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Abstract

Prokaryotic ubiquitin-like protein (Pup) is the first identified prokaryotic protein that is functionally analogous to ubiquitin.
Recent studies have shed light on the Pup activation and conjugation to target proteins to be a signal for the selective
degradation proteins in Mycobacterium tuberculosis (Mtb). By covalently conjugating the Pup, pupylation functions as a
critical post-translational modification (PTM) conserved in actinomycetes. Detecting pupylation sites is crucial and
fundamental for understanding the molecular mechanisms of Pup. Yet comparative studies with other PTM suggest that the
development of accurate and complete repertories of pupylation is still in its early stages. Unbiased screening for
pupylation sites by experimental methods is time consuming and expensive; in silico prediction can provide highly potential
candidates and reduce the number of potential candidates that require further in vivo or in vitro confirmation. Here, we
present an effective classifier of PupPred for predicting pupylation sites, which shows better performance than existing
classifiers. Importantly, this work not only investigates the sequential, structural and evolutionary hallmarks around
pupylation sites but also compares the differences of pupylation and ubiquitylation from the environmental, conservative
and functional characterization of substrates. These prediction and analysis results may be helpful for further experimental
investigation of degradation proteins in prokaryotes. Finally, the PupPred server is available at http://bioinfo.ncu.edu.cn/
PupPred.aspx.
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Introduction

Cellular pathways involved in determining the fate of essential

proteins through post-translational modification events have

become an increasingly important area of study [1–4]. Of these

modifications, the understanding of eukaryotic ubiquitylation by

ubiquitin protein has shown to be especially valuable [5]. With the

ability to mark specific proteins for proteasomal degradation, this

pathway has been shown to play a particular important role in the

cell cycle, cellular metabolism, cell signaling and immune response

[6–8]. Similar to eukaryotic ubiquitin, prokaryotic ubiquitin-like

protein (Pup) attaches to specific lysine residues of substrate

proteins by forming isopeptide bonds to target the proteins for

proteasomal degradation in prokaryotes [2–4,9]. This pathway

also has been shown to play a particular important role for

proteasomal degradation in the prokaryotes [4,9]. While the

eukaryotic ubiquitin–proteasome degradation pathway was dis-

covered in the late 1970’s [10], it was only recently that an

ubiquitin-like protein was identified in prokaryotes [4,7]. This new

Pup has now been characterized from the Actinobacterium

Mycobacterium tuberculosis (Mtb) and its avirulent relative Mycobac-

terium smegmatis (Msm). Since the proteasomal pathway is critical

for both the virulence and persistence of Mtb, identification of the

pupylated substrates along with information on the exact sites is

fundamental for understanding the pathological mechanisms, and

can provide helpful insights into protein degradation in actino-

mycetes.

Recently, large-scale proteomics technology has been applied to

identify pupylated proteins and pupylation sites [11–14]. Howev-

er, experimental determination of pupylated substrates with exact

modified sites is still a great challenge, and no canonical sequence

motifs have been observed [12,13]. In contrast to labor-intensive

and time-consuming experimental approaches, the in silico

prediction of putative pupylation sites with high predictive

performance can greatly narrow down the number of potential

targets, and thus rapidly provide useful information for further

experimental confirmation. In this regard, an accurate and

convenient predictor of pupylation is urgently needed.

Up to now, only one method for the prediction of pupylation

sites was constructed based on a GPS algorithm, in which three

sequential steps of motif length selection (MLS), weight training

(WT) and matrix mutation (MaM) were adopted [15]. It was

trained on a combined set that manually collected 127 experi-

mentally identified pupylation sites in 109 prokaryotic proteins

from the scientific literature. Although the method demonstrated a

promising accuracy, it is nevertheless still a shortage of low

sensitivity. Moreover, no published reports including the above

method have systematically studied not only the biological

hallmarks for pupylated substrates but also the differences of

pathway for pupylation and ubiquitylation. Based on these factors,
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we present a new computational tool known as PupPred, which

was constructed to predict the pupylation of prokaryotic proteins

by using the latest data of PupDB database [16]. The database

PupDB contains 182 pupylated proteins with 215 known

pupylation sites (see Table S1). In this work, we found the

composition of amino acid pairs is suitable for representing the

sequence context surrounding the pupylation sites after our

preliminary assessment by seeking a various encoding. The

PupPred achieved a balanced performance of both high sensitivity

and specificity by using the encoding scheme of amino acid pairs

based on a more training data, and that outperformed the GPS-

based predictor when evaluated on the same dataset. More

importantly, the sequential, structural and evolutionary hallmarks

around pupylation sites were exhibited. Previously, we had

developed a tool known as UbiProber for the prediction of

eukaryotic ubiquitylation sites [17]. Since ubiquitylation and

pupylation are functional analogues, we tried to use the method of

UbiProber to predict prokaryotic pupylation sites. Unfortunately,

a poor prediction results were obtained (see Table S2), where may

be partially due to different sequence functionality and constraints

between ubiquitylation and pupylation. So, we systematically

compared pupylation with ubiquitylation through comparing the

differences of the environmental, conservative hallmarks and

statistical analyzing of their respective gene ontology (GO) terms.

Taken together, these systematic analyses and predictions can

allow us to gain better insights into processes and functions of

pupylation.

Results

Sequence-derived Hallmarks of Pupylation Sites
This investigation focuses on the analysis of ubiquitin-like

protein conjugated lysine in prokaryotes. In ubiquitin-like protein

conjugation, the region of the ubiquitin-like protein conjugated

lysine residues is in directly contact with the proteasome accessory

factor A (PafA) catalytic center [18,19]. Since PafA has a substrate

binding specificity, whether the region of ubiquitin-like protein

conjugated lysine conservative amino acid motifs for PafA

recognition must be explored. After the duplicated sequences of

experimental pupylation sites were removed, as shown in Figure

S1, a web-based tool TwoSampleLogo [20] was adapted to

generate the graphical sequence logo (P,0.01; t-test) that detects

and displays statistically significant differences in position-specific

symbol compositions between two sets of multiple sequence

alignments. One interesting feature is the absence of additional

lysines at positions that are immediately adjacent to the pupylation

site. For example, lysines are depleted at positions 22 and 2 (see

Figure S1). This suggests that pupylation sites do not have a

tendency to cluster, perhaps due to the structural constrains that

would prevent simultaneous attachment of two or more bulky

ubiquitin-like protein molecules in close proximity to each other

on the same substrate. Another interesting feature is the upstream

and adjacent amino acid residues in pupylated sites, which may be

close to pupylated lysine residues in three-dimensional structure,

have notable difference between pupylation sites and non-

pupylation sites.

In addition, since the representation of sequence logos involves

different preferences of amino acids for pupylated and non-

pupylated sites, the statistical difference in the distribution of

amino acid sequences around the pupylated lysines can be

alternatively grouped by various methods to generalize the

sequence hallmarks because amino acid classification is hierarchi-

cal. Here, WebLogo [21] was adapted to generate the graphical

sequence logo for the sequence hallmarks at each position around

the pupylated sites. The sequence hallmarks around the pupyla-

tion sites can then be easily investigated. As presented in Figure 1,

the three-class grouping method and the two-class grouping

method are used to divide 20 amino acids into subgroups that

capture their chemical properties. Three-class grouping methods

can be based on charge and disorder, and two-class grouping

methods can be included flexibility, hydrophobicity and surface

exposure. The majority of pupylated sites are located in the

uncharged, unstructured (disorder) and high flexibility regions.

Moreover, the result also shows a slight tendency to prefer

hydrophobic and exposed regions.

Structural Hallmarks of Pupylation Sites
Besides composition of amino acids, we further analyze the

correlation of structural information at pupylation sites. Since most

of the experimentally verified pupylated proteins do not have

corresponding protein tertiary structures in Protein Data Bank

(PDB) [22]. Then, PSIPRED [23], a highly accurate method for

protein secondary structure prediction, was applied to compute

the secondary structure of each residue in the protein sequence.

Figure 2 presents the sequence logo of the secondary structure in

the 27-mer window (213,+13) of the pupylated and non-

pupylated sites. We also calculated statistically significant differ-

ences in the distribution of secondary structure based on the paired

Welch’s t-test. In this work, the observations reveal that PafA

prefers to recognize the regions that are located in the middle of

coil and helix structures (P,0.02017; see Table S3). In contrast to

pupylation sites, non-pupylation sites do not have an obviously

preferred secondary structure.

To gain better insights into structural preferences of pupylated

sites, we searched the available structural information for proteins

from our positive sample (182 pupylated proteins) using BLAST

against the PDB with $70% sequence identity as a cutoff value.

Our search resulted in a total of 79 homologous protein chains

containing 43 pupylated proteins that the exact structural

information is known (see Table S4). There are 55 pupylated

sites in the 43 pupylated protein. Despite the presence of more

than 80,000 structures in PDB, reliable structural assignments can

be made for only ,26% of the available pupylated sites (55 out of

215 pupylated sites). This indicates that very limited structural

environment information is currently available for proteins that

comprise known pupylated substrates. Interestingly, our analysis

showed that the 55 sites could be confidently assigned to ordered

regions, and 10 were located within coils, 23 within helices, and 22

within strands. The majority of the sites within helices and coils

were surface exposed and had high B-factor values indicating high

flexibility.

Evolutionary Hallmarks of Pupylation Sites
To compare evolutionary information for each protein

sequence, the corresponding position-specific scoring matrix

(PSSM) was obtained by applying PSI-BLAST [24] search against

Swiss-prot database. Figure 3 presents the comparison of average

PSSM value (APV) between pupylated and non-pupylated

sequences. P-values also were calculated using the Welch’s t-test

(two tails) for each position in the windows, as shown in Table S3.

This analysis showed a high preference for conservative in

pupylation sites. Moreover, the amino acid residues adjacent to

the centered pupylation sites have relatively higher preference

(P,8.234e-04; see Table S3) for conservative than those of non-

pupylation sites, especially in the region of downstream sequences

(+1, +2, +3). Also particular, the upstream positions of pupylation

sites (212, 210, 29, 26, 23) have a high score, where are

Prediction of Pupylation Sites
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Figure 1. The graphical representation of biochemical environment surrounding pupylation sites using different grouping method.
*Redundant sequence is eliminated from each group sequence; **each symbol in the stack of group logo represents each class in the group column.
doi:10.1371/journal.pone.0074002.g001

Figure 2. A weblogo of secondary structure of pupylated sequences (A) and non-pupylated sequences (B). P-values were calculated
using the Welch’s t-test (two tails). *The compositional biases of secondary structure are statistically significance (P,0.001) comparing pupylated
sequences with non-pupylated sequences.
doi:10.1371/journal.pone.0074002.g002

Prediction of Pupylation Sites
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significantly conservative for pupylation sites (P,6.024e-04; see

Table S3).

Predictive Performance of Cross-validation using Various
Training Features
As mentioned earlier, pupylation and non-pupylation have

some significant differences in sequence, structural and evolution-

ary hallmarks. Therefore, we constructed models that differentiate

between pupylation sites and non-pupylation sites from these three

aspects. Here, to determine which features can be utilized to

construct model, we preliminarily assessed various features by k-

fold cross validation that including binary encoding, amino acid

(AA) compositions, AA pair compositions, grouping amino acid

composition, physicochemical properties, k nearest neighbor

(KNN) feature, secondary structure and position specific scoring

matrix (PSSM) profile. Table 1 presents the predictive perfor-

mance achieved using various training features, based on 10-fold

cross-validation for each one of 10 training sets. Of the models

trained using individual features, those that were trained using AA

pair composition slightly outperformed those that were trained

using other features. In addition, the model trained with the PSSM

profile, KNN feature or binary encoding achieved a Matthew

correlation coefficient (MCC) of over 0.2. However, the model that

was trained with the secondary structure or AA composition

underperformed prediction. According to the prediction perfor-

mance of the individual features, we selected three features with

high dimension and powerful predictive ability for further

optimization by using a feature selection method known as F-

select [25]. Therefore, the effects of binary encoding, PSSM profile

and AA pair composition were evaluated, as presented in Table 1.

According to statistical comparison of MCC (see Table S5) and the

evaluation results (see Table 1), the model was trained using the

121 informative features (Table S6) of AA pair composition

performed best (P,2.797e-05), with the best-balanced predictive

sensitivity and specificity. AA pair composition is suitable for

representing the sequence context surrounding the pupylation sites

because AA pair composition reflects the short range interactions

of residues within a sequence or a sequence fragment. Note that all

evaluation criteria come from the average of the prediction results

of 10 training sets. The detailed evaluation results of 121

informative features for these 10 training sets are listed in Table

S7. Furthermore, the receiver operating characteristic (ROC)

curves are drawn in Figure 4 and the corresponding value of

average area under the curve (AUC) was 83.26%. Since the

prediction performance of different training sets is extremely stable

for the prediction of pupylation sites, it is evident that the method

is a robust predictor. In short, the performance of our model is

reasonably good.

PupPred Server
After evaluating the trained models for identifying pupylation

sites, the model with the highest predictive accuracy for 10 training

sets was selected as the PupPred server. PupPred web server has

been developed in an easy-to-use manner and is available to the

general public. A user can visit PupPred at http://bioinfo.ncu.edu.

cn/PupPred.aspx, input the protein sequences in FASTA format

into the text box, and run the program by clicking the ‘Predict

with the pasted sequence’ linkbutton. Moreover, users can paste

the protein IDs into the text box, and run the program by clicking

the ‘Predict with the protein ID’ linkbutton. The prediction results

should be regarded as potential sites before experimental

validation.

Comparison of PupPred with Existing Methods
We attempted to compare the PupPred with the GPS-PUP.

However, the GPS-PUP adopted the unbalanced ratio of positive

to negative samples to train model, which resulted in a

comparatively unjust assessment between these two predictors.

Unbalanced datasets present a number of different problems for

machine learning methods [26]. When only a comparatively small

number of examples are available for one class, the machine

learning algorithm will not have sufficient information to learn a

function to distinguish the classes. Reporting of classification

accuracy is also impacted by unbalanced datasets [27,28]. For

example, if a dataset of 100 sites contains 20 pupylation sites and

80 non-pupylation sites, a classification accuracy of 80% can be

obtained by classifying all sites as negative.

To demonstrate the problem, we designed an experiment to

investigate the effect of unbalanced datasets on pupylation

prediction. For this experiment, there are many more non-

pupylation sites than pupylation sites available. Two different

approaches were used to build classifiers for comparing the GPS-

PUP: (1) the prediction model was constructed by using balanced

training set (PupPred, the classifier of this research); (2) the model

was constructed by using unbalanced training set (PupPred1, the

original ratio of positive and negative samples). To compare the

Figure 3. Average PSSM value of amino acids for each position of pupylated sequences and non-pupylated sequences. P-values were
calculated using the Welch’s t-test (two tails). **P,0.0001; *P,0.001.
doi:10.1371/journal.pone.0074002.g003
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performance, we submitted the testing data of 109 complete

protein sequences to the classifiers (PupPred, PupPred1 and GPS-

PUP). The evaluation results show that the PupPred1 and GPS-

PUP predicted almost all examples to be negative (i.e. low

sensitivity and high specificity). In contrast, PupPred trained by

using balanced data had higher classification accuracies at three

stringency levels of high, medium and low (see Table 2). This

highlights the problems encountered when using an unbalanced

dataset. The classifier cannot distinguish positive and negative

examples because the dataset contains so many more negative

examples than positive examples and also because many of the

positive examples are analogs of the negatives.

In conclusion to this, PupPred was constructed by a balanced

training set that showed better performance than GPS-PUP. It

becomes obvious that the problem of prediction ability lies not

only in specificity but also in sensitivity. Meanwhile, our method

confirms the importance of a balanced training set for building

model.

While we were working on this project, another predictor of

pupylation sites (iPUP, http://cwtung.kmu.edu.tw/ipup/) was

developing by the author of PupDB [16]. It was trained just like

Figure 4. ROC curves of PupPred predictions on 10 training sets.
doi:10.1371/journal.pone.0074002.g004

Table 1. The predictive performance of cross-validation using various training features.

Training features Sn (%) Sp (%) Ac (%) MCC

Binary encoding 43.3665.00* 75.8064.25 59.5863.56 0.202860.0744

AA composition 64.1464.00 52.7962.94 58.4663.14 0.170860.0635

AA pair composition 62.4666.88 62.4864.37 62.4764.29 0.250360.0861

Grouping AA composition 41.7865.33 76.0463.70 58.9163.51 0.190260.0741

Physicochemical properties 55.5364.96 63.9364.54 59.7362.84 0.196060.0571

KNN feature 64.9465.68 55.8566.74 60.3962.46 0.210560.0490

Secondary structure 59.9662.48 57.4066.11 58.6862.14 0.173960.0433

PSSM 51.2064.36 69.3966.19 60.3062.49 0.211060.0518

Binary encoding233** 64.0464.33 78.6061.36 71.6362.03 0.432060.0414

PSSM134 61.1162.63 68.9461.28 65.1162.13 0.301960.0331

AA pair composition121 76.2461.25 75.3260.96 75.7861.07 0.519160.0215

*The latter number represents standard deviation from 10 training set;
**the lower right corner of the number indicates the number of selected best feature sets by the F-score method.
doi:10.1371/journal.pone.0074002.t001

Prediction of Pupylation Sites
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us on the same pupylation dataset extracted from PupDB

database. iPUP was constructed based on the feature of the

composition of k-spaced amino acid pairs, also used in our work.

The developed predictor achieved proper performance on our

testing data, but that was worse than our predictor, as can be seen

from Table 2.

Ubiquitylation Sites versus Pupylation Sites
As described in the Introduction section, ubiquitylation and

pupylation are functional analogues. Several works had been done

for the comparison issue between ubiquitylation and pupylation

from proteasome pathways level [2,18,29]. In the eukaryotic

proteasome pathway, ubiquitin is coupled to substrates via the

carboxy group of its C-terminal glycine in a multistep reaction

involving several enzymes. In contrast, the prokaryotic proteasome

pathway is that the C-terminal glutamine of Pup is first

deamidated to glutamine by deamidase of Pup (Dop) [14], after

which Pup is coupled by PafA to the e-amino group of a substrate

lysine via an isopeptide bond [30]. Although the end-point for

both the ubiquitin degradation system in eukaryotes and the Pup

degradation system in prokaryotes is the proteasome, the two

functionally analogous tagging systems do not share similar

methods of activation and conjugation to target proteins

[2,18,29]. We recently introduced computational algorithm to

predict eukaryotic ubiquitylation sites [17], in which some

ubiquitylated determinants were analyzed for performance

improvement. In our subsequent work, the computational

algorithms were also evaluated on the prokaryotic pupylation

data that an unacceptable prediction results were obtained (see

Table S2). So it will be necessary to further discuss the similarities

and differences between the ubiquitin and Pup proteasome

systems in terms of modified substrate.

First, to determine whether the modified substrates in eukary-

otes and prokaryotes have consistent or distinct sequence

properties, we calculated the relative amino acid compositions

between modified sites and the non-modified sites of eukaryotes

and prokaryotes, respectively. This analysis shows 7 compositional

differences between eukaryotes and prokaryotes (Figure S2, small

boxes). An interesting feature of modified sites is the abundance of

uncharged and polar amino acids (Gln, Gly, Asn, Thr and Tyr) for

eukaryotes, but for prokaryotes that is absent. In contrast, the non-

polar amino acids (Val and Phe) are abundant in prokaryotes and

are scarce in eukaryotes. This suggests that environment

surrounding modified sites is different between prokaryotes and

eukaryotes.

Second, conservation analysis is used for measuring the

functionally important residues and positions between eukaryotes

and prokaryotes in sequence fragments. All residues and positions

in a protein are not equally important. Some are essential for the

proper structure and function of a protein. Here, we used

information gain approach for estimating the importance of

different positions and different amino acid residues in the window

based on Kullback–Leibler divergence [31]. The calculation

process is described in the Procedures S1. The significance chart

in Figure 5 illustrates the relative importance of the different

positions and amino acids from eukaryotes and prokaryotes. As

can be seen from Figure 5, the relative importance of positions and

amino acid residues, both surrounding pupylation and ubiquityla-

tion sites, are remarkably different in the sequence fragments. For

instance, the residues Glu, Gln, Ile, Met, Thr and Trp are more

significantly important in prokaryotes surrounding the pupylation

sites than in eukaryotes surrounding the ubiquitylation sites; the

positions of 212, 211, 7, 10 and 12 are more conservative in

prokaryotes surrounding the pupylation sites than in eukaryotes

surrounding the ubiquitylation sites.

Third, besides the evaluation at the sequence level, we

investigated whether there are differences in the extent of functions

for modified substrates between prokaryotes and eukaryotes, we

took 11547 of ubiquitylated substrates in eukaryotes from

PhosphoSite database [32] ((Apr 22, 2013)) and UniProtKB/

Swiss-Prot database [33] ((Apr 22, 2013)) and 182 of pupylated

substrates in prokaryotes from training set, and statistically

analyzed the differences of biological processes, molecular

functions and cellular components using Blast2GO tool [34].

The analysis of the ‘‘molecular function’’ annotation shows that

both ubiquitylated and pupylated proteins span several functional

categories (Figure 6A). These categories may be combined into

two broader classes: (1) proteins involved in binding (small

molecule, nucleotide, ion, ATP, etc.); (2) proteins involved in

catalysis (catalytic and transferase). Among these classes, we

observed significant enrichment of pupylated proteins annotated

as catalytic and oxidoreductase activity, small molecule and

nucleotide binding; in contrast, the ubiquitylated proteins are

found that significant lack of these classes (P,0.0001). The

‘‘biological process’’ annotation shows that pupylated proteins

compared with ubiquitylated proteins are enriched within such

GO processes (P,0.0001) as metabolic, oxidation-reduction and

small molecular biosynthetic (Figure 6B). Indeed, previous studies

have implicated pupylated proteins in metabolic processes [13,14].

Moreover, in contrast with the three-step biochemical reaction of

eukaryotic ubiquitylation with E1, E2 and E3 ligases [35], the

prokaryotic pupylation is much simpler, having only two steps

[29]. The results shed light on key differences of biological process

between the two pathways because of the differences of

enzymology. Within the ‘‘cellular component’’ category, ubiqui-

tylation proteins are prevalent within GO annotations such as cell

wall and external encapsulating structure (P,0.0001), and cell

periphery (P,0.05) (Figure 6C). In this regard, the results show

that molecular function and biological process are more varied

than cellular component.

All in all, despite using the proteasome as the end-point for

proteolysis, Pup differs from ubiquitin both environmentally and

Table 2. Comparison of the PupPred with existing methods.

Method Threshold Ac(%) Sn(%) Sp(%) MCC

GPS-PUP High 85.44 33.07 90.18 0.1991

Medium 82.51 44.88 85.91 0.2279

Low 78.85 63.78 80.21 0.2864

iPUP 85.24 70.87 86.35 0.3860

81.92 78.74 82.16 0.3777

78.25 85.04 77.73 0.3654

PupPred1 85.07 30.71 89.26 0.1574

83.15 42.52 86.29 0.2037

77.58 54.33 79.37 0.2063

PupPred 92.97 97.27 92.66 0.6629

88.29 98.18 87.57 0.5582

79.90 100.00 78.44 0.4449

The thresholds of High, Medium and Low for GPS-PUP represent that the score
are greater than 2.738, 2.452 and 2.111, respectively; the thresholds of High,
Medium and Low for iPUP represent that the score are greater than 0.1167,
0.1044 and 0.0963, respectively; the thresholds of High, Medium and Low for
PupPred represent that the SVM probability are greater than 0.8, 0.7 and 0.5.
doi:10.1371/journal.pone.0074002.t002

Prediction of Pupylation Sites
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functionally. These differences of modified substrate also explain

the fact that substrates are targeted to prokaryotic or eukaryotic

proteasomes by a fundamentally different mechanism. This

systematic analysis provides a better understanding of the

functional complexity and diversity of the pupylation regulation

in prokaryotic.

Discussion

Although much knowledge about pupylation has been accu-

mulated to date, there are still numerous unanswered questions

regarding specific aspects of this highly complex system. So far, no

consensus sequence that determines which specific lysine of the

substrate would become pupylation has been identified when non-

homologous proteins are considered. In addition, the broad range

of specificities of the PafA, together with the relative rigidity of

their structures, raises a question about the mechanisms of

substrate selection. It is difficult to assume that all substrates carry

a similar preexisting structure before they bind to the components

of the pupylation machinery.

Systematic analysis of the pupylated substrates along with

information on the exact sites is fundamental for identifying the

substrates, and can provide helpful insights into protein degrada-

tion. Here, we examine not only the sequence-derived hallmarks

but also structural and evolutionary hallmarks around pupylation

sites. First, our analysis of sequence preferences shows that the

upstream and adjacent amino acid residues in sequence may be

close to pupylation lysines in three-dimensional structure. Second,

pupylation protein sequences have high propensity for exposure

and flexibility. Third, there are high preferences of conservative in

pupylation sequences. Moreover, we systematically compare the

differences of pupylation and ubiquitylation from the environ-

mental, conservative hallmarks and statistical analyzing of their

respective gene ontology (GO) terms. The analysis suggests that

pupylation site differs from ubiquitylation site both environmen-

tally and functional characterization of substrates. These analyses

provide a global landscape of the complexity and diversity of

pupylation regulation in prokaryotes.

Another important result of this work is development of the

pupylation sites predictor. PupPred achieved a balanced accuracy

of ,75%, and area under the ROC curve was estimated to be

83.26%. Here, we also found that unbalanced datasets present a

number of different problems for machine learning methods.

When only a comparatively small number of examples are

available for one class, the machine learning algorithm will not

have sufficient information to learn a function to distinguish the

classes. Reporting of classification accuracy is also impacted by

unbalanced datasets [28]. Although PupPred provides a useful

alternative strategy for annotating pupylation events in prokaryotic

proteomes, it has some limitations, most of which are common for

almost all current prediction tools of post-translational modifica-

tion site. First of all, although computational predictions indicate

the possibilities that query sites can/cannot be pupylated, our

predicted results have not been correlated to different cell states or

tissue conditions. Second, the pupylation sites used in the training

data were mostly identified by mass spectrometry methods, which

may have inherent bias in terms of representing the global

pupylation events and hence affect the prediction performance. As

techniques like electron transfer dissociation and alternative

proteases are helping to resolve technology limitations, more

complete pupylation data sets will be released. We will adapt our

program and prediction models as the new data become available.

Third, a limitation of the data is that we have only labeled positive

data, but we do not have labeled negative data (i.e. we do not

know whether the non-pupylation sites are truly negatives), and

therefore, if some of them are predicted as pupylation sites, we do

not know whether they are false positives. For future work, we will

explore other methods, such as semisupervised learning, to address

these limitations.

To summarize, the development of PupPred represents an

attempt to identify candidate pupylation sites based on the local

sequence information. Although the number of experimentally

determined pupylation sites will be growing in the future and these

sites will be added to our training set to improve predictor

performance, the current accuracy of PupPred is useful for

predicting novel pupylation substrates as well as new sites in

already known substrates. With an established link between the

Pup-proteasome system and survival and persistence of Mtb [30],

such predictions, especially when confirmed by experiments,

would help to target the degradation of individual proteins more

precisely, and may ultimately lead to development of better drugs.

Figure 5. Relative importance of the different positions and amino acid residues. The importance of each residues or positions is
represented by a radial vector whose length is the log2 ratio of information gain score between surrounding pupylation and ubiquitylation sites. A,
the radar chart represents the log2 ratio of information gain score for amino acid residues between surrounding pupylation and ubiquitylation sites.
B, the radar chart represents the log2 ratio of information gain score for positions between surrounding pupylation and ubiquitylation sites.
doi:10.1371/journal.pone.0074002.g005

Prediction of Pupylation Sites

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e74002



Prediction of Pupylation Sites

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e74002



Materials and Methods

Data Collection and Preprocessing
To construct PupPred, 182 pupylated substrates, which were

previously compiled by Chun-Wei Tung [16], were downloaded

from PupDB database (Mar 16 2012, http://cwtung.kmu.edu.tw/

pupdb/). These 182 proteins contained 215 experimentally

validated pupylation sites, which are regarded as positive samples

(see Table S1). We used the same type of residue (lysine), excluding

known pupylation sites as the negative samples (i.e. non-pupylation

sites). Although not all these sites are necessarily true negatives, it is

reasonable to believe that a large majority of them are [36].

