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of America, 4 Institute of Gender in Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany, 5 University of Texas Southwestern Medical Center, Dallas, United States

of America, 6 Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Germany,

7 Clinic for Cardiology and Pulmonology, Charité Universitätsmedizin Berlin, Berlin, Germany

Abstract

Maladaptive cardiac hypertrophy predisposes one to arrhythmia and sudden death. Cytochrome P450 (CYP)-derived
epoxyeicosatrienoic acids (EETs) promote anti-inflammatory and antiapoptotic mechanisms, and are involved in the
regulation of cardiac Ca2+-, K+- and Na+-channels. To test the hypothesis that enhanced cardiac EET biosynthesis counteracts
hypertrophy-induced electrical remodeling, male transgenic mice with cardiomyocyte-specific overexpression of the human
epoxygenase CYP2J2 (CYP2J2-TG) and wildtype littermates (WT) were subjected to chronic pressure overload (transverse
aortic constriction, TAC) or b-adrenergic stimulation (isoproterenol infusion, ISO). TAC caused progressive mortality that was
higher in WT (42% over 8 weeks after TAC), compared to CYP2J2-TG mice (6%). In vivo electrophysiological studies, 4 weeks
after TAC, revealed high ventricular tachyarrhythmia inducibility in WT (47% of the stimulation protocols), but not in
CYP2J2-TG mice (0%). CYP2J2 overexpression also enhanced ventricular refractoriness and protected against TAC-induced
QRS prolongation and delocalization of left ventricular connexin-43. ISO for 14 days induced high vulnerability for atrial
fibrillation in WT mice (54%) that was reduced in CYP-TG mice (17%). CYP2J2 overexpression also protected against ISO-
induced reduction of atrial refractoriness and development of atrial fibrosis. In contrast to these profound effects on
electrical remodeling, CYP2J2 overexpression only moderately reduced TAC-induced cardiac hypertrophy and did not affect
the hypertrophic response to b-adrenergic stimulation. These results demonstrate that enhanced cardiac EET biosynthesis
protects against electrical remodeling, ventricular tachyarrhythmia, and atrial fibrillation susceptibility during maladaptive
cardiac hypertrophy.
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Introduction

Cytochrome P450 (CYP)-dependent eicosanoids, such as

epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic

acid (20-HETE), may play crucial roles in the development of

heart disease. EETs exert anti-inflammatory and antiapoptotic

effects in cardiomyocytes and ameliorate cardiac ischemia-

reperfusion injury, whereas 20-HETE causes detrimental effects

in the same settings [1–4]. EETs also modulate the electrophys-

iological properties of the heart by regulating L-type Ca2+, Na+,

and ATP-sensitive K+ (KATP) channel activities [5–9]. In isolated

hearts, exogenous EET administration improved postischemic

functional recovery and prevented electrocardiogram abnormal-

ities in the reperfusion phase [10,11]. EET pretreatments also

efficiently reduced myocardial infarction size after transient

coronary artery occlusion [2,12,13]. Further studies revealed an

essential role of EETs in mediating the beneficial effects of pre-

and postconditioning [14–16].

CYP2J2 is the predominant arachidonic acid epoxygenase in

the human heart [17]. CYP2J2-transgenic mice have been

generated as a tool for investigating the impact of increased

endogenous EET biosynthesis on cardiac disease development.

The transgene contains the full-length CYP2J2 cDNA under

control of the aMHC promoter and thus mediates cardiomyocyte-

specific overexpression of the enzyme [18]. CYP2J2 overexpres-

sion reduced infarct size and improved recovery of pump function

as well as ventricular repolarization after ischemia, thereby

mimicking the effects of exogenous EET administration [18,19].

