDR5. Decoy receptors for TRAIL in mice have also

been recognised, namely mDcR1, mDcR2 (consisting of 2

isoforms; membrane-bound mDcR2 and the secreted mDcR2)

and OPG (reviewed in [24]). There is now growing evidence

demonstrating pleiotropic functions for TRAIL in vitro and in vivo;

this is not surprising since non-apoptotic signaling regulating cell

survival, proliferation, migration and differentiation, have also

been reported upon TRAIL-receptor activation [24,26,27,28].

We recently showed that TRAIL is protective against athero-

sclerosis, since a deficiency of TRAIL in ApoE2/2 mice in

response to a high fat diet (HFD) for 12 w, significantly increased

arterial plaque area compared to ApoE2/2 mice [29]. While it is

unclear as to whether TRAIL modulates calcification in the

vasculature, multiple studies suggest that TRAIL may play a role

in this pathophysiological process. For example, TRAIL and OPG

expression is spatially distributed in lesions of Mönckeberg’s

sclerosis, adjacent to vascular calcification [30], and TRAIL

expression has been observed in calcified areas of abdominal aortic

aneurysms [31]. In support of these, phosphate-induced mineral-

isation of human VSMCs was stimulated by TRAIL in vitro [32]

and soluble TRAIL levels in sera of hemodialysis patients, a high

risk group for cardiovascular diseases, are reduced [32]. The

precise role of TRAIL in vivo in vascular calcification however is

unclear. The aim of the present study is to understand the link

between TRAIL, OPG, RANKL and vascular calcification in vitro,

and in vivo in atherosclerotic lesions of TRAIL2/2ApoE2/2 mice.

Methods

Ethics statement
All animals were handled according to the Animal Care and

Ethics Committee (ACEC) guidelines at UNSW (Sydney,

Australia); the protocol was approved by the ACEC of UNSW

(Ethics approval number 11/71B). To minimise stress, mice were

monitored and handled daily.

Primary cell Isolation and mice
Primary mouse TRAIL2/2 and wild-type C57Bl6 (WT) VSMCs

were isolated from whole aortas as previously described [33]. Six

week old male TRAIL2/2ApoE2/2 and ApoE2/2 mice [29]

weighing approximately 16–18 g were placed on a HFD (Semi-

Pure Rodent Diet, SF00-219, Specialty Feeds) for 12 and 20 w in

specific pathogen-free conditions. At the end of the diet, mice were

culled by cardiac exsanguination. Brachiocephalic arteries and

aortas were excised, fixed in 10% formaldehyde for immunohisto-

chemistry or snap frozen for expression studies. Plasma obtained at

time of sacrifice was used for subsequent analysis of soluble OPG

(R&D Systems) and RANKL (Merck Millipore).

Cell culture
Primary human aortic VSMCs purchased from ATCC, were

cultured in Waymouth’s medium (Invitrogen). TRAIL2/2 and

WT VSMCs were cultured in high glucose DMEM medium

(Sigma Aldrich). Where calcium was added exogenously, cells

were serum-starved in M199 (Sigma-Aldrich) containing 1.36 mM

calcium for 24 hours, prior to additional calcium at the indicated

final concentrations and times. All media were supplemented with

10 or 20% fetal bovine serum (FBS), 10 mg/ml streptomycin,

10 U/ml penicillin and 1 mM L-glutamine. Cells were main-

tained at 37̊C in a humidified atmosphere of 5% CO2. Human

cells were not used beyond passage 10, and mouse cells were not

used beyond passage 11.

In vitro calcification assay
Prior to the addition of exogenous calcium, human VSMCs

were serum-starved in M199 at approximately 90% confluence for

24 h. Total calcium (3.3 mM) was added every 2–3 days with fresh

media, together with recombinant human TRAIL (1 and 10 ng/

ml; R&D Systems); cells were harvested at day 10. For calcification

studies involving murine cells, VSMCs were serum-starved for 24

h at 90% confluence. Calcium was added the following day with

fresh media; Cells were harvested 2 days later. Quantification of

calcification was performed by Alizarin red staining as previously

described [16].

Histology and immunochemistry
Haemotoxylin and eosin was used to assess tissue architecture of

brachiocephalic arteries. Arteries were stained for Alizarin red and

collagen II (1:100; Abcam). Digital images of arteries were

captured using an Olympus DP72 microscope (Olympus) and

quantification of indicated stains were performed as previously

described [29]. Briefly, the percentage of positive staining in the

plaque of brachiocephalic arteries/mouse was analysed. The

threshold for the positive stain was determined and the sections

were analysed by an investigator blinded to the genotype of the

mice.

RNA extraction, cDNA synthesis and quantitative PCR
(qPCR)

Aortas were snap frozen in liquid nitrogen at time of sacrifice

and stored at –80uC until further use. RNA was extracted from

tissue using the RNeasy fibrous tissue kit from Qiagen. WT

VSMCs were seeded into 6 well titre plates. At 80% confluence,

the cells were serum arrested in M199 for 24 h followed by

extraction of RNA using TriReagent (Sigma) [33]. RNA was

extracted using TriReagent as above. cDNA was generated using

iSCRIPT (Bio-Rad). qPCR was performed using the Rotor-Gene

6000 (Corbett Research) and SensiFast (Bioline) in triplicate.

Relative changes in gene expression between groups was

determined using the 2-nncT[29] method and values were

normalised to levels of b-actin, which did not significantly differ.

Where calcium was added exogenously, 18S RNA was used as a

house keeper as calcium significantly altered the expression of b-

actin. The list of primers for each gene can be found in Table 1.

Statistics
GraphPad Prism version 5.0 (GraphPad Software, San Diego,

CA, USA) was used to analyse data with results expressed as mean

6 SEM. Statistical comparisons were performed where appropri-

ate, using either a Student’s t test, or one or two way ANOVA

(with Bonferroni’s multiple comparison test) where appropriate.

p,0.05 was considered significant.
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Results

TRAIL is protective of calcium-induced VSMC calcification
in vitro

We recently demonstrated that addition of soluble OPG to

human VSMCs can inhibit calcium-induced calcification in vitro

[16]. Since OPG is a soluble receptor for TRAIL, we next

investigated whether TRAIL could also influence calcium-induced

calcification in these cells. Human VSMCs were exposed to

recombinant TRAIL, and an in vitro alizarin red-based assay

[16,34] was used to assess calcification stimulated by exogenous

supraphysiological calcium concentrations for 10 days. No

calcification was observed in untreated cells exposed to

1.36 mM calcium already present in M199 medium (Fig. 1A).

In contrast, cells exposed to a total calcium concentration of

3.3 mM, displayed significant increases in alizarin red staining,

demonstrating calcification of human VSMCs (Fig. 1A). Interest-

ingly, VSMCs exposed to calcium and TRAIL, at both 1 and

10 ng/ml for 10 days significantly inhibited calcium-induced

calcification (Fig. 1A). In support of a protective role for TRAIL in

calcium-induced calcification of VSMCs, murine TRAIL2/2

VSMCs exhibited accelerated calcification within 2 days of

treatment, and in a dose-dependent manner (Fig. 1B). Interest-

ingly, in these cells, calcification was observed even at the lowest

calcium concentration of 2.45 mM (Fig. 1B). Taken together,

these findings highlight the importance of TRAIL in protecting

against calcium-induced calcification of VSMCs in vitro.

Calcium differentially regulates RANKL, OPG and TRAIL
The OPG and RANKL cytokine system regulate bone

metabolism, they are also implicated in vascular calcification [8].

We have recently shown that OPG can inhibit calcium-induced

calcification of human VSMCs, and OPG itself is regulated by

calcium in vitro [16]. We next wanted to assess whether calcium

could also regulate the expression of RANKL and TRAIL.

Calcium treatment for 24 h significantly increased RANKL

expression in WT VSMCs (Fig 2A). In contrast, calcium

significantly inhibited OPG and TRAIL mRNA (Fig. 2B-C),

almost a mirror image of RANKL. These studies demonstrate that

calcium at 3.3 mM differentially regulates the expression of

RANKL, OPG and TRAIL at 24 h exposure to modulate

calcium-induced vascular calcification of VSMCs in vitro.

Arteries from HFD fed TRAIL2/2ApoE2/2 mice display
increased cartilaginous metaplasia and calcification

In the vasculature, it is suggested that similar mechanisms for

cartilage and bone formation occur as ectopic calcification, and in

fact, cells and proteins from bone tissue can be found in the

vascular wall [35]. Chondrocyte-like cells and calcification have

been observed within the fibro-fatty plaque of brachiocephalic

arteries from 60 w chow fed ApoE2/2 mice [36]. We have

previously shown that TRAIL2/2ApoE2/2 mice on a HFD for 12 w

resulted in accelerated atherosclerosis when compared to ApoE2/2

alone [29]. To examine the effect of TRAIL on calcification in

advanced atherosclerotic lesions, TRAIL2/2ApoE2/2 and

ApoE2/2 mice were placed on a HFD for 12 and 20 w.

Brachiocephalic arteries are among the most commonly studied

vessels in the analysis of atherosclerosis in murine models, and

examination of those from TRAIL2/2ApoE2/2 and ApoE2/2

mice on 12 w HFD exhibited significant changes in cellular

composition, particularly with the detection of chondrocyte-like

cells and cartilaginous metaplasia. Compared to ApoE2/2,

significant increases in chondrocyte-like cell number were observed

in arteries of 12 w HFD TRAIL2/2ApoE2/2 mice (Fig. 3A). The

intermediate stage of chondrocyte differentiation and cartilage

production in bone is evident by collagen II expression [37]. Specific

collagen II staining was apparent in 12 w HFD TRAIL2/2ApoE2/2

arteries with chondrocytes (Fig. 3B). Consistent with this, aortas of 12

w HFD-fed TRAIL2/2ApoE2/2 mice had significantly elevated

collagen II mRNA expression (Fig 3C). By 20 w however, no changes

in chondrocyte numbers were seen in plaque between genotypes (Fig.

3D), nor was there any change in aortic collagen II expression (data

not shown). Importantly, compared to controls, 20 w HFD

TRAIL2/2ApoE2/2 arteries displayed significantly increased calci-

fication as assessed by alizarin red staining (Fig. 3E), a finding not

observed at 12 w (data not shown). Taken together, these data

suggest that TRAIL-deficiency accelerates chondrocyte development

and calcification in atherosclerosis in vivo.

Aortas of TRAIL2/2ApoE2/2 mice have increased
expression of calcification-regulating genes and
inflammatory cytokines

Since calcium deposits commonly occur in the greater vessels

[38], we next examined the expression of OPG and RANKL from

the aortas of HFD TRAIL2/2ApoE2/2 and ApoE2/2 mice. No

change in cellular OPG mRNA was observed in aortas of 12 and

20 w HFD-fed animals (Tables 2 and 3). In contrast, RANKL

expression was significantly increased in aortas of 12 w HFD fed

TRAIL2/2ApoE2/2 (Table 2). Bone morphogenic proteins

(BMP) e.g. BMP-2 and the master osteoblast transcription factor

Runx2, are important in the development of cartilage and bone

[39,40]. Of note, BMP-2 can regulate Runx2 [41], and both

factors can regulate RANKL [42,43]. While BMP-2 expression

was significantly elevated from 12 w HFD TRAIL2/2ApoE2/2

aortas, no change in Runx2 expression was observed between

genotype (Table 2). Like RANKL, BMP-2 and Runx2 expression

did not differ between genotype at 20 w (Table 3).

Inflammatory markers such as IL-1b, PPARc and TNF-a are

implicated in bone turnover [44,45]. Therefore, we next assessed

the expression of these markers in diseased aortas of 12 and 20 w

HFD-fed TRAIL2/2ApoE2/2 and ApoE2/2 mice. IL-1b and

PPARc mRNA expression was significantly increased in

TRAIL2/2ApoE2/2 aortas at 12 w HFD (Table 2). While a

Table 1. Murine primer sequences.

Mouse Primers

Gene Forward Primer 59- 39 Reverse Primer 59- 39

IL-1b GTTTCTGCTTTCACCACTCCA GAGTCCAATTTACTCCAGGTCAG

TNF-a CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

PPAR-c CACAATGCCATCAGGTTTGG GCTGGTCGATATCACTGGAGATC

OPG ATCAGAGCCTCATCACCTT CTTAGGTCCAAC-
TACAGAGGAAC

RANKL CCAGCTATGATGGAAGGCTCA ACCGAAGATAATGGACATGC

Collagen II GAAGGTGGAAA-
GCAAGGTGA

CATCAGTACCAGGAGTGCCA

BMP-2 GGGACCCGCTGTCTTCTAGT TCAACTCAAATTCGCTGAGGAC

Runx2 AACGATCTGAG-
ATTTGTGGGC

CCTGCGTGGGATTTCTTGGTT

b-actin AACCGTGAAAAGA-
TGACCCAGAT

CACAGCCTGGATGGCTACGTA

18S RNA CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT

doi:10.1371/journal.pone.0074211.t001
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trend for increased TNF-a expression was observed in 12 w

TRAIL-deficient aortas, this increase was not significant (Table 2).

Interestingly in TRAIL2/2ApoE2/2 arteries where calcification

was already evident (20 w), increases in aortic mRNA expression

of RANKL, PPARc and to some extent TNF-a were no longer

observed (Table 3). In contrast, IL-1b expression was still

significantly elevated at 20 w (Table 3). When we examined

circulating levels of OPG and RANKL, OPG levels were slightly

elevated and reaching significance at 12 w in TRAIL2/2ApoE2/2

mice, with no significant changes observed by 20 w (Table 4). No

differences in plasma RANKL were observed (Table 4). These

findings provide further evidence that TRAIL deficiency results in

increased expression of cellular RANKL, chondrogenic bone

markers and inflammatory mediators, which in part may lead to

accelerated cartilage/bone formation and calcification in the vessel

wall.

Discussion

Two cytokines that are responsible for controlling osteoclast

biology are RANKL and OPG. RANKL binds to its cellular

receptor RANK to initiate osteoclastogenesis [8,9]. In contrast,

binding of RANKL to its decoy receptor OPG, results in

inhibition of osteoclastogenesis [10]. While the OPG/RANKL

cytokine system has been extensively studied in bone metabolism,

animal models suggest that this system is also implicated in

controlling vascular calcification [46,47,48]. In the present study

we demonstrate for the first time that TRAIL modulates RANKL,

such that TRAIL deficiency in the vessel wall of ApoE2/2 mice

fed a HFD, results in increased cellular RANKL expression, which

leads to vascular calcification (Fig. 4). These findings are similar to

those in ApoE2/2mice after ovariectomy, which exhibit athero-

sclerotic calcification, osteoporosis and increased expression of

RANKL [49].

Chondrocyte-like cells promoting cartilage formation are

implicated in calcification in human atherosclerosis [3]. Here we

show that RANKL’s expression and role in controlling bone turn-

over in the vessel wall involves TRAIL. Interestingly, RANKL’s

increase in expression in diseased TRAIL2/2ApoE2/2 aortas was

time-dependent; increased at 12 w in TRAIL2/2ApoE2/2 mice

displaying increased arterial cartilage, with no significant changes

in RANKL expression between genotypes by 20 w. A possible

stimulus for RANKL expression at 12 w in TRAIL2/2ApoE2/2

mice may be BMP-2, an important anabolic factor in bone

formation and mineralization [39]. During bone formation, BMP-

2-induced osteoblastic differentiation in mesenchymal cells

involves BMP-2-induced Runx2 expression [41]. Both BMP-2

and Runx2 can regulate RANKL expression [42,43]. While we

did not see increased Runx2 expression in TRAIL-deficient aortas,

BMP-2 expression was significantly elevated at 12 w. Intriguingly,

Figure 1. Calcium-induced calcification is blocked by TRAIL in VSMCs. (A) Human VSMCs were treated with TRAIL and calcium (3.3 mM)
every 2–3 d. Cells were serum-starved for 24 h prior to treatment for 10 d. Representative photograph of each treatment group. Alizarin red staining
indicates calcification. Cells were fixed and calcification assessed using an alizarin red-based assay. (B) WT and TRAIL2/2 VSMCs were treated with
increasing concentrations of calcium (2.45–3.3 mM). Cells were serum-starved for 24 h prior to treatment for 2 d. Representative photograph of each
treatment group. Alizarin red staining indicates calcification. Cells were fixed and calcification assessed using an alizarin red-based assay as described
in the methods. NT, no treatment. ANOVA (n = 3 experiments); ****p,0.0001.
doi:10.1371/journal.pone.0074211.g001
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RANKL can directly regulate BMP-2 [50], suggesting a possible

feedback mechanism in our system. These findings therefore, raise

further questions on TRAIL-dependent calcification effects.

Further investigations are needed to fully elucidate TRAIL’s role

in these complex processes.

In addition to inflammation, many cytokines can act to promote

bone resorption. For example, both IL-1b and TNFa can induce

the expression of genes regulating cartilage resulting in degrada-

tion of matrix components [51]. Here we show that cellular

mRNA levels of IL-1b, PPARc and to some extent TNFa were

also simultaneously elevated in 12 w TRAIL2/2ApoE2/2 aortas.

We have previously shown that TRAIL-deficiency in ApoE2/2

mice leads to increased CD11b +ve splenic leukocytes, elevated

levels of inflammatory markers such as MCP-1, and significantly

increased macrophage infiltration in their atherosclerotic tissue,

suggesting that TRAIL may attenuate monocyte recruitment in

areas of chronic inflammation [29]. On the other hand, RANKL

can promote the recruitment and infiltration of monocytes/

macrophages [52], known to stimulate VSMC calcification

probably via increased secretion of inflammatory cytokines. Both

TNFa and IL-1b can stimulate the release of OPG from vascular

Figure 2. Calcium differentially regulates RANKL, OPG and TRAIL expression in VSMCs. Relative changes in mRNA levels of (A) RANKL, (B)
OPG and (C) TRAIL in WT VSMCs treated with calcium using the 2DDCt method. WT cells were serum-starved for 24 h prior to treatment with total
3.3 mM calcium. RNA was extracted 24 h later and real-time PCR was performed in triplicate. Expression was normalised to 18S RNA. Changes in
mRNA expression were compared with untreated WT expression. Mann-Whitney t-test (n = 3 experiments); *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0074211.g002

Table 2. Aortas from 12 w HFD-fed TRAIL2/2ApoE2/2 mice
display altered expression of bone markers and inflammation.

mRNA
(relative to b-actin) 12 w

ApoE2/2 TRAIL2/2ApoE2/2

OPG 100616.0 114.867.8

RANKL 10066.5 144.2619.9*

BMP-2 10067.8 122.862.9*

Runx2 100615.9 62.269.7

IL-1b 100612.7 291.1650.6*

PPARc 10066.0 243.3611.5**

TNFa 100617.9 13163.9

ANOVA (n = 4-6/genotype); *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0074211.t002
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cells, as well as induce RANKL expression [53]. This is consistent

with the observation that TRAIL2/2ApoE2/2 mice displayed

increased circulating OPG, with no change in cellular OPG levels

at 12 w. This finding is consistent with a variety of clinical studies

demonstrating increases in circulating OPG correlating with

vascular disease [54,55,56]. The significance of circulating OPG

levels is not fully established. For example, it is not clear if levels of

circulating OPG are directly involved in promoting vascular

calcification, or whether increased levels of OPG may reflect

attempts to block excessive mineralisation in calcified atheroscle-

rotic tissue [57].

PPARc which is expressed by VSMCs in atherosclerotic lesions

can also be induced by IL-1b and TNFa, in the same manner that

they stimulate OPG. Interestingly, PPARc ligands have been

Figure 3. TRAIL-deficiency promotes vascular cartilaginous metaplasia and calcification. (A) Quantification of chondrocyte-like cells from
ApoE2/2 and TRAIL2/2ApoE2/2 mice fed a HFD for 12 w. Mann-Whitney t-test (n = 8); **p,0.01. (B) Representative cross section of TRAIL2/2ApoE2/2

brachiocephalic arteries stained for H&E and collagen II (20x magnification). (C) Collagen II mRNA expression from aortas of 12 w HFD TRAIL2/2ApoE2/2

and ApoE2/2 mice (n = 4-6/genotype). (D) Quantification of chondrocyte-like cells from ApoE2/2 and TRAIL2/2ApoE2/2 mice fed a HFD for 20 w. Mann-
Whitney t-test (n = 6-8/genotype). (E) Representative cross section of ApoE2/2 and TRAIL2/2ApoE2/2 brachiocephalic arteries stained for alizarin red
(10x magnification) and quantification of the staining. Mann-Whitney t-test (n = 6-8/genotype) *p,0.05.
doi:10.1371/journal.pone.0074211.g003

Table 3. Aortas from 20 w TRAIL2/2ApoE2/2 mice display
increased inflammation.

mRNA
(relative to b-actin) 20 w

ApoE2/2 TRAIL2/2ApoE2/2

OPG 100627.3 113.9621.1

RANKL 100625.0 122.2619.2

BMP-2 100611.1 103.2610.88

Runx2 100612.9 88.964.3

IL-1b 100610.9 212.9645.8*

PPARc 100623.5 114.9626.9

TNFa 100631.4 114.5628.7

ANOVA (n = 5/genotype); *p,0.05.
doi:10.1371/journal.pone.0074211.t003

Table 4. Circulating OPG and RANKL levels.

12 w 20 w

Fold Change ApoE2/2
TRAIL2/

2ApoE2/2 ApoE2/2
TRAIL2/

2ApoE2/2

OPG 1.0060.06 1.460.08** 1.0060.04 0.8560.12

RANKL 1.0060.15 1.0560.10 1.0060.12 0.7860.13

Plasma OPG levels (ELISA) and plasma RANKL (Milliplex assay) levels were
measured from ApoE2/2 and TRAIL2/2ApoE2/2 mice 12 and 20 w of HFD. Fold
change compared to control ApoE2/2 mice. ANOVA (n = 6-8/genotype);
**p,0.01.
doi:10.1371/journal.pone.0074211.t004
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shown to restrain OPG levels generated by inflammatory cytokines

suggesting a possible negative feedback mechanism [58]. This may

provide a potential mechanism for the normalised levels of OPG

observed in TRAIL-deficient animals by 20 w. Our findings

suggest that RANKL may be an inducer or a marker of cartilage/

bone formation in the vasculature. This is corroborated by the in

vitro finding that insulin-mediated osteoblastic differentiation of

VSMCs is promoted by increased RANKL expression [59].

Furthermore, osteoclast differentiation induced by RANKL was

inhibited by TRAIL [60]. Of note, TRAIL also induces

chondrocyte apoptosis [61]. These studies suggest that TRAIL

may be an important player in the regulation of the OPG/

RANKL cytokine system.

TRAIL has been shown to regulate VSMC proliferation and

neointimal thickening after injury [33,62,63], as well as in a rodent

model of pulmonary arterial hypertension [64]. While these

studies suggest that TRAIL can promote atherogenesis and

vascular disease, serum concentrations in patients with coronary

artery disease (CAD) have demonstrated lower TRAIL levels

inversely associated with the severity of CAD, and especially lower

levels in patients with acute coronary syndromes, suggesting a

protective role in cardiovascular diseases [44,52]. Moreover, low

circulating TRAIL levels are associated with all-cause and

cardiovascular mortality [19], and consistent with this, rodent

models of atherosclerosis also suggest a protective role for TRAIL

against atherosclerosis [29,65]. These findings suggest that TRAIL

has differential roles at different stages of disease. These may be

dependent on multiple factors including ligand concentration, cell

types involved, and expression of its receptors. For example, in

VSMCs, TRAIL-inducible proliferation is dependent on DR4 and

DcR1 [63,64], while T-cell mediated TRAIL-dependent apoptosis

requires DR5 [66]. Interestingly, TRAIL protein is detected in

stable atherosclerotic lesions, in vulnerable plaques, and also

localized to the medial layer of arteries in Mönckeberg’s sclerosis

[52,63]. Moreover, while TRAIL is expressed in regions of

calcified vascular tissue [30,31], circulating TRAIL levels in sera of

hemodialysis patients which are prone to severe vascular

calcification are reduced [32]. Interestingly, ApoE2/2 mice at 6

w prior to the start of their HFD had higher circulating TRAIL

levels compared to 12 w HFD ApoE2/2 mice (data not shown),

suggesting that the HFD may attenuate TRAIL levels in these

mice. ApoE2/2 mice also had chondrocyte-like cells and

demonstrated some arterial calcification by 20 w, however, a total

TRAIL-deficiency in ApoE2/2 mice, accelerated this process. It is

enticing to speculate that a Western lifestyle with increased

consumption of high calorie foods may be in part, responsible for

the reduced circulating TRAIL levels observed in humans with

disease [44,52]. Our study suggests that TRAIL protects against

atherosclerosis to some extent, by attenuating calcification as

demonstrated by our in vivo and in vitro data. In conclusion, our

study is the first to show the importance of TRAIL in regulating

RANKL expression necessary for vascular calcification. This is the

first demonstration implicating a protective role for TRAIL

against calcification in the vasculature in vivo.

Acknowledgments

TRAIL2/2 mice were originally sourced from Amgen.

Author Contributions

Conceived and designed the experiments: BAD SPC HHH YB MS MMK.

Performed the experiments: BAD SPC HHH YB MMK. Analyzed the

data: BAD SPC HHH YB MS MMK. Contributed reagents/materials/

analysis tools: BAD SPC HHH YB MS MMK. Wrote the paper: BAD

SPC HHH YB MS MMK.

Figure 4. Model for the protective action of TRAIL in vascular calcification. Calcium differentially regulates RANKL, OPG and TRAIL
expression in VSMCs. As a consequence, a deficiency in TRAIL with the addition of exogenous calcium leads to vascular calcification in vitro. In vivo,
TRAIL-deficiency in ApoE2/2 mice on a HFD increases the expression of cellular RANKL and inflammatory cytokines within the vessel wall,
simultaneously leading to an acceleration of cartilage development and subsequent calcification.
doi:10.1371/journal.pone.0074211.g004
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