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Abstract

In head and neck squamous cell carcinoma (HNSCC), mutations of p53 usually coexist with aberrant activation of NF-kappaB
(NF-kB), other transcription factors and microRNAs, which promote tumor pathogenesis. However, how these factors and
microRNAs interact to globally modulate gene expression and mediate oncogenesis is not fully understood. We devised a
novel bioinformatics method to uncover interactive relationships between transcription factors or microRNAs and genes.
This approach is based on matrix decomposition modeling under the joint constraints of sparseness and regulator-target
connectivity, and able to integrate gene expression profiling and binding data of regulators. We employed this method to
infer the gene regulatory networks in HNSCC. We found that the majority of the predicted p53 targets overlapped with
those for NF-kB, suggesting that the two transcription factors exert a concerted modulation on regulatory programs in
tumor cells. We further investigated the interrelationships of p53 and NF-kB with five additional transcription factors, AP1,
CEBPB, EGR1, SP1 and STAT3, and microRNAs mir21 and mir34ac. The resulting gene networks indicate that interactions
among NF-kB, p53, and the two miRNAs likely regulate progression of HNSCC. We experimentally validated our findings by
determining expression of the predicted NF-kB and p53 target genes by siRNA knock down, and by examining p53 binding
activity on promoters of predicted target genes in the tumor cell lines. Our results elucidating the cross-regulations among
NF-kB, p53, and microRNAs provide insights into the complex regulatory mechanisms underlying HNSCC, and shows an
efficient approach to inferring gene regulatory programs in biological complex systems.
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Introduction

Transcriptional regulation of genes is governed by a combina-

torial operation of multiple transcription factors (TFs) and

microRNAs (miRNAs) at transcriptional and post-transcriptional

levels. These factors can organize regulatory modules and thereby

control expression of a set of genes in networks that carry out a

variety of functional processes. Therefore, identification of

regulatory modules and gene networks is critical for understanding

molecular mechanisms of transcriptional regulation in complex

biological systems. Various mathematical algorithms or computa-

tional methods have been developed for integrative analysis of

microarray gene expression and TF binding data to predict target

genes of TFs, such as Bayesian hierarchical network [1], Bayesian

multivariate modeling [2], matrix decomposition [3] and regres-

sion model [4]. Based on predicted target genes of multiple TFs,

we can unravel transcriptional regulatory modules and reconstruct

gene networks. Among these methods, matrix decomposition was

demonstrated to dissect regulatory relationships between TFs and

genes in biologically complex systems. Statistically, this is a typical

sparse matrix decomposition problem [5]. Several matrix decom-

position methods, such as probabilistic sparse matrix factorization

(PSMF), ModulePro and non-negative matrix factorization (NMF)

have been implemented for regulatory network reconstruction

based on the constraints of sparseness, non-negativeness, or partial

network connectivity information [3,6,7]. Although these methods

show improved results in uncovering biologically meaningful

regulatory programs than the decomposition methods without

these constraints, they are typically utilized separately, and no

integrative framework has been utilized to bring the sparseness

and pre-knowledge of regulator-target interactions together during

matrix decomposition [3,6,8]. Here, we devised an integrative

methodology, based on regulatory component analysis modeling,

for inferring gene regulatory networks and uncovering transcrip-

tional modules. The model-based method performs matrix

decomposition under the joint constraints of sparseness and

information of regulator-target connectivity, and allows an

integrative analysis of gene expression profile and regulator

binding data. In this method, the activity profiles of TFs or

miRNAs are first constructed from the expression profiles of their
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target genes. The regulatory components are then derived by

projecting gene expression data onto a sparse space of the

regulator activity profiles, which should reveal quantitative

relationships for regulatory network reconstruction and transcrip-

tional module discovery. The clustering of TFs or miRNAs based

on the regulatory components provides further clues for combi-

national roles of these regulators important for condition-specific

gene regulation.

Here we utilized this newly developed method to analyze the

complex regulatory networks of HNSCC. HNSCC represents

95% of head and neck cancers and is the sixth most common

malignant tumor worldwide [9]. The development of HNSCC is

associated with aberrant gene expression, which leads to diverse

phenotypic alterations and could be regulated by multiple TFs or

miRNAs. Among them, p53 and NF-kB play critical roles to

modulate cellular proliferation, apoptosis, proinflammation, and

therapeutic resistance [10,11,12]. As a tumor suppressor, p53 is

implicated as a master regulator of apoptosis, cell cycle and DNA

repair [13]. Mutations of p53 gene TP53 have been observed in

more than 40–50% of human solid tumors, including HNSCC

[14]. Our previous promoter analysis has revealed a reciprocal

relationship between p53 and NF-kB with two distinct over-

expressed gene clusters in HNSCC [15]. In a systems biology

study, we have also identified 748 potential NF-kB target genes

that are functionally associated with HNSCC by using an

integrative model COGRIM [16]. NF-kB and related signaling

pathways have served as potential biomarkers and therapeutic

targets for HNSCC and other human cancers [17,18,19].

Together with investigations from our and other laboratories, we

have shown that p53 and NF-kB are critical regulatory

determinants of multiple gene expression programs, interacting

pathways, and malignant phenotypes of HNSCC [15,20,21]. In

addition, other cancer-related TFs, such as AP1, STAT3, EGR1,

CEBPB and SP1, have been experimentally and individually

studied in HNSCC and other cancers [15,22,23,24,25,26], and

implicated in complex cross-talk with p53 or NF-kB pathways

[22,26,27,28,29,30]. However, the global modulation of gene

expression by these TFs that control development and progression

of HNSCC is not adequately understood. Moreover, alterations of

miRNAs, such as oncogenic mir21, are well-documented for

targeting p53 and NF-kB pathways [31,32]. Tumor suppressor

mir34 family (consisting of a, b and c) are direct transcriptional

targets of p53 [33]. It remains unclear whether the altered

miRNAs play as co-regulators to interact with transcriptional

modulation by TFs, especially NF-kB and p53 in HNSCC.

In this study, we applied the newly developed method to identify

transcriptional and post-transcriptional regulatory programs by

combining TF or miRNA binding data and differentially

expressed gene profiling in HNSCC cells. Our studies demonstrate

that two master TFs NF-kB and p53 have a substantial impact on

expression profiles of gene programs, including previously known

NF-kB or p53 targets, or newly predicted ones. In addition, we

defined two broader transcriptional regulatory programs of seven

key TFs, including NF-kB, p53, AP1, CEBPB, EGR1, SP1 and

STAT3. Furthermore, we reverse engineered regulatory networks

of NF-kB, p53, mir21 and mir34ac in HNSCC cell lines and

tissues, respectively. Our findings indicate that NF-kB, p53 and

the miRNAs form concerted regulatory modules in the progression

and metastatic program of HNSCC. We validated the target genes

of NF-kB and p53 identified by the model-based method by

silencing of the two TFs and testing p53 binding activity on

promoters. Our results not only unveil predominant roles of NF-

kB and p53 transcriptional regulation in affecting the gene

expression of different HNSCC phenotypes, but also provide a

framework for future experimental analysis of miRNA regulatory

functions.

Materials and Methods

Microarray datasets
The microarray data were from ten HNSCC (UM-SCC:

University of Michigan series of HNSCC) cell lines and four

human normal keratinocytes [15,34]. Tumor lines were divided to

two subgroups, the mutant (mt) p53 and wild type (wt) p53-

deficient cells that contain intact wtp53 genotype but expression is

very low [15,34]. We identified differentially expressed genes

among the human normal keratinocytes and the HNSCC

subgroups that satisfied $2.0 fold change of gene expression of

either subgroup with the mt p53 or the wt p53-deficient status

when compared with gene expression in the normal keratinocytes.

In addition, two gene expression microarray datasets of HNSCC

metastatic and non-metastatic tissues (accession numbers

GSE2280 and GSE2379) were retrieved from the Gene Expres-

sion Omnibus (GEO) database at the National Center for

Biotechnology Information (NCBI).

TF and miRNA binding data
Binding data of nine TFs (RelA, cRel, NFkB1, p53, AP1,

CEBPB, EGR1, SP1 and STAT3) and two miRNAs (mir21 and

mir34ac) were extracted from previous publications or predicted

conserved binding sites (see Text S1 for the detailed information).

The model-based method and application in HNSCC
We devised a novel method for identifying target genes of

regulators and inferring gene regulatory networks. The method is

based on regulatory component analysis modeling, performing

matrix decomposition under the joint constraints of sparseness and

partial information of regulator-target connectivity. It allows an

integrated analysis of gene expression profiles with binding data of

a set of regulators (such as TFs, miRNAs, etc.).

The newly developed method is a network structure-driven

model for inferring gene regulatory networks and uncovering

regulatory modules. Given a microarray data matrix X[<N|M

with the sample size M and the numbers of genes N, our aim is to

find Y[<N|L and Z[<L|M such that the square error (Euclidean

distance) function:

E(Y ,Z)~ X{YZk k ð1Þ

is minimized under a desired degree of sparseness on the mixing

matrix Y. We defined a sparseness measure S(yl) based on the

relationship between the L1 norm and the L2 norm [35]:

S(yl)~

ffiffiffiffiffi
N
p

{
PN

i~1 Dyil D
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~1 y2
il

q
ffiffiffiffiffi
N
p

{1
ð2Þ

where yl~½y1ly2l � � � yNl �T is the lth column of Y, and the

superscript ‘‘T’’ means ‘‘transpose’’. The L1 norm Dyl D1 and the L2

norm Dyl D2 were defined as Dyl D1~
XN

i~1
Dyil D and

Dyl D2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1
y2

il

r
, respectively. The sparseness evaluates as one

if, and only if yl contains a single non-zero element, and takes a

value of zero if and only if all elements are equal.

The rows of Z represent the expression profiles of the L latent

variables across samples, and can also be viewed as the activity
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profiles of the L regulators. Thus, we can cluster genes based on

corresponding non-zero coefficients of Y, which represent gene

regulatory programs, i.e. regulatory modules that are co-regulated

by the L regulators. In the new method, we developed an iterative

learning algorithm that is capable of combining constraints of

sparseness and limited information of regulator-target binding.

The sparseness was used as a statistical parameter for modeling the

regulatory components of TFs or miRNAs and their targets. The

learning procedure was based on a projected gradient descent

approach with sparseness constraints [35].

To run the model, two inputs are required: 1) microarray data

matrix X and 2) regulator binding data matrix C. C can be

constructed from Chromatin Immunoprecipitation (ChIP)-based

(such as ChIP-seq and ChIP-chip) data, known regulator-target

binding, or the promoter sequence analysis of conserved binding

sites, etc. In general, there are five steps for the procedures:

Step 1: Initial Y to a random matrix.

Step 2: Construct Z. For inferring gene regulatory network,

estimate Z from X and C based on the median of

expression values.

Step 3: Project each column of Y to have unchanged L2 norm,

and L1 norm set to achieve a desired sparseness.

Step 4: Update Y through iteration.

a) Set Y : ~Y{m(YZ{X)ZT, m is the given step size.

b) Project each column of Y to have unchanged L2

norm, and L1 norm set to achieve a desired

sparseness.

c) If X{YZk k2
we, continue iteration; else stop.e is

the given convergence criterion.

Step 5: Reconstruct regulatory network/gene modules. Mod-

ule_l: = (geneID [i], satisfyyil=0, for i~1, � � � ,N and

l~1, � � � ,L). yil is the element of Y Module. l represents

lth transcriptional module regulated by the TF l or the

latent regulator l.

The output (Y matrix) of the procedure provides quantitative

relationships between regulators (TFs and miRNAs in this study)

and every gene from the microarray dataset. The non-zero values

stand for regulatory interactions or components which can be used

to estimate how possible a gene is regulated by the regulators or

whether a gene is potential target of the regulators. To select the

putative target genes, we re-evaluated Y matrix by including

following criteria. We first performed 1000 runs by using

randomly selected regulator-target binding data as inputs. The

target genes of such regulator binding were randomly picked up

from their corresponding microarray dataset during the model

running. The 1000 randomly selected regulator binding data were

used to construct Z matrices and generated new Y matrices

following the same procedure, respectively. We then calculated P

value of each gene in the original Y matrix created by using

regulator binding data based on pre-knowledge or by promoter

sequence analysis in comparison with the new Y matrices. In

general, the majority of top genes in the original Y matrix have a

lower P value. We selected genes with the top values or containing

lower P values in the original Y matrix and identified them as

putative target genes of TFs. The code of the model is available

upon request.

We applied the model-based procedure to analyze HNSCC

gene expression profile, TF and miRNA binding data, and

reconstructed regulatory networks of HNSCC (see Table S1). The

gene expression dataset (X matrix) was derived from microarray

data of genes differentially expressed in HNSCC cells with the wt

p53-deficient or the mt p53 status. We sought to unravel TF and

TF-miRNA mediated regulatory networks responsible for the

malignant phenotypes of HNSCC. Nine TFs were examined in

this study: RelA, NFkB1, cRel, p53, AP1, CEBPB, EGR1, SP1

and STAT3, which were chosen because of their possible

interactions with NF-kB family subunits or p53. In addition, we

applied the model to analyze target genes of mir21 and mir34ac by

integrating their binding data. Since the different tumor subgroups

display distinct gene expression patterns cross all samples, we

separated genes into four subsets: differentially over and under-

expressed gene sets for wt p53-deficient and mt p53 subgroups,

respectively. Through the analysis, we constructed four regulator-

target binding activity matrices (Z matrix) for the regulators

according to the corresponding gene expression profile of the

subsets, respectively. Consequently, each Y matrix for TFs or

miRNAs of the four gene subsets was calculated based on their

corresponding Z matrix and expression data. Finally, we identified

TF and miRNA regulatory modules which control different gene

expression programs in HNSCC cell lines and tissues.

Knocking down RelA and TP53 by siRNA
The knockdown of RelA and TP53 mRNA was performed by

using siRNA (ON-TARGET plus SMARTpool; Dharmacon,

Lafayette, CO). UM-SCC 1 (wt p53-deficient) and 22B (mt p53)

cells were seeded in 6-well plates at 16105/well. At 50–60%

confluency (24 h later), cells were transfected with 50 nM of a

mixture of four siRNA oligos directed against human RelA, or

TP53 designed by Dharmacon, or 50 nM of a non-silencing

control siRNA (QIAGEN, Valencia, CA), using 1:200 Lipofecta-

mine 2000 (Invitrogen, Carlsbad, CA) in Opti-MEM I Reduced

Serum Medium (Invitrogen, Carlsbad, CA) for five hours. At 48 h

or 72 h post-transfection, cells were harvested in Trizol for RNA

isolation (Invitrogen, Carlsbad, CA).

Real time RT-PCR
RNA isolation and cDNA synthesis were performed as

previously described [36]. Real time PCR primers and probes

for DNp63 [36] were synthesized by Applied Biosystems (Foster

City, CA). Other primers and probes were purchased through

Assays-on-DemandTM program from Applied Biosystems. Ampli-

fication conditions were: 2 min at 50uC and 10 min at 95uC,

followed by 40 cycles of 15 sec at 95uC and 1 min at 60uC, carried

out using an ABI Prism 7700 Sequence Detection System (Applied

Biosystems). Relative gene expression values were calculated after

normalization to 18S rRNA, and adjust the value of the control

sample as 1. Each experiment was done in duplicates, and each

sample was assayed in triplicates. Data were presented as mean +
standard deviation (SD).

p53 DNA binding assays
p53 DNA binding activity was quantitatively assessed using a

modified version of the TransAM p53 ELISA kit from Active

Motif (Carlsbad, CA). The regular oligonucleotide-coated 96-well

plate was substituted with a streptavidin-coated plate and cus-

tom 59-biotinylated double-stranded oligonucleotides containing

known or putative p53 binding sites were added (IDT, Coralville,

IA) to the assay. Each binding site was approximately 20–30 bp

and flanked by 30–40 bp of native sequence upstream and 7 bp

downstream. The sequences for the forward strand of each

double-stranded oligonucleotide were as follows: IL6: 59 biotin-

TAGGCTTGGCGATGGGGTTGAAGGGCCCGGTGCGCA-

TGCGTTCCCCTTGCCCCTGCGTGT -39 (sequences under-

lined refer to core consensus binding sites of p53 predicted by

Regulatory Networks in Head and Neck Cancer
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Genomatix MatInspector); SERPINE1: 59 biotin-ATTCTCCTG-

CCTCAGCCTCCCAAGCAGCTAGGATTACAGGCACGCA-

CCACCATGCCTAGCTGATTT-39; MMP1: 59 biotin-ATTA-

ACTCACCCTTGTTTCCCAGGCCTCAGTGGAGCTAGGC-

TTGTCACGTCTTCACAGTG -39; PLAU: 59 biotin- AGCT-

GCGGGCAAGGGGGTCTGAGGCAGTCTTAGGCAAGTT-

GGGGCCCAGCGGGGAGAAGT -39; CDKN1A (p21): 59biotin-

GCAGGCTGTGGCTCTGATTGGCTTTCTGGCCGTCAG-

GAACATGTCCCAACATGTTGAGCTCTG -39, where p53

binding site on CDKN1A promoter is known. Other reagents

from the kit (buffers, antibodies, and substrates) were used as is.

Nuclear lysates containing p53 protein were obtained from

UM-SCC 1 cells overexpressing p53. The cells were transfected

with p53 plasmid using Lipofectamine, per the manufacturer’s

protocol (Invitrogen, Carlsbad, CA). After 48 hours, nuclear

protein was isolated using a nuclear extract kit (Active Motif,

Carlsbad, CA, USA). The protein concentration was determined

using the BCA method (Pierce, Rockford, IL, USA). The 5 mg of

nuclear extract in cell lysis buffer and complete binding buffer and

1 pmol of biotinylated oligonucleotide were combined and

incubated for 30 min at room temperature prior to placement in

a streptavidin-coated well. Specificity of binding was also tested

using cold competition (unbiotinylated) oligonucleotides which

contained the p53 consensus binding sequence (‘‘wt competition’’)

or non-mammalian DNA (‘‘mt competition’’) at 40 pmol/well,

added to the reaction at room temperature prior to plating. These

competition oligonucleotides had a 10 bp core sequence flanked

by 7 bp of non-specific sequence both upstream and downstream

of the consensus motif. Nuclear extract from MCF-7 cells (a

human breast adenocarcinoma cell line) (Active Motif) combined

with a biotinylated oligonucleotide containing a known p53

binding site in the CDKN1A gene promoter (‘‘MCF-7 p21 oligo’’)

served as a positive control (Active Motif). Wells containing only

the ‘‘p21 oligo’’ biotinylated oligonucleotide and no cell lysate

served as the negative control. Each binding site was assayed in

duplicated. After developing the final HRP-mediated colorimetric

reaction for 2–3 min, absorbance was measured at 450 nm by

mQuant ELISA microplate reader (Bio-Tek, Winooski, VT, USA).

Results

The model-based approach to determine the interactions
between TFs or miRNAs and target genes

We present a novel bioinformatics method for an integrative

analysis of regulators (TFs and miRNAs) and gene expression

profiles in HNSCC. An important feature of the method is its

capacity to combine diverse data sources and perform matrix

decomposition with sparseness constraint by regulatory compo-

nent analysis. This integrated analysis offers an opportunity to

infer regulatory components, which profile the interactions of each

regulator with all the genes. The inferred interaction between

regulators and their targets are condition specific, depending on

the projection of condition specific expression data to the sparse

and non-negative space of latent variables (regulators).

Figure 1. Overview of the regulatory component analysis model-based method. R: regulators (TFs, miRNAs). TG: target genes. TSS:
transcriptional start site. 39UTR: 39 Translated region. Nodes in red and green represent up and down-regulated target genes, respectively.
doi:10.1371/journal.pone.0073656.g001
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Figure 1 outlines the approach based on regulatory component

analysis modeling. First, two input data matrices are required: the

microarray profile of gene expression (X matrix, N genes 6 M

samples) and regulator-gene connectivity matrix (N genes 6 L

regulators). The connectivity between a regulator (TF or miRNA)

and a gene is set to 1 if there is binding between the regulator and

the gene in the microarray datasets, or set to 0 otherwise. Second,

the regulator activity profile (Z matrix, L regulators 6M samples)

of each regulator is constructed by integrating the expression

profile and the regulator-gene connectivity. The regulator activity

profile represents the expression pattern of each regulator across

all samples, determined by the median of expression values. Third,

the Y matrix (N genes 6 L regulators) is generated according to

[X] = [Y]?[Z], where contains quantitative relationships for

each regulator-gene pair. Each column of Y matrix represents a

regulatory component, derived by projecting gene expression data

onto a sparse space of the regulator activity profiles. The Y matrix

allows determining whether a gene is potential target of a

regulator, i.e. TF or miRNA. Ideally, Y matrix can capture non-

zero regulatory components between regulators and their target

genes. Such regulatory components provide a basis for recon-

structing regulatory networks through unsupervised learning, or

can be used to cluster genes into regulatory programs or networks.

Therefore, in the final step, such gene regulatory programs or

networks are identified, and then classified to biological functions.

The inferred programs or networks are sets of genes co-regulated

by multiple TFs or miRNAs known or hidden.

Using the newly developed method, we first identified putative

target genes of the nine TFs and their gene regulatory programs.

We found that our method is able to dissect regulatory interactions

between TFs and their target genes in HNSCC, and performed

better when compared to the COGRIM method that was

previously used [16]. The COGRIM method is based on a

Bayesian hierarchical model and Gibbs sampling implementation,

and predicts regulatory modules by an integrative analysis of

microarray gene expression and TF binding motif data [1]. We

compared our method to COGRIM to predict target genes by

using the same microarray datasets based on a Gene Ontology

(GO) analysis of the target genes of the three NF-kB subunits,

RelA, NFkB1 and cRel. We assessed the functional relevance of

GO biological processes based on the enrichment analysis by

Fisher’s exact tests. Table 1 shows the statistical enrichment of

biological processes among the target genes identified by the two

methods. The enrichment level was calculated by transforming the

enrichment P values after False Discovery Rate (FDR) correction

to negative log10 values and averaged over all biological processes

with corrected P,0.05. If no functional modules were found with

corrected P,0.05, the smallest value of corrected P was taken for

calculating the enrichment level. Overall, our method showed a

better performance than COGRIM. The averaged P values of

over-representation and FDR values were lower than COGRIM

in both wt p53-deficient and the mt p53 datasets. With the

exception of NFkB1 targets in the wt p53-deficient dataset, our

method in general displayed lower corrected P values of FDR

(Table 1). The comparative analysis indicates that our method can

lead to a more biologically meaningful prediction of TF target

genes and regulatory programs.

Prediction of HNSCC-specific target genes of TFs
Our analysis predicted 248 target genes of NF-kB in the wt

p53-deficient cells of HNSCC, which include 149 over- and 99

under-expressed genes (Figure 2A). These genes were putatively

targeted by at least one of three NF-kB subunits, i.e. RelA, NFkB1

or cRel, representing 51% and 20% of differentially over and

under-expressed subsets, respectively. Thus, a majority of the

predicted NF-kB targets are up-regulated in the wt p53-deficient

cells, consistent with the previous observation that NF-kB binding

dominates the promoters of over-expressed genes in the same type

of HNSCC cells [15,34]. Among all the predicted target genes, 28

over- and 32 under-expressed genes were common targets of all

the three NF-kB subunits. On the other hand, in the mt p53 cells,

we predicted a set of 418 NF-kB targets, which represent 40% and

56% of the differentially over- and under-expressed gene sets,

respectively (Figure 2A). A set of 62 genes were jointly targeted by

the all three subunits of NF-kB, among which 19 genes were over-

while 43 were under-expressed. Within all the predicted NF-kB

target genes from the two tumor subgroups, 83 are identical to

known NF-kB targets.

To discover HNSCC-specific p53 targets, we incorporated

known binding data for p53 (see Materials and Methods) and the

gene expression profiling data. The analysis identified 169 and 81

putative p53 target genes from the wt p53-deficient and the mt p53

subgroups, respectively (Figure 2A). The two subgroups shared 7

over- and 22 under-expressed target genes, indicating more

common p53 genes are down-regulated in tumor cells. In total, 36

genes of the total predictions are consistent with known p53

targets, while others are novel candidates. These predicted p53

targets could be annotated to GO biological processes that are

similar to those mediated by NF-kB gene programs.

To identify gene regulatory programs of multiple TFs, we first

constructed two networks linking each TF and their putative

targets predicted in the two tumor subgroups (Figure S1). A total

of 298 and 232 genes were identified as common targets of at least

two TFs in the wt p53-deficient and the mt p53 cells, respectively.

We then compared target genes of NF-kB or p53 with other five

TFs (AP1, CEBPB, EGR1, SP1 and STAT3). Table S2 shows the

numbers of overlapped target genes. We detected significantly

overlapped target genes between NF-kB or p53 and the other TFs

in three gene subsets except for the over-expressed wt p53-

deficient cells. In this subset, we detected significant overlaps of

Table 1. Comparison based on GO functional enrichment.

p53
type a TFs Over-representation b FDR c

Our
method COGRIM

Our
method COGRIM

wt RelA 5.08 4.81 1.92 1.81

NFkB1 3.89 4.04 1.66 1.7

cRel 3.41 2.93 1.59 1.08

Average
of TFs

4.13 3.93 1.72 1.53

mt RelA 3.86 3.09 1.8 0.89

NFkB1 3.23 3.63 1.65 1.55

cRel 3.69 3.29 1.74 1.42

Average
of TFs

3.59 3.34 1.73 1.29

All predicted target genes of three NF-kB subunits were used for GO functional
analysis. The enrichment level was calculated by transforming enrichment P
values averaged over all processes with False Discovery Rate (FDR) corrected
P,0.05. If no processes are found with corrected P,0.05, the smallest value of
corrected P was taken for calculating the enrichment level. a p53 type refers to
subgroups of HNSCC cell lines divided by p53 mutation: wt p53-deficient and
mt p53. b enrichment of Fisher exact P value after negative log10

transformation. c FDR correction to the negative log10 value.
doi:10.1371/journal.pone.0073656.t001
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target genes between NF-kB or p53 and three TFs CEBPB, EGR1

and STAT3. Although not statistically significant, 53–58% of the

target genes of p53, AP1, and SP1 were overlapped with the NF-

kB targets. Our analyses provide evidence that NF-kB or p53

interact with the other five TFs to commonly regulate gene

expression programs in HNSCC cells.

Notable was that all p53 target genes predicted in the mt p53

cells were also NF-kB targets (Figure 2A), whereas those

overlapping in the wt p53-defficent cells was 60% (P

,2.04610218, R = 1.9). Specifically, the intersection of target

genes between p53 and the three NF-kB subunits was also

significant in the same three gene subsets (Table S2). On the other

hand, we noted that a fraction of the NF-kB target genes

overlapped with p53 targets seems different between the wt and mt

p53 subgroups. Among the total NF-kB target genes, 41% were

overlapped with the p53 targets in the wt p53 deficient, which was

greater than those in the mt p53 cells (19%). This difference is due

to the different fractions of their overlapped genes observed in the

under-expressed gene subsets (61% vs. 16%), suggesting that most

of NF-kB down-regulated genes are targeted by p53 in the wt

p53-deficient cells. We did not find such a difference in the over-

expressed gene subsets (28% vs. 24%). Next, we annotated co-

targets of NF-kB and p53 to gene ontology (GO) biological

processes (Table S3A). The top enriched processes in the both wt

and mt p53 cell lines included regulation of key functional

processes important in cancer, such as proliferation, angiogenesis,

apoptosis, inflammatory responses, and cell migration. Further-

more, we identified significantly enriched canonical signaling

pathways (P,0.05) using the Ingenuity Pathway Analysis (IPA)

tool. As shown in Table 2, fifteen pathways, including Ephrin

receptor, ERK/MAPK, HGF, IGF-1, IL-6, IL-8, Integrin linked

kinase, Integrin, Neuregulin, p38 MAPK, p53, PI3K/AKT,

PPAR, PTEN, and TREM1 were enriched in the both tumor

subgroups. Most genes in the pathways were down-regulated

(Table S3B). CDKN1A, IL6, PTK2, PTGS2 and TP63 are known

target genes of both NF-kB and p53.We also detected 14–3–3-

mediated, HIF1a, Leukocyte extravasation, mTOR, NF-kB,

TGFb, VEGF, and Xenobiotic metabolism signaling enriched in

the wt p53-deficient subgroup. The majority of genes in the eight

pathways were also down-regulated (Table S3B). In contrast, four

enriched pathways, CDK5, HER-2 in breast cancer, Protein

kinase A, and Small cell lung cancer signaling, were observed in

the mt p53 subgroup. This analysis provides evidence that NF-kB

may interact predominantly with p53 in mediating distinct or

common pathways in tumor cells with different p53 status.

Finally, we defined two regulatory programs consisting of

common target genes of all the seven TFs (Figure 2B). The

program of the wt p53-deficient cells comprised 37 genes, where

17 and 12 genes are consistent with known NF-kB and p53 targets,

respectively. The percentage of known NF-kB and p53 target

genes in the network was greater than their overall prediction (for

example, NF-kB: 46% vs. 19%; p53: 32% vs. 15%). Similarly, a

set of 39 genes, including 12 known NF-kB and 17 known p53

targets, formed the regulatory programs of the mt p53 cells. The

prediction of the known target genes in the program was also

relatively accurate by comparing with the overall prediction for

NF-kB (31% vs. 15%) and p53 (44% vs. 29%) target genes. In the

both transcriptional regulatory programs, 10 target genes were

Figure 2. Transcriptional gene regulatory programs in the HNSCC cell lines. A, Overlapped target genes of NF-kB and p53. B, Gene
regulatory programs of seven TFs (NF-kB, p53, AP1, CEBPB, EGR1, SP1, and STAT3). Genes in underlined, bold and bold-underlined refer to known
targets of NF-kB, p53, and both NF-kB/p53, respectively. Q and q refer to number of predicted target genes differentially over- and under-expressed
in the tumor cells, respectively.
doi:10.1371/journal.pone.0073656.g002
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shared between the two subgroups of HNSCC (Figure 2B).

Furthermore, we found that most genes in the regulatory

programs were functionally classified to adhesion, angiogenesis,

apoptosis, cell cycle, inflammatory and immune responses,

proteolysis, and regulation of transcription. This indicates that

the HNSCC-specific gene programs of the seven TFs can mediate

broad functional processes.

miRNA target genes and their interaction with NF-kB and
p53

mir21 and mir34ac are known for their relationships with the

p53 or NF-kB pathway. We applied the model-based approach to

analyze their target genes and determine how many of these genes

are co-targeted by the two TFs using the same gene expression

profile of HNSCC cell lines. Table S4 lists the predicted targets of

the two miRNAs overlapped with that of NF-kB and p53. We

identified 73 and 84 target genes of mir21 and mir34ac in the wt

p53-deficient cell lines, respectively. They displayed a highly

frequent intersection (56–77%) with target genes for the two TFs.

Compared with miRNA databases TarBase and mir2disease,

besides the known binding targets, some predicted genes are likely

regulated by mir21or mir34ac based on other validation methods

such as qRT-PCR, microarray, proteomics and Western blot

analyses. For example, CDKN1A, PIK3R1, RHOB, TGFB1 and

THBS1 are possible targets of mir21; and EHD1, NDRG1, S100A2,

and SFN are likely targets of mir34ac. Moreover, we compared our

results with those predicted by software package miRecords, which

provides eleven computational methods for miRNA binding target

search [37]. Totally 16 and 31 target genes of mir21 and mir34ac

in our prediction were identified by at least three methods

respectively (Table S4). Similarly in the mt p53 cell lines, the new

model predicted 76 and 77 target genes of mir21 and mir34ac,

respectively, whereof 63–88% are also targets of the two TFs. By

searching miRecords, we also found that 15 targets of mir21 or 29

targets of mir34ac can be detected by at least three computational

methods (Table S4).

We constructed gene networks composed of co-targets of NF-

kB, p53, mir21 or mir34ac in the two types of tumor cells. There

are 17 common genes presented in the two networks (Figure 3). In

the network of the wt p53-deficient (Figure 3A), we identified

several known targets of miRNAs, such as BTG2, JAG1,

SERPINB5, and TP63 for mir21, and ACSL1 and JAG1 for

mir34a. The network of the mt p53 includes known targets of

mir21 (SERPINB5 and TGFBR2) and mir34ac (ACSL4 and MYC,

Figure 3B). This result highlights a considerable interaction of NF-

kB and p53 with the two miRNAs for gene regulation in HNSCC

cell lines. The majority of the two networks involve in biological

functions similar to TF regulatory programs (Figure 2), such as

apoptosis, proteolysis, proliferation, cell adhesion and migration,

inflammatory and immune responses, and angiogenesis. These

cellular processes are possibly related with tumor progression and

metastasis [38,39].

We subsequently sought to construct similar networks of TF-

miRNA by analyzing gene expression profiling data from

metastatic and non-metastatic tissues in hypopharyngeal [40]

and oral cancer [41]. Table S5 lists all overlapped target genes

among NF-kB, p53 and the two miRNAs. We constructed two

networks consisting of 26 and 43 target genes of the four regulators

in the two types of tumor tissues, respectively (Figure 4). By

comparison with the cell line networks (Figure 3), 12 and 13

intersected genes in the networks of two types of HNSCC tissues

were observed respectively. Also, biological functions in these gene

networks are similar, supporting the consistence between cell lines

and tissues to some extent. Moreover, we identified about a half of

genes which are known targets of NF-kB or p53 in the both

networks. For example, IL6, PTX3, BCL2, FAS, FOS, IER3, PTX3,

SERPINE1, and TP63 were known to be co-regulated by the two

TFs. Interestingly, apoptotic regulator BCL2 is a known target of

both mir21 and mir34ac (Table S5). Our findings indicate that

both mir21 and mir34ac likely involve or interact with NF-kB and

p53 networks through their downstream genes underlying tumor

progression.

Validation of p53 and NF-kB target genes by siRNA
knockdown and promoter binding assay

We selected the identified selected cancer-related target genes

with potentials under p53 and NF-kB regulation in the networks

from Figure 3, and tested whether their expression can be affected

by siRNA knockdown of either TP53 or NF-kB RelA/p65. As

shown in Figure 5A or 5B, there are eight panels each representing

eight potential target genes for TP53 or NF-kB from our

bioinformatics prediction. The siRNA knockdown experiments

were performed in two cell lines, one is UM-SCC 22B with mt p53

(Y220C) but remaining residual p53 binding activity (Figure 5A),

and other is UM-SCC 1 with deficient wt p53 status [42]

(Figure 5B). The deficient wt p53 status was defined as wild type of

p53 genotype but minimal p53 protein expression and binding

activity [42]. In each panel, the open bar represents the cells

transfected with control siRNA, for which the value has been

normalized to 1 to enable comparison. Black bars represent cells

transfected with siRNA to knockdown TP53, and the blue bars

represent cells transfected with siRNA to knockdown NF-kB

subunit RelA/p65. The relative expression after either knockdown

of TP53 (black bar) or RelA/p65 is presented as the fold increase

or decrease when compared with cells transfected with control

siRNA (open bar). In this experiment, previous experimentally

validated known target genes of p53 (CDKN1A and IGFBP3) and

NF-kB (IL6 and IL8) are included as positive controls. * indicates

statistical significance when compared the gene expression after

knockdown of TP53 or RelA/p65 with those from cells transfected

with control siRNA. As shown in Figure 5A, after knocking down

Table 2. Enriched signal pathways in the gene regulatory programs of NF-kB and p53.

HNSCC cell
lines Enriched signaling pathways

mtp53 CDK5, HER-2 in breast cancer, Protein kinase A, Small cell lung cancer

wt p53-deficient 14–3–3-mediated, HIF1a, Leukocyte extravasation, mTOR, NF-kB, TGFb, VEGF, Xenobiotic metabolism

mt and wt p53 Ephrin receptor, ERK/MAPK, HGF, IGF-1, IL-6, IL-8, Integrin linked kinase, Integrin, Neuregulin, p38 MAPK, p53, PI3K/AKT, PPAR, PTEN, TREM1

Canonical pathways in the table were significantly enriched (P,0.05) among the regulatory programs consisting of common target genes between NF-kB and p53.
doi:10.1371/journal.pone.0073656.t002
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of TP53 or RelA in UM-SCC 22B cells (mt p53) for 48 hours, the

expression level of TP53 or RelA was dramatically reduced by

more than 80%, when compared to control siRNA (the upper left

two panels). These two panels exhibited the specific and efficient

knock down of TP53 or RelA/p65 genes. Knocking down TP53

(black bar) increased the expression of IGFBP3, suggesting that p53

mediated suppression of the expression of this gene (upper left

third). Silence of TP53 (black bars) slightly decreased the

Figure 3. Gene regulatory networks of NF-kB, p53, mir21 and mir34ac in the HNSCC cell lines. A, network of the wt p53-deficient cells. B,
network of the mt p53 cells. Every node represents a common target gene of NF-kB, p53, mir21 or mir34ac, and was annotated according to
inflammatory and immune responses (green nodes), apoptosis (blue), angiogenesis (yellow), proliferation (red), adhesion (gold), proteolysis (light red)
and other processes (light blue). The networks were presented by cytoscape.
doi:10.1371/journal.pone.0073656.g003

Figure 4. Gene regulatory networks of NF-kB, p53, mir21 and mir34ac in the HNSCC metastatic tissues. A, a network of hypopharyngeal
cancer. B, a network of oral cancer. Every node represents a common target gene of NF-kB, p53, mir21 or mir34ac, and was annotated to
inflammatory and immune responses (green nodes), apoptosis (blue), angiogenesis (yellow), proliferation (red), adhesion (gold), proteolysis (light red)
and other processes (light blue). The networks were presented by cytoscape.
doi:10.1371/journal.pone.0073656.g004
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expression of IL6, ITGA5, LAMB3, PLAU, and CDKN1A in UM-

SCC 22B cells with statistical significance. This could be explained

by its mt p53 status with residual function, or as suggested by other

findings, that a group of loss of function p53 mutants have gained

the ability to interact and promote the transcription of other TFs,

including NF-kB, which could promote tumorigenesis [43,44].

After knocking down RelA/p65 (Figure 5A, blue bars), most genes

were significantly decreased, except IGFBP3, which is consistent

with NF-kB activation in the cells. Figure 5B showed the

knockdown experiments in UM-SCC 1 cells with wt p53

genotype, but where expression of p53 is barely detectable.

Further knocking down of TP53 (black bars) significantly increased

the expression of IL8, ITGA5, TNC, MMP1, SERPINE1, and

DNp63, but reduced the expression of IL1RN and PLAU. Our data

suggest that the low level of wt p53 protein expression in the cell

line is still functional. The data is consistent with previous findings

from our and other laboratories, that p53 protein is extremely

powerful to regulate gene expression [36,44]. Knockdown of RelA

(blue bars) decreased expression of IL8, ITGA5, IL1RN and PLAU

but resulted in an increase in the expression of TNC, MMP1,

SERPINE1 and DNp63 (Figure 5B), which are consistent with our

predictions as NF-kB target genes.

Previously, we analyzed binding activity of NF-kB subunits

RelA and NFkB1 in three UM-SCC cell lines using TransAM NF-

kB oligonucleotide-ELISA binding assay from Active Motif [16].

Here we examined binding activity of p53 on the promoters of its

target genes identified in this study, using the newly modified p53

oligonucleotide-ELISA binding assay, based on TransAM p53

ELISA from Active Motif. In this modified assay, p53 binding

consensus sequence was replaced by different promoter sequences

with predicted p53 binding sites (detailed information in Methods).

We used MCF-7 cell lysate as the positive control, which was

provided by Active Motif. We used an oligo containing a known

p53 binding site in the CDKN1A promoter (‘‘MCF-7 p21 oligo’’, in

Figure 6) for a positive control [45]. This oligonucleotide contains

a 63-bp sequence containing known p53 binding motif, which has

been validated previously by Electrophoretic Mobility Shift Assay

(EMSA) and ChIP binding assay result of CDKN1A/p21 promoter

[20]. Since we previously showed that UM-SCC 1 (wt p53

deficient) and UM-SCC 22B (mt p53) exhibited minimal p53

binding activity [42], we overexpressed wt p53 in UM-SCC 1 cells

to test p53 binding activity for the predicted p53 binding motifs on

the promoters of less studied p53 targeted genes using Genomatix

MatInspector. We found strong p53 binding activities on predicted

p53 sites on CDKN1A, SERPINE1, IL6, PLAU and MMP1

promoters (Figure 6). Using excess p53 wild type (wt) oligo in

the binding assay, we were able to compete off the binding activity,

while the mutant (mt) oligo did not compete off the binding

activity, demonstrating the binding specificity (Figure 6). Our

experimental data confirmed the predicted binding motifs of the

new p53 target gene.

Discussion

Our method is regulatory component analysis model-based and

can capture the sparse structure existing in genomic-scale gene

expression data for unraveling gene regulatory networks. The

advantage of the newly developed method is supported by the

improved prediction of NF-kB and p53 target genes, in

comparison with other methods. First, we compared our method

to a Bayesian model-based COGRIM. Among the NF-kB targets

predicted by our method, of 19% (in the wt p53-deficient) and

15% (in the mt p53) are consistent with known ones published

previously. By contrast, the known NF-kB genes predicted by

COGRIM only reached to 10% of the total prediction [16].

Importantly, the NF-kB genes predicted by our method are more

functionally relevant than those by COGRIM (Table 1). Second,

we analyzed the percentage of known p53 target genes in its total

prediction. Previous studies have shown that p53 binding could be

one of key elements controlling over-expression of genes in the mt

p53 cells of HNSCC [15,34]. Our analysis indicates that 10% (in

the wt p53-deficient) and 24% (in the mt p53) of the over-

expressed p53 target genes are matched with known ones, thus

partially supporting the previous finding. Some high-throughput

technologies, such as ChIP-pet [46] and ChIP-seq [47] were

utilized to detect physical binding sites of p53 on whole genomic

sequences. Wei et al. identified 542 p53 binding loci clustered in

458 known genes by using p53-ChIP DNA fragments and

overlapping pet-clusters as the readout [46]. By searching for

known p53 target genes, we found that 15% (in the wt p53-

deficient) and 29% (in the mt p53) of the total p53 targets

predicted by our method are identical, which is relatively better

than the ChIP-pet method (14%). Recently, a genome-wide

analysis of p53 binding sites in normal human IMR90 fibroblast

cells showed 743 high-confidence ChIP-seq peaks representing

956 genes [47]. We compared these putative genes with known

p53 targets, and found 52 overlapped ones, which is less than our

predication. Taken together, our method improves the efficiency

and accuracy of identification of regulatory associations between

NF-kB or p53 and their target genes. The identified NF-kB genes

by the newly developed method are highly associated with

biological processes altered in HNSCC, suggesting that they are

biologically more meaningful than those by other methods.

Two master TFs, NF-kB and p53, play different roles in human

cancer, in which activation of p53 and inhibition of NF-kB

promote apoptosis. Their crosstalk is suggested as an important

mechanism for regulating molecular oncogenesis [11]. However,

how they interact and globally modulate gene networks remains

unclear. In the present study, we demonstrate a significant

intersection between p53 and NF-kB regulated genes in the

HNSCC cell lines. Such interaction is different in the two tumor

subgroups. In the wt p53-deficient cells, the two TFs can jointly

regulate over 60% of their targets in the under-expressed genes

(Figure 2A). The two factors, along with the other five TFs (AP1,

CEBPB, EGR1, SP1 and STAT3), are implicated in modulating

90% of the under-expressed NF-kB target genes (Table S1).

However, in the mt p53 cells, all of the predicted p53 targets can

be regulated by NF-kB (Figure 2A). Significantly, the three

subunits RelA, NFkB1 and cRel cooperate with p53 to regulate

their common genes, which facilitates a wide interplay between

p53 and NF-kB networks. This observation strongly suggests that a

tight interaction between NF-kB family and p53 controls p53

networks in the mt p53 tumor cells, but to a lesser extent in the wt

p53-defieient cells. On the other hand, most (about 80%) of the

predicted NF-kB target genes in the mt p53 cells are not regulated

by p53 (Figure 2A). A half of these NF-kB genes are also not

targeted by any one of other five TFs (Table S1). Therefore, the

NF-kB genes in the mt p53 tumor cells are possibly modulated by

loss or altered of p53 function, or by means of interactions of NF-

kB with a broad arrange of TFs or miRNAs.

We identified two transcriptional gene regulatory programs that

are likely modulated by the seven TFs (Figure 2B). Previous

experimental studies on TF interactions in gene regulation support

our discovery, for example, NF-kB-AP1-CEBPB [22,27], NF-kB-

STAT3 [26], NF-kB-AP1-EGR1 [29], NF-kB-AP1-SP1 [30], NF-

kB-AP1-p53 [48], etc. In HNSCC cell lines, co-binding of RelA,

AP1 and CEBPB on IL8 promoter contributed to its over-

expression [22]. A similar result was repeated in breast cancer cells
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Figure 5. Silencing RelAandTP53 by siRNA significantly altered gene expression. UM-SCC 22B (A, the mt p53) and 1 (B, the wt p53-deficient)
cells were transfected with siRNA to RelA or TP53 for 48 h or 72 h. Total RNA was isolated, and genes selected from TF-miRNA networks in the Figure 3
were analyzed by real time qRT-PCR. The data were calculated as the mean plus standard deviation from triplicates with normalization by 18S
ribosome RNA, and presented as the comparison with the cultured cells transfected with the control siRNA oligos. The open bar represents the cells
transfected with control siRNA, and the values have been normalized to 1. The fold changes of the target genes were presented when compared with
those transfected with control siRNA. The black bar represents cells transfected with siRNA targeting TP53, while the blue bar represents cells
transfected with siRNA targeting NF-kB subunit, RelA/p65. * refers to statistical significance (t test, P,0.05).
doi:10.1371/journal.pone.0073656.g005
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[27], indicating that IL8 up-regulation requires a complex

modulation among the three TFs. Apart from IL8, the co-

regulation between NF-kB and AP1, CEBPB or STAT3 for genes

IL1B, ICAM1, IL6, PTGS2, and SAA1 in the TF regulatory

networks (Figure 2B) is consistent with previous observation in

HNSCC or other cancer cells [49,50,51,52,53,54]. By promoter

analysis, the co-binding motifs of NF-kB with AP1, STAT3 and

EGR1 has been identified on clustered genes over-expressed in the

HNSCC cell lines [15]. In addition, we observed that a larger

number of predicted NF-kB and p53 target genes in the two

inferred gene regulatory programs are consistent with the known

ones (Figure 2B), by comparison with the overall prediction of

their target genes. This result provides evidence for the accuracy of

inferred regulatory programs in the HNSCC cell lines. Through

experimental examination on the targets of NF-kB and p53

involved in these networks, we confirm that their expression was

significantly altered in the both wt and mt p53 tumor cell lines

after the knockdown of RelA and TP53 (Figure 5). Thus, we

experimentally validated a group of newly predicted NF-kB or p53

target genes, which support the prediction power of this new

system biology approach to integrating multiple platforms and

data involved in the transcriptional and regulatory interactions

among NF-kB, p53 and the other TFs.

Our results demonstrate that the target genes in the transcrip-

tional regulatory programs mediate a variety of functional

processes, consistent with previous experimental reports on NF-

kB genes that regulate apoptosis, adhesion, angiogenesis, inflam-

matory and immune responses, proliferation, and migration in

HNSCC cells [15,16,22,55].The co-target genes of NF-kB and

p53, such as CAKN1A, IGFBP3, IL1A, IL1B, IL1RN, IL6, IL8,

ITGA3, ITGA5, LAM3A, LAM3B, PTGS2, SFN, are presented

significantly in enriched pathways in the Table 2 have been

examined experimentally in this study (Figures 5, 6), and from

previous reports [16,56,57,58]. Distinct signal pathways identified

are more specific to different phenotypes in the tumor cells related

with different p53 status (Table 2). For example, genes significantly

enriched in TGFb pathway are repressed in the tumor cells with

the wt p53-deficient status (Table S3B). This finding is consistent

with the negative regulatory function of TGFb in HNSCC cells,

observed by Lu, et al. [59]. Our work establishes a strong link with

regulatory programs of NF-kB and p53, and their related

pathways or functional processes, in agreement with many

conclusions previously drawn from the biologic experiments.

Discovery of TF and miRNA interactive modules can advance

our understanding of complex transcriptional regulatory architec-

tures in cancer cells. We chose mir21 and mir34ac in light of their

involvement in p53 or NF-kB signaling pathway for reconstructing

transcriptional and post-transcriptional gene regulatory networks.

The over-expression of oncogenic mir21 was constantly observed

in 15 of 16 microarray studies based on diverse HNSCC samples

whereas aberrant expression of tumor suppresser mir34 family was

identified in 6 of these studies (data not shown). It is reasoned that

the two miRNAs are likely involved in transcriptional modulation

of NF-kB or p53 during HNSCC development. We constructed

two gene networks regulated by the four factors in the cell lines of

HNSCC (Figure 3). To assess our result, we first identified a large

fraction of network genes which are known NF-kB target genes.

These genes mediate immune and inflammatory responses (CSF2,

IL1A, IL1B, IL1RN, IL1R2, IL6, and IL8), apoptosis (CDKN1A and

IGFBP3), and adhesion (ITGA5, LAMA3, LAMB3 and ICAM1),

validated in HNSCC cell lines (Figure 5, and [16]). Moreover,

some of known p53 binding targets such as CDKN1A, IGFBP3,

PERP, PTGS2, S100A2, SERPINB5, SERPINE1, SFN, and TP63

are also components of the networks. Second, we have experi-

mentally confirmed a number of predicted targets of p53 in the

networks by silencing of TP53 and testing binding activities of p53

on their promoters in the tumor cells (Figures 5, 6). p53 binding

activity assay on the gene promoters provides functional evidence

for the regulatory networks (Figure 6). This newly developed assay

mimics traditional gel shift assay (EMSA), using DNA oligos with

biotin labeling instead radioisotope (Active Motif). The advantage

of this assay over commonly used ChIP assay is using more defined

binding oligo sequence that contains only 40–60 nucleotides.

However, in ChIP assay, the DNA sequence involved in the TF

Figure 6. Binding activity of p53 on the promoters of selected genes. Nuclear extract from UM-SCC 1 cells were isolated, and the binding
activity was examined on the biotin labeled oligos containing promoter sequences with p53 binding sites. The binding activity of nuclear extract of
MCF-7 cells with a biotinylated oligonucleotide containing a known p53 binding site in the CDKN1A gene promoter (‘‘MCF-7 p21 oligo’’) was served
as a positive control. Specificity of binding in the UM-SCC cells was also tested using cold competition (unbiotinylated) oligonucleotides which
contained the wild-type p53 consensus binding sequence (‘‘wt competition’’) or mutant DNA sequence of p53 binding site (‘‘mt competition’’).The
mean and standard deviation of each binding was calculated from triplicate, and the presented data are from one representative of repeated
experiments. *refers to statistical significance when p53 binding activity was competed by the mt oligo, to confirm the binding specificity (t test,
P,0.05).
doi:10.1371/journal.pone.0073656.g006
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and antibody complex is usually 100–500 bp long, where many

potential binding activities may be involved with other binding

motifs [60]. Third, it is noticeable that more than a half of genes in

the TF regulatory programs (Figure 2B) overlap with the networks

of TF-miRNA (Figure 3), demonstrating a coordinated interaction

of mir21 and mir34ac with multiple TFs contributing to transcrip-

tional regulation of genes. Several known or likely target genes of

mir21 or mir34ac were identified in the networks, providing

evidence for the miRNA involvement. Two genes SERPINB5 and

TP63 are known targets of mir21 and p53, where TP63 is also a

transcriptional target of NF-kB [61]. Thus, TP63 is likely a key gene

interconnected by NF-kB, p53 and mir21. On the other hand, as

one of the p53 family members, the TAp63 isoform is able to exert

biological functions similar to those of p53 and contributes to

oncogenesis and tumor-suppressor activity [62]. We have shown

that some p53 genes in the networks are also known to be regulated

by p63, such as CDKN1A, IGFBP3, PERP, S100A2, SERPINB5, and

SFN. Another example gene JAG1 is a known binding target of

mir21, mir34a and p63, supporting the potential of p63 interacting

with TFs and miRNAs in gene regulation of HNSCC. Recently, we

demonstrated that DNp63 interacts with NF-kB subunit cRel or

RelA to modulate gene programs mediating apoptosis, cell growth

arrest, inflammation, epidermal hyperplasia and the malignant

phenotypes of HNSCC cells [20,36].

Furthermore, we found that many genes in the TF-miRNA

networks are related to biological processes contributing to the

progression of HNSCC. Several common target genes in the

networks were down-regulated in both wt and mt tumor cells

(Figure 3, Table S4), such as ITGA5 and S100A2 (adhesion and

migration), SERPINE1 (angiogenesis), CDKN1A (growth arrest),

and PLAU and SERPINE5 (proteolysis). These cellular processes

possibly favor HNSCC metastasis [39]. The two miRNAs may

interact with p53 or NF-kB to modulate their target expression so

that repressing progression of HNSCC. By contrast, the over-

expressed genes in the networks may trigger tumorigenesis of

HNSCC by altering gene expression associated with inflammatory,

proliferation, apoptosis and other processes (Figure 3, Table S4),

such as IL6, IGFBP3, ELF3, and PTGES in the both subgroups of

tumor cells. The miRNAs and TFs likely mediate metastatic

processes through the increased expression of their target genes,

such as IL8, ICAM1 and TGFBI in the wt p53-decifient cells, or

SPP1 and PTK2 in the mt p53 cells (Figure 3, Table S4). To validate

the results in the cell lines, we constructed two regulatory networks

by analyzing datasets of metastatic and non-metastatic HNSCC

tissues (Figure 4). Several important genes associated with tumor

metastatic program, such as IL6, IL8, MMP1, PLAU, SERPINB5,

SERPINE1, SPP1, TGFBI, TNC and TP63 were consistently

confirmed in the both tumor cell lines and tissues.

miRNAs are implicated in tumor progression, as metastasis

activators or suppressors [63,64]. mir21, as a master regulator of

the metastatic processes was found to stimulate cell invasion by

targeting tumor suppressors TPM1, PDCD4 and SERPINB5 in

breast cancer [65] or colon cancer [66]. As the mediator of tumor

suppression by p53, mir34 family may contribute to the inhibition

of invasion or metastasis in various cancer types [67]. mir34ac

could serve as a metastasis suppressor to regulate breast cancer

migration and invasion through targeting oncogene Fos-related

antigen 1 [68]. In human malignant melanoma, an over-

expression of mir34ac suppresses invasive growth of tumor cells

with wild-type p53 gene [69]. In the networks of HNSCC

metastatic tissues (Figure 4), we identified several representative

miRNA targets BCL2, MMP9, SERPINE5, TPM1, and TP63,

consistent with the previous experimental results derived from

miRNA target databases TarBase and mir2disease. The anti-

apoptotic BCL2, a known binding target of mir21 and mir34ac, is

co-regulated by NF-kB and p53 in oral metastatic tissues

(Figure 4B), suggesting a model for the interaction between TFs

and miRNAs in facilitating tumor progression and metastasis.

Taken together, our analyses provide a view of cross-regulatory

relationships among NF-kB, p53 and the miRNAs in different

malignant phenotypes. To our knowledge, this is the first

investigation of TF-miRNA regulatory interactions by modeling

diverse data sources in HNSCC. Within experimental validation

of predicted miRNA targets, it should help understanding of

transcriptional and post-transcriptional regulatory mechanisms

responsible for heterogeneity of HNSCC.

Conclusions

In summary, our analysis indicates that two master TFs, NF-

kB and p53, have a wide impact on distinct or shared biological

functions in HNSCC cells, through a coordinated interaction to

regulate gene expression programs. A certain number of the

identified genes have previously been examined as known NF-kB

or p53 targets, or validated by siRNA knock down of the two TF

genes and p53 binding activity assay. Furthermore, we have

found that NF-kB, p53 and two miRNAs, mir21 and mir34ac,

may constitute concerted regulatory modules and play an

important role in modulating downstream gene networks

contributing to metastatic processes of HNSCC. Through the

integrated analyses, our studies provide a framework for

experimental analysis of TF-miRNA regulatory modules, and

insights into the complex regulatory mechanisms underlying

squamous cell carcinoma. The identified gene programs are

highly associated with cancer-related pathways and functions,

suggesting that the newly developed method is suitable to

inferring the gene regulatory networks in these cancer data.

Application of the new methodology in HNSCC has showed that

it can be utilized as a useful approach to study on other biological

complex systems.

Supporting Information

Figure S1 A map of transcriptional regulatory network
in HNSCC cell lines. In the figure, every node (grey one)

represents a target gene of at least one of TFs RelA/p65, NFkB1/

p50, cRel, p53, AP1, CEBPB, EGR1, SP1 and STAT3 (pink

nodes). A, the wt p53-deficient cells. B, the mt p53 cells.

(PDF)

Table S1 List of TF target genes predicted by regulatory
component analysis model-based method. The genes in

red and green represent differentially over- and under-expressed

with fold change $2.0 in HNSCC cell lines of the wt or mt p53.

(PDF)

Table S2 Overlapping of target genes between NF-kB or
p53 and other TFs in HNSCC cell lines.

(PDF)

Table S3 Significant enrichment of biological functions
among common target genes between NF-kB and p53 in
HNSCC cell lines. Joint target genes of NF-kB and p53 were

annotated to, A. GO biological processes by using DAVID tool

with P,0.001, FDR ,2%. B, Canonical signaling pathways by

using Ingenuity Pathway Analysis tools (P,0.05). Genes in red

and green indicate the over- and under-expressed genes in

HNSCC cell lines above at least 2 fold changes, respectively.

(PDF)
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Table S4 Target genes of mir21 and mir34ac and their
overlapping with NF-kB and p53 targets in HNSCC cell
lines. Based on miRNA databases TarBase and mir2disease,

‘‘target validated’’ refers to target genes of mir21 or mir34ac tested

by reporter assay, and ‘‘target likely’’ refers to genes of mir21 or

mir34ac tested by other methods (such as microarray, qRT-PCR,

Western blot, and proteomics). The number in the parenthesis

refers to number of computational methods ($3) for the miRNA

target gene prediction based on miRecords. The genes in red and

green represent differentially over- and under-expressed at least

fold change 2.0 in the wt and mt p53 cells.

(PDF)

Table S5 Overlapped target genes of NF-kB, p53, mir21
and mir34ac in HNSCC tissues. (Legends see Table S4).
(PDF)

Text S1 Binding data of TFs and miRNAs.
(PDF)
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