We used CYP2J2-transgenic mice to test the hypothesis that

enhanced cardiac EET biosynthesis prevents arrhythmogenic

substrate formation during the development of maladaptive

cardiac hypertrophy. We induced left ventricular hypertrophy by
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chronic pressure overload to predispose the mice to ventricular

tachyarrhythmia and sudden cardiac death. Alternatively, we

applied long-term isoproterenol infusion to mimic chronic b-

adrenergic stimulation-induced cardiac hypertrophy and thereby

established a model of atrial fibrillation susceptibility. We found

that CYP2J2 overexpression mediated strong antiarrhythmic

effects in both models, suggesting that EETs are involved in

endogenous mechanisms preventing maladaptive electrical re-

modeling during cardiac hypertrophy.

Results

Effect of CYP2J2-overexpression on pressure overload-
induced cardiac hypertrophy

The survival rate during the development of pressure overload-

induced cardiac hypertrophy was significantly higher in CYP2J2-

TG compared to WT mice (Fig. 1A). In WT mice, progressive

mortality started in week 3 after TAC operation. Only 11 out of 19

WT mice (58%) survived over 8 weeks. In contrast, 94% of the

animals (15 out of 16) survived in the CYP2J2-TG group. After

sham surgery, none of the WT (0/17) or CYP2J2-TG mice (0/11)

died over the same post-operational period (Fig. 1A).

TAC induced a strong hypertrophic response (Figs. 1B and 1C)

and severe decline of systolic function (Fig. 1D) in both animal

groups. However, the development of these features was gradually

ameliorated in CYP2J2-TG mice. Eight weeks after TAC, the left

ventricular mass to tibia length-ratio (LVM/TL; Fig. 1B) was

significantly lower (13.160.8 vs. 15.160.8 mg/mm) and the EF

(Fig. 1D) better preserved (20.462.8 vs. 10.761.9%) in CYP2J2-

TG compared to WT mice (compare Table S2 for the full set of

echocardiographic data). CYP2J2-overexpression also moderately

reduced the left ventricular expression of markers of hypertrophy

(ANP and BNP) and fibrosis (Col1 and Col3); however, these

effects as well as changes in the upregulation of bMHC were not

statistically significant (Figs. S1A–E).

Effect of CYP2J2-overexpression on pressure overload-
induced electrical remodeling

Electrophysiological studies were performed 4 weeks after TAC.

This time point was selected to identify features of electrical

remodeling potentially related to the onset of increased mortality

in WT and improved survival of CYP2J2-TG mice (compare

Fig. 1A). TAC-induced cardiac hypertrophy was associated with

significant QRS prolongation in WT but not CYP2J2-TG mice

(Table 1). The ventricular effective refractory period (VERP)

increased in both animal groups after TAC; however, this effect

was significantly more pronounced in CYP2J2-TG compared with

WT mice (Table 1). Four weeks after TAC, the VERP values of

CYP2J2-TG hearts exceeded those of WT hearts by almost 15 ms.

In WT, but not CYP2J2-TG mice, chronic pressure overload

significantly increased the vulnerability to ventricular tachyar-

rhythmia (Fig. 2A). In WT-TAC mice, 47% (7/15) of the

stimulation protocols were effective in contrast to only 14% (3/

21) in the WT-sham group (Fig. 2B). Sustained arrhythmic

episodes lasting longer than 10 consecutive VES predominated in

WT-TAC mice. The sham controls showed mostly either no or

only non-sustained arrhythmias (Fig. 2C). In contrast, CYP2J2-

TG mice were completely resistant. The same PES protocols that

were effective in WT mice did not induce cardiac arrhythmias in

any of the CYP2J2-TG animals 4 weeks after sham or TAC

operation (Fig. 2).

Consistent with the in vivo results, large differences in ventricular

arrhythmia susceptibility were also detectable in Langendorff

preparations of perfused hearts isolated from WT and CYP2J2-

TG mice 4 weeks after TAC (Fig. 2D). Epicardial electrical

stimulation induced ventricular arrhythmias in more than 90% of

the protocols with the hypertrophied WT hearts compared with

only 15% with the corresponding CYP2J2-TG hearts. The high

arrhythmia inducibility of WT-TAC hearts was strongly reduced

after perