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Abstract

This study aimed to establish optimal conditions for a cell culture system that would allow the measurement of 18:3n-3
(ALA) bioconversion into n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), and to determine the overall pathway
kinetics. Using rat hepatocytes (FaO) as model cells, it was established that a maximum 20:5n-3 (EPA) production from
50 mM ALA initial concentration was achieved after 3 days of incubation. Next, it was established that a gradual increase in
the ALA concentration from 0 up to 125mM lead to a proportional increase in EPA, without concomitant increase in further
elongated or desaturated products, such as 22:5n-3 (DPA) and 22:6n-3 (DHA) in 3 day incubations. Of interest, ALA
bioconversion products were observed in the culture medium. Therefore, in vitro experiments disregarding the medium
fatty acid content are underestimating the metabolism efficiency. The novel application of the fatty acid mass balance
(FAMB) method on cell culture system (cells with medium) enabled quantifying the apparent enzymatic activities for the
biosynthesis of n-3 LC-PUFA. The activity of the key enzymes was estimated and showed that, under these conditions, 50%
(Km) of the theoretical maximal (Vmax = 3654 mmol.g21 of cell protein.hour21) Fads2 activity on ALA can be achieved with
81 mM initial ALA. Interestingly, the apparent activity of Elovl2 (20:5n-3 elongation) was the slowest amongst other
biosynthesis steps. Therefore, the possible improvement of Elovl2 activity is suggested toward a more efficient DHA
production from ALA. The present study proposed and described an ad hoc optimised cell culture conditions and
methodology towards achieving a reliable experimental platform, using FAMB, to assist in studying the efficiency of ALA
bioconversion into n-3 LC-PUFA in vitro. The FAMB proved to be a powerful and inexpensive method to generate a detailed
description of the kinetics of n-3 LC-PUFA biosynthesis enzymes activities in vitro.
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Introduction

Polyunsaturated fatty acids (PUFA) are essential dietary

nutrients for vertebrates [1,2] and required for optimal health

and normal development [3,4]. There has been considerable

progress in revealing the details of n-3 long-chain PUFA (LC-

PUFA) biosynthesis and homeostasis in vitro and in vivo, benefiting

from new analytical methods and approaches [5–7]. However,

quantifying the endogenous conversion of 18:3n-3 (ALA) into n-

3 long-chain PUFA (LC-PUFA) is not yet optimised and still

surrounded with confusion [8–11]. Species-specific, tissue-specific

and other intrinsic factors appear to affect this bioconversion as

physiological state and pathological conditions in vertebrates [12–

16].

Liver is known to be the major organ for lipid metabolism

[17,18], where hepatocytes contain the necessary enzymes for the

elongation and desaturation of ALA to 20:5n-3 (EPA) and 22:6n-3

(DHA) [19–21]. Therefore, hepatocytes have been used regularly

in PUFA metabolism studies [22–24]. Numerous reports have

inferred the kinetics of fatty acid (FA) metabolism by analysing FA

composition in tissues after controlled feeding experiments, while

other studies used in vivo, ex vivo or in vitro approaches with labelled

FA [5,6,11,25]. However, these methods can be expensive, not

available for every laboratory, and their outputs differ widely

depending on the analytical application and tissue(s) studied. A

whole-body in vivo FA mass-balance (FAMB) method has enabled

the estimation of the overall capacity of an organism to metabolise

FA [26,27]. It is envisaged that combining the advantage of results

reproducibility obtained from a cell line platform with the FAMB

approach could provide a detailed insight on the efficiency of ALA

bioconversion into EPA and DHA.

In the present study, mammalian hepatocytes were utilised in

order to establish an optimised experimental platform for

investigating ALA conversion into n-3 LC-PUFA in vitro. The

objectives were to determine the most effective duration and

concentration of ALA to be converted into n-3 LC-PUFA in

hepatocytes and to estimate the apparent enzymatic activities

through this pathway by implementing FAMB on the whole flask.
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The current study is a contribution towards establishing a novel

approach, a robust experimental platform and methodology for

future nutrition biochemistry research and advancing the current

knowledge on the efficiency of n-3 LC-PUFA metabolism in liver.

Materials and Methods

Cell Culture
Rat hepatoma cell line (FaO) was obtained from American

Type Culture Collection (Bethesda, MD, USA) and grown in

humidified atmosphere (95% air, 5% CO2) at 37uC in RPMI-1640

medium (GIBCOH, UK) supplemented with 10% (vol/vol) fetal

bovine serum (SAFC Biosciences, KS, USA). Phosphate buffered

saline, 1X (PBS) (Sigma-Aldrich, MO, USA) was used to wash the

cells and a 0.25% trypsin-EDTA (GIBCOH, UK) was used for

3 min at 37uC to detach the cells from the flask.

Experimental Design
Effect of time of incubation: cells were seeded in 48 small flasks

(25 cm2) at initial density of 4–56 106 cells under the conditions

mentioned above. After 24 h of seeding, 50 mM of ALA was

added to each flask. Samples of cells, the culture medium and the

cells with their culture medium were harvested at 0, 12, 24, 36, 48,

72, 96 and 120 h post incubation with ALA (Figure 1a). Each

sampling was conducted by aspirating the culture medium from

six flasks into six separate tubes, the cells were then dislodged,

harvested and pelleted at 300 g then washed twice. Three samples

of washed cells were kept for further analysis while three other

washed cell samples were mixed with their respective culture

medium. Therefore, for each time point, three samples were

collected from the cells alone, from the culture medium and from

the combined cells and their culture medium (Figure 1a). All

samples were kept at 220uC for further lipid extraction.

Effect of ALA substrate concentration: following the readings

from the time of incubation, an incubation time of 72 h was

selected. Cells were seeded at initial density of 4–56 106 cells in

90 small flasks (25 cm2) for 24 h, then incubated with increasing

concentrations of ALA (0, 25, 50, 75, 100 and 125 mM) (Figure 1b).

Samples of cells were harvested and washed at time zero (initial

harvest) and after 72 h (final harvest) to analyse FA composition

and the protein content in the cells (Figure 1b). The FA

composition was assessed on samples of cells, the culture medium

and the cells with their culture medium, which were collected,

processed and stored as mentioned above.

Protein Content
Cells samples incubated with different concentrations of ALA (0,

25, 50, 75, 100 and 125 mM) were harvested at 0 and 72 h

(Figure 1b), washed twice and their lysate content of total protein

was quantified by BCA protein assay kit (Pierce, IL, USA).

Lipid Extraction and FA Analysis
Samples of cells, the culture medium and the combination of

cells and their culture medium were thawed and their total lipid

were extracted in chloroform:methanol (2:1) solvent overnight

[28]. Following the lipid extraction, lipid classes from represen-

tative samples of the cells, medium and combination of the cells

and the medium (n= 3, N=9) were analysed from flasks

supplemented with 50 mM of ALA for 3 days by thin layer

chromatography (TLC) plates as described previously [29] using

TLC 18-5 (Nu-Check Prep, Inc., MN, USA) as an external

standard. For all samples, FA from total extracted lipid were

esterified into methyl esters by acid-catalyzed methylation [30,31].

Known concentrations of three internal standards (Sigma-Aldrich

Inc., MO, USA) were included in each sample to monitor the

accuracy of the lipid extraction, methylation and quantification as

the following: 19:0 was added before extracting the total lipid, 23:0

was added before FA methylation, and 17:0 methyl ester was

added to each sample before injecting into the GC. FA methyl

esters were isolated and identified using an Agilent 7890A GC

(Agilent Technologies, USA) equipped with a DB-23 capillary

column (60 m, 0.25 mm internal diameter, 0.15mm film thickness;

Agilent) and a flame ionisation detector (FID). Samples (2mL each)

were injected in a split mode (10:1 ratio) by an Agilent 7693

autosampler injector and carried by Helium gas. After injection,

the oven temperature was raised from 50uC at 8uC/min to 180uC,
increased by 2uC.min21 to 220uC then increased by 25uC.min21

to 240uC and held for 4.95 min. Acquired peaks were quantified

with Agilent Technologies ChemStation software, corrected by the

theoretical relative FID response factors and, after confirmation of

reliable lipid extraction and FA methylation implementation by

comparison of the three internal standards used, individual FA

were eventually quantified relative to the internal standard (23:0).

FA Metabolism Estimation
The estimation of the apparent FA metabolism (FA de novo

production, b-oxidation, elongation and desaturation) was calcu-

lated by implementing the FAMB method as described earlier

[7,26,32], with the following modifications: 1) the cell culture flask

including the cells and their culture medium was considered as an

independent entity (equivalent of the individual animal whole

body in the original method), and individual FA quantities in

whole flask (cells plus culture medium) were assessed; 2) three flasks

for each concentration treatment were seeded with similar initial

cell density and incubated for 24 h under the conditions

mentioned above, then ALA was supplemented (0, 25, 50, 75,

100 and 125 mM) and the cells combined with their culture

medium were immediately harvested and frozen until subsequent

total FA analysis (initial flask FA content) (Figure 1b); 3) three

flasks for each concentration treatment were seeded with similar

initial cell density and different ALA concentration and cultured

under the conditions mentioned above for 72 h, then harvested

and kept frozen until subsequent FA analysis (final flask FA

content) (Figure 1b); 4) six additional flasks for each concentration

treatment where prepared and harvested as described at point 2

(three flasks) and point 3 (three flasks), and then used for protein

quantification from the cells (Figure 1b); 5) the appearance/

disappearance of individual FA was computed by difference

between final flask FA content and the initial flask FA content.

Data relative to individual FA appearance/disappearance were

then converted from mg of FA per flask during the 72 h, into mmol

g21 of cellular protein hour21. The subsequent backward

computations along the known FA metabolic pathways were then

implemented as described in the original method [26]. The

availability of specific FA was computed in mmol.g21 of cell

protein by summing the initial concentration of the FA and the de

novo production of it in the flask during incubation. The recorded

apparent in vitro enzymatic activities were eventually reported as

mmol.g21 of cell protein.hour21.

Statistical Analysis
Data are presented as mean 6 SE. The percentage data were

arcsine transformed into angular degrees prior to analysis. One-

way ANOVA tested the differences between groups and, when

significant, was followed by Tukey’s post hoc test. All data were

also analysed by linear regression relative to ALA concentration or

the time after ALA supplementation and, when appropriate,

further nonlinear regression trends were computed with Michaelis-

ALA Bioconversion into n-3 LC-PUFA
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Figure 1. Experimental design for a: the effect of time of incubation, and b: effect of ALA substrate concentration. Experimental
design for the flasks used in FAMB computation is also explained in the subfigure b.
doi:10.1371/journal.pone.0073719.g001
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Menten enzyme kinetics model, followed by D’Agostino & Pearson

omnibus K2 test for normality of residual. Analyses were

performed with SPSS ver. 20 (IBM, USA) and Prism ver. 5

(GraphPad Software Inc., USA).

Results

Effect of Time of Incubation
Cells content of ALA increased and peaked at day 1, thereafter

the concentration returned to almost zero by day 5 (Figure 2a,

Table S1). The EPA proportion increased rapidly till day 3 and

then decreased during the following two days. DPA (22:5n-3)

proportion rose slowly but steadily and by day 5 was present

almost at the same level as EPA. EPA and DPA were the main n-

3 FA from days 2 to 5 of the incubation. The proportion of DHA

was remarkably lower than that of EPA and DPA, slightly

increasing from day 0 to day 3, and then plateaued.

The culture medium had decreasing content of ALA and

increasing EPA with the time (Table S2). A small, but significant

proportion of 20:3n-3 (ETrA) appeared in the medium at day 2.

The ALA content in the whole flask (combined cells and the

culture medium), decreased significantly with the time and

corresponded with an increase in the EPA content, but not with

DPA or DHA (Table S3).

Effect of ALA Substrate Concentration
Increasing the ALA concentration, at 25 mM increments from

0 up to 125 mM, in cell incubated over a 3 days period,

corresponded with a significant proportional increase in EPA

content in the cells upto approximately 12% of total FA (Figure 2b,

Table S4). The DPA, ETA (20:4n-3) and DHA proportion

increased significantly with ALA concentration, up to 3 and 1.3%

of total FA, respectively. SDA (18:4n-3) was always detected at

extremely low levels for all ALA concentrations tested.

Similar changes were observed in the culture medium FA

composition (Table S5), while the FA composition of the whole

flask had similar patterns of changes for the n-3 LC-PUFA (Table

S6). There was significantly greater concentration of EPA in the

cells while more DHA was observed in the medium at different

levels of ALA supplementation (presented for cells supplemented

with 100mMALA in Figure 3). Other products of ALA conversion,

such as ETrA, ETA, EPA and DPA were also present in the

culture medium. The proportion of n-3 PUFA out of the total FA

in the cells was comparable to that in the whole flask (Tables S4

and 6). The proportion of n-3 PUFA out of the total FA in the

culture medium was between 0.8 and 0.9 compared with the

whole flask (Tables S5 and S6).

Lipid Class
Most of the observed FA in the cells, their culture medium and

in the whole flask were in the phospholipid fraction (80–85% of

total lipid) and in the neutral lipid fraction as non-esterified FA

(10–15% of total lipid). The main ALA bioconversion products in

the phospholipid for the cells and the medium were EPA and DPA

(9–13% of total phospholipid FA), with DHA and ETrA being

next highest in proportion (Table 1). In the non-esterified FA

fraction, the main ALA bioconversion products were ETrA and

22:3n-3 (DTrA) (57–59% of total non-esterified FA), while EPA,

DPA and DHA accounted for 22% of total non-esterified FA

(Table 1).

FA Metabolism Estimation
Computing the apparent activity of the key enzymes involved in

LC-PUFA biosynthesis showed a significant increase in FA D-6

desaturase (Fads2) on ALA in response to increasing ALA

concentration (Table S7). The apparent Fads2 activity on ALA

for the production of SDA was correlated with the availability of

ALA (Figure 4a), and it was possible to adequately fit it to a

Michaelis-Menten [Y=Vmax X4(Km+X)], nonlinear regression:
Y=3654 X4(310+X), with R2 = 0.93 and (D’Agostino &

Pearson omnibus K2 normality of residual P= 0.45).

Accordingly, the corresponding ALA concentration required to

achieve the half-maximum theoretical Fads2 velocity

(Vmax = 3654) during 3 days in FaO cells is 81 mM (Km=310),

and 70%, 80% and 90% of maximum theoretical Fads2 velocity

can be achieved by an ALA concentration of 0.189, 0.323 and

0.728 mM, respectively.

The apparent activities of the long-chain FA elongase-5 (Elovl5)

acting on SDA for the production of ETA was directly correlated

with the availability of the substrate in a significantly positive linear

trend (R2 = 0.93; slope deviation from zero P,0.0001) (Figure 4b).

The apparent activity of FA D-5 desaturase (Fads1) on ETA for the

production of EPA was correlated with the availability of the

substrate in a non-linear Michaelis-Menten regression

(Vmax = 6052, Km=374.6; R2 = 0.89 and normality of residual

P= 0.26) (Figure 4c). The apparent activity of Elovl5 and FA

elongase-2 (Elovl2) on EPA for the production of DPA was also

correlated with the availability of the substrate in a non-linear

Michaelis-Menten regression. However, a remarkably lower level

of apparent activity (Table S7) as well as low substrate availability

was needed to reach a half-maximum enzyme velocity compared

with the other enzymes (Vmax = 357.3, Km=27.5; R2 = 0.46 and

normality of residual P= 0.11) (Figure 4d). The combined

apparent activity of Elovl2, Fads2 and b-oxidation (for FA chain

shortening) on DPA for the final production of DHA was not

correlated with the substrate availability, which varied only from

25 to 40 mmol.g-1 of cell protein (Figure 4e). In a summary, the

apparent activities of the key enzymes involved in n-3 LC-PUFA

biosynthesis on their substrates are decreasing in the following

order: Elovl5.Fads1.Fads2.Elovl2.

Discussion

In the present study, FaO cells with 50 mM of ALA added

recorded a peak of EPA at 3 days, and this was mainly

incorporated into the phospholipid fraction of the cells. Accord-

ingly, it is known that compared with monounsaturated FA, PUFA

are preferentially esterified by lysophpspholipids acyltransferases in

the liver in vivo [33,34] and in vitro [35]. Amongst n-3 LC-PUFA,

EPA was previously shown to be highly incorporated in HepG2

cell phospholipid compared with DPA and DHA [23], but no

further evidence on the incorporation of de novo n-3 LC-PUFA into

other lipid classes was provided.

A novel observation of this study was that significant amounts of

ALA bioconverted products were found to be exported by the cells

into the culture medium. It is known that one of the main roles of

hepatocytes is to export FA into the bloodstream [36,37], thus this

observation should be expected, despite being rarely considered in

previous studies, with only a limited number of exceptions [38,39].

This can clearly influence the estimation of the dynamics of the

bioconversion pathways, as it can be speculated that studies not

considering FA composition of the medium, could have actually

been underestimating the overall activities of biosynthesis

enzymes. Additionally, discarding, or not considering, the medium

FA content, can affect the interpretation of results and the

understanding of the dynamics of the bioconversion pathways

itself, as n-3 LC-PUFA in the medium are reported to have direct

feedback on ALA metabolism [11,22,40]. Therefore, considering

ALA Bioconversion into n-3 LC-PUFA
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the entire flask FA composition (cells with their culture medium),

seems to be necessary for the accurate assessment of the

bioconversion dynamics in vitro.

The efficiency of ALA bioconversion to EPA and DHA in

hepatocytes has been commonly attributed to enzyme affinity,

substrate availability and transcriptional factors in experiments

assessing FA metabolism in the cells alone [41,42], but the

presence of bioconversion products is also known to have direct

effects. In fact, competition between ALA and other n-3 LC-

PUFA has been suggested to limit DHA accumulation in

hepatocyte membrane in vitro [23,41], and increased availability

of n-3 LC-PUFA in medium is known to down regulate the

transcription rate of enzymes involved in n-3 LC-PUFA biosyn-

thesis [11,22,40]. Therefore, it is suggested that EPA appearing

from ALA could be responsible for slowing down the subsequent

steps of n-3 LC-PUFA production, with the above mentioned

feedback mechanisms. Additionally, compared with other FA,

EPA is a robust activator of PPARa [43], a major regulator of

Figure 2. 18:3n-3 (ALA) bioconversion in FaO hepatocytes at: a; different time-points, b; at 3 days with different concentrations
added into the culture medium (0, 25, 50, 75, 100 and 125 mM). SDA: 18:4n-3, ETA: 20:4n-3, EPA: 20:5n-3, DPA: 22:5n-3, DHA: 22:6n-3.
doi:10.1371/journal.pone.0073719.g002
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genes involved in mitochondrial, peroxisomal and microsomal

oxidation [44] which accelerates the rates of oxidation of n-3 LC-

PUFA.

Other mammalian hepatocytes have been reported to accumu-

late high levels of EPA and DPA in cells phospholipid within 1–

2 days from supplemented ALA [23,38,42], and cell lines from

other tissues, such as human colon carcinoma (CaCo-2), had a

significant increase in Fads2 enzyme activity at the end of a 3-day

experiment [40]. In the present study, the maximal EPA

production in FaO cells added with 50 mM of ALA was recorded

at 72 h, and therefore 3-days incubation duration was selected for

studying the optimal ALA concentration. However, it should be

noted that in the following two days, FA composition of cells was

not static, and actually, during days 4 and 5 a reduction of EPA

and an increase in DPA and DHA levels were apparent, clearly

suggesting that a longer time period would have been required for

allowing the complete bioconversion of ALA up to DHA. In

agreement with this observation, studies tracing ingested labelled-

ALA found that DHA take longer time to accumulate in the

plasma compared with EPA and DPA [45,46].

The following dose-response experiment concluded that, as

expected, the bioconversion efficiency is also related to the

concentration of supplemented ALA. Likewise, it was reported

that within a range of 1.8–72 mM ALA supplemented to HepG2

hepatocytes, the accumulation of the phospholipid EPA and DPA,

but not DHA, was linearly dependent on the concentration of

ALA in the culture medium [23]. Studies on weanling rats have

demonstrated a dose-related increase in plasma and liver EPA,

DPA and DHA when dietary ALA was 1–3% of dietary energy

[10,47], while a maximal DHA in adult liver was attained with

lower levels of dietary ALA (0.26% of dietary energy) [48]. The

ALA supplementation used in the current study was in line with

that reported in many in vivo studies (0–125 mM initial ALA was

equal to 0.1–25% of total FA), but also covered a wider range

compared with hepatocytes based in vitro studies tested previously.

A dose-dependent increase in the level of ALA in rat liver was

reported to be accompanied by an increase in the level of EPA and

DPA [49]. However, increasing dietary ALA did not increase the

accumulation of DHA in rat liver [47]. Accordingly, other in vivo

studies have demonstrated the effect of ALA on increasing EPA

accumulation but limiting that of DHA in cell membranes or

plasma lipids [13,50]. The highest ALA concentration tested in the

present study (125 mM), was responsible for about 60% of the

maximal theoretical activity of Fads2. ALA concentration required

for greater Fads2 activity is therefore beyond the currently tested

concentrations, but how will this higher concentration affect the

possible accumulation of n-3 LC-PUFA still needs to be investi-

gated thoroughly. Within this context, a useful outcome of the

current study is that it was shown that if an experimental design is

aiming at testing D-6 desaturation of ALA under high activity,

ALA concentrations of 0.189, 0.323 or 0.728 mM, are needed to

achieve 70%, 80% or 90% of its maximum theoretical velocity,

respectively.

In the present study, it was clearly shown that, amongst all the

bioconversion steps, the fastest and more efficient one was the

elongation (Elovl5) of SDA to ETA, followed by the D-5
desaturation (Fads1) of ETA to EPA, then the D-6 desaturation

(Fads2) of ALA to SDA, and eventually the elongation

(Elovl2+Elovl5) of EPA to DPA was the slowest recorded.

Therefore, a key outcome of the present study was that it was

clearly shown that rather than the existence of a single rate-

limiting step affecting the overall pathway, a combination of

different level of efficiency in each enzymatic step is responsible for

the production of n-3 LC-PUFA biosynthesis. It should be noted

that the amount of product generated by an enzyme is not only

relative to the activity (velocity) of the enzyme itself, but also the

Figure 3. The concentration (mg flask21) of different fatty acid and fatty acid groups in the cells or the culture medium of FaO after
3 days of supplementation with 100mM of ALA. Different letters above bars from the same fatty acid indicate significant (P,0.05) differences.
doi:10.1371/journal.pone.0073719.g003
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time available for this reaction. Accordingly, the elongation of

EPA was the slowest recorded step in n-3 LC-PUFA biosynthesis,

and because of this limited DPA production, it was not possible to

record any specific trend in its further bioconversion towards the

final production of DHA. In agreement with this observation, in

the first experiment, where cells were incubated for a longer period

of time up to 5 days, an increase of DPA was apparent at day 4

and 5, confirming that because of the slow enzyme activity, longer

time is required to observe higher level of DPA production, and it

is possible that a similar trend would have been followed for DHA

production. On the basis of this observation, two important

observations should be reported: i) cell culture based studies

aiming at assessing DHA production should consider longer

incubation time, and ii) further investigations are warranted

towards a better understanding of Elovl2, as the possible slowest

step in the production of DHA from ALA in hepatocytes. It has

been suggested that rat Elovl2, expressed in yeast, controls DHA

synthesis from EPA or DPA [51]. Although the regulation of the

Elovl2 gene remains to be elucidated [52], some evidence suggests

that, compared with that of other FA elongases such as Elovl5, the

regulation of Elovl2 expression in rat liver is not influenced by the

same environmental or dietary factors [51,53]. Additionally, and

in agreement with the results of the current study, Elovl2 has been

reported to convert its substrates at lower rates, compared with

Elovl5 in fish [54], chicken [55] and humans [56,57].

The application of FAMB method in lipid metabolism research

has increased in the last few decades as a practical and accurate

alternative to costlier analysis [58–60]. However, specific variabil-

ity of an individual sample would need to be taken into

consideration, if the method was to be applied to different animals

[26,61]. In culturing established cell lines, maintaining defined

equipment and materials of the same high quality guarantees

Table 1. FA changes in the phospholipid and the non-esterified fatty acid classes, fractionated by TLC, in FaO cells, culture
medium and the cells with their culture medium after 3 days of incubation.

FA % Phospholipid Non-esterified fatty acid

Cell Medium Cells+medium Cell Medium Cells+medium

12:0 0.060.0 0.060.0 0.060.0 0.060.0 0.060.0 0.060.0

14:0 0.360.1 0.360.2 0.460.1 0.260.0 0.360.1 0.160.1

16:0 16.761.5a 19.760.7a 23.763.5a 6.760.2b 5.961.5b 5.962.6b

18:0 20.761.4a 21.961.1a 0.460.1b 7.060.3b 7.960.4b 7.460.8a

20:0 0.560.0 0.760.1a 0.860.1a 7.060.2 0.060.0b 0.060.0b

22:0 0.860.0a 1.860.0a 1.960.1a 0.060.0b 0.060.0b 0.060.0b

14:1n-5 0.160.1 0.260.1 0.060.0 0.460.2 0.160.1 0.060.0

16:1n-7 6.360.1a 3.560.2a 5.761.2a 0.560.3b 0.160.1b 0.360.1b

18:1n-7 5.360.1a 5.360.1a 6.860.4a 0.560.1 0.160.1b 1.960.1

18:1n-9 24.861.7a 22.061.3a 28.860.2a 3.460.2a 2.260.4a 2.760.4a

20:1n-9 0.760.2a 0.760.1a 0.860.1a 0.260.1b 0.260.0b 0.060.0b

20:1n-11 0.160.1 0.060.0 0.060.0 0.360.2 0.160.0 0.060.0

22:1n-9 0.160.0 0.060.0 0.360.0 0.060.7 0.060.1 0.360.1

22:1n-11 0.060.0 0.060.0 0.160.1 0.160.1 0.060.0 0.060.0

24:1n-9 1.060.1 2.560.3a 2.760.1a 0.060.1 0.160.1 0.160.1b

18:3n-3 1.060.2a 0.760.1 1.160.4 0.260.1b 0.560.1 0.160.1

18:4n-3 0.160.1 0.060.0 0.060.0 0.260.1 0.060.0 0.060.0

20:3n-3 1.160.1b 0.660.2b 0.860.0b 34.862.3a 35.763.1a 36.560.1a

20:4n-3 0.460.1 0.360.1 0.560.1 0.160.1 0.260.1 0.360.1

20:5n-3 9.460.2a 5.160.9 8.360.3a 6.460.8b 6.860.2 7.160.1b

22:3n-3 0.060.0b 0.060.0b 0.060.0b 23.462.4a 24.661.9a 23.461.2a

22:5n-3 3.560.3b 3.960.4b 4.860.1b 8.960.8a 9.060.4a 9.560.3a

22:6n-3 1.760.4b 3.060.3b 3.360.1b 6.860.3a 7.060.2a 7.460.7a

18:2n-6 1.560.4a 1.360.5a 1.960.1a 0.460.1b 0.160.1b 0.760.1b

18:3n-6 0.260.1 0.360.2 0.460.1 0.460.1 0.460.2 0.360.1

20:2n-6 0.660.2a 0.760.2a 0.860.0a 0.060.0b 0.060.0b 0.160.1b

20:3n-6 0.560.2a 1.660.3a 1.660.0a 0.060.0b 0.160.1b 0.560.2b

20:4n-6 3.060.7a 3.660.7a 4.360.2a 0.460.0b 0.060.1b 1.060.1b

22:2n-6 0.160.1 0.160.0 0.060.0 0.060.0 0.060.0 0.260.1

22:4n-6 0.160.0 0.760.1a 0.660.1a 0.260.1 0.060.0b 0.160.1b

A 50 mM ALA was supplemented initially to the medium.
Values from the same source (cells, medium or the cells+medium) in the same row with different letters are significantly different (P,0.05; ANOVA and Tukey’s post hoc
test).
doi:10.1371/journal.pone.0073719.t001
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reproducible and reliable results [62,63]. Therefore, fewer

variations are expected to influence FAMB computations when

applied on cell culture flasks compared with living animals. The

current study has demonstrated FAMB method as a powerful,

informative and inexpensive tool for FA metabolism research

in vitro and to generate detailed description for the kinetics of n-

3 LC-PUFA biosynthesis enzymes activities.
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of cell protein) in FaO hepatocytes deduced by the fatty acid mass balance. a: Michaelis-Menten nonlinear regression for Fads2 on 18:3n-3:
Y=3654 X4(310+X), R2 = 0.93, normality of residual = 0.45; b: linear regression for Elovl5 on 18:4n-3: Y= 3.479+14.19 X, R2 = 0.93, P of deviation from
zero ,0.05; c: Michaelis-Menten nonlinear regression for Fads1 on 20:4n-3: Y= 6052 X4(374.6+X), R2 = 0.89, normality of residuals P= 0.26; d:
Michaelis-Menten nonlinear regression for Elovl2 and Elovl5 on 20:5n-3: Y= 357.3 X4(27.5+X), R2 = 0.46, normality of residuals P= 0.11; and e: Elovl2,
Fads2 and b-oxidation on 22:5n-3 which is not correlated with the substrate availability. (Note: the Y axis of the e subfigure is different from all the
others).
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