Simultaneously, to prevent overestimation of the predictive

performance, redundant sequences are removed from the training

data by using a window size of 2n+1 for pupylation sites. We took

the threshold of 30% sequence identity to filter the initial dataset.

Briefly, the filtering ensured that any fragment pair in all the

remaining positive and negative samples shared a sequence

identity less than 30%. The data in the non-redundant training

data include 190 pupylation sites and 1629 non-pupylation sites, as

shown in Table 3. To perform the cross-validation, all of the non-

redundant positive samples were selected to be in the positive

training set. The balanced negative training set was randomly

extracted from the non-redundant negative samples. However, the

negative training set, which was randomly selected, might be not

sufficiently response to the characteristics of the overall non-

redundant negative samples. Therefore, ten negative training sets

balanced with the positive sets were obtained by random

extraction from the non-redundant negative samples. Meanwhile,

to further evaluate the performance of PupPred and compare it

with existing methods, a testing set is adopted from Xue et al. [15],

which includes 127 pupylation sites and 1648 non-pupylation sites

from 109 pupylation proteins.

Feature Extraction and Coding
Based on sequence, structural and evolutionary information

surrounding pupylation sites and non-pupylation sites, this study

assesses eight types of features including binary encoding, amino

acid compositions, amino acid pair compositions, grouping amino

acid compositions, physicochemical properties, KNN feature,

secondary structure and PSSM profile. A brief summary of the

relevant features coding are:

N Binary encoding is generated by a 20-dimensional binary vector

for each residue in the window.

N Amino acid compositions are generated from the frequency of 20

types of amino acids in the window, the sum of which is 1.

N Amino acid pair compositions are represented by the composition

of k-spaced residue pairs [37] in the window.

N Grouping amino acid compositions are generated by clustering the

amino acid into five groups according to amino acid

properties.

N Physicochemical properties are encoded numerical values of

properties for the residues in the window. This involves

finding the significant physicochemical properties from

AAIndex database [38].

N KNN feature [39] is generated by extracting features from its

similar sequences in both positive and negative sets with a

KNN algorithm.

N Secondary structure features for helix/strand/coil on both sides of

the predicted residue, which annotates whether a helix or a

strand segment (or neither) is predicted to the left or right of

the residue in the center of the window.

N PSSM profile is generated by using PSI-BLAST [24] against the

whole Swiss-Prot non-redundant database with default pa-

rameters.

Details concerning the calculation of the features are given in

the Procedures S2. We note that these feature coding methods

were never before used to predict pupylation sites in prokaryotic

proteins.

Feature Selection
Some of these features may not be relevant to the prediction of

pupylation sites and they could be also redundant with each other.

Therefore, we performed a feature selection method known as F-

select [25] to remove the irrelevant and redundant features. The

selection method was performed using the 10-fold cross validation

for each of the ten training sets as follows. First, the F-score was

calculated for each of the ten training sets. The averaged, over the

ten training sets, F-score values were used to rank the features. We

used a wrapper-based feature selection with the forward best first

search. More specifically, for a given list of feature F= [fi where

i=1, 2, …, n] sorted in the descending order by their average F-

score and an empty list S that stores the selected features, we add

the top-ranked feature from F to S and run SVM using feature set

S in the cross validation regime. If the addition of the top ranked

feature improves the average accuracy value over the ten test folds,

then this feature is retained in S; otherwise it is removed. We

repeat that until F is empty. Finally, the SVM classifier is trained

to distinguish pupylation and non-pupylation sites on the selected

feature set. The F-score of ith feature is defined as,

Figure 6. GO annotations for the highly pupylated proteins from prokaryotes proteome (red bars) with occurrence of .5%
(Bonferroni corrected) as compared to the highly ubiquitylated proteins from eukaryotes proteome (green bars). Top 10 (whenever
available) GO Slim terms are shown. (A) Molecular function; (B) Biological process; (C) Cellular component. The proteins are arranged in order of the
decreasing fraction of proteins with a specific GO annotation present in the predicted highly pupylated dataset. P-values were calculated using the
Fisher’s exact test (two tails) and corrected for multiple testing. ***P,0.0001; **P,0.001; *P,0.05.
doi:10.1371/journal.pone.0074002.g006

Table 3. The statistics of training data and testing data for
pupylation and non-pupylation sites.

Training data* Testing data

Number of proteins 182 109

Number of pupylated lysines 215 (190) 127

Number of non-pupylated lysines 2504 (1629) 1648

*Numbers in parentheses represent unique sequence after removing the
redundant sequence.
doi:10.1371/journal.pone.0074002.t003
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x
(z)
k,i denotes the ith feature of the kth positive instance, and x

({)
k,i

denotes the ith feature of the kth negative instance.

SVM Learning
As a machine-learning method of binary classification, SVM

aims to find a rule that best maps each member of a training set to

the correct classification, which has been used for diverse

prediction/classification tasks related to protein bioinformatics.

Using the optimal feature coding as input, the SVM was trained to

distinguish pupylation and non-pupylation sites in this study. The

implemented SVM algorithm was LIBSVM (http://www.csie.ntu.

edu.tw/̃cjlin/libsvm) [40] and the applied kernel function was the

radial basis function (RBF). In order to maximize the performance

of the SVM algorithm, the penalty parameter C and kernel

parameter were tuned based on the training set using the grid

search strategy in LIBSVM.

Evaluation Criteria and Test Procedure
We use 10-fold cross validation to assess predictions on 10

training sets. The sequences in training set are randomly divided

into 10-folds, of which nine are used for training and the one for

testing; each of the 10-folds is used once as the test fold. In

addition, a testing set is used to assess the prediction models that

are built utilizing the training set with highest cross-validated

accuracy value. The binary predictions are assessed using four

measures: Sensitivity (Sn), Specificity (Sp), Accuracy (Ac) and

Matthew correlation coefficient (MCC).

Sn~
TP

TPzFN
ð2Þ

Sp~
TN

TNzFP
ð3Þ

Ac~
TPzTN

TPzTNzFPzFN
ð4Þ

MCC

~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ| TPzFNð Þ| TNzFNð Þ| TNzFPð Þ
p ð5Þ

where TP (true positives) and TN (true negatives) are the counts of

correctly predicted pupylation and non-pupylation sites, respec-

tively, FP (false positives) are non-pupylation sites that were

predicted as pupylation, and FN (false negatives) are pupylation

residues that were predicted as non-pupylation. The sensitivity,

specificity and accuracy evaluate quality of predictions for the

predicted native pupylation sites, native non-pupylation sites and

both native pupylation and non-pupylation sites, respectively. The

MCC evaluates the overall predictive quality. MCC values are

between 21 and 1 with higher values for better predictions. Next,

the true positive rate (i.e. Sn) and the false positive rate (i.e. 12Sp)

are calculated to draw the receiver operating characteristic (ROC)

curve and we use the area under the curve (AUC) to quantify the

predictive quality. Unlike the measures that assess the binary

predictions, which depend on the cutoff threshold to define

pupylation/non-pupylation sites, the AUC value considers all

possible thresholds and thus it provides a more comprehensive

evaluation.

Supporting Information

Figure S1 The Two Sequence Logo of the compositional
biases around pupylation sites compared to the non-
pupylation sites in prokaryotes. Only amino acid residues

significantly enriched and depleted (P,0.01; t-test) around

pupylation sites are shown.

(TIF)

Figure S2 Relative amino acid composition of the
prokaryotes and eukaryotes. The small box represents that

they have differences of enrichment.

(TIF)

Table S1 List of training data with associated annota-
tion.

(XLS)

Table S2 The prediction performance of prokaryotic
pupylated proteins from the PupDB database on the
UbiProber. UbiProber is a eukaryotic ubiquitylation prediction

tool that contains four training models including Homo sapiens, Mus

musculus, Saccharomayces cerevisiae, and Combined.

(DOC)

Table S3 Secondary structure (SS) and average posi-
tion-specific scoring matrix value (APV) of positions
around pupylation sites and non-pupylation sites are
compared via P-values on the paired Welch’s t-test.
There is statistical difference when P#0.05, or else there isn’t

significantly different.

(DOC)

Table S4 Structural analysis of known pupylated sites.
The red row represent that the exact structural information of

pupylated protein is known in the PDB.

(DOC)

Table S5 The predictive performance of model trained
with different features is compared via P-values of
Matthew correlation coefficient on the paired Welch’s
t-test. For the entry at row i, column j of the table, there is

statistical difference when P#0.05, or else there isn’t significantly

different. BE: Binary encoding; AAC: AA composition; AAPC: AA

pair composition; GAAC: Grouping AA composition; PP:

Physicochemical properties; KNN: k nearest neighbor; SS:

Secondary structure; PSSM: Position specific scoring matrix.

*The lower right corner of the number indicates the number of

selected best feature sets by the F-score method.

(DOC)

Table S6 Amino acid pair features of top 121 selected
by feature selection of F-score method.

(DOC)
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Table S7 Prediction performance of PupPred in 10
training sets. *The numbers represent the average value 6

standard deviation.

(DOC)

Procedures S1 The calculation process of information
gain values on different positions and different amino
acid residues.

(DOC)

Procedures S2 Detailed feature-based sequence repre-
sentation.

(DOC)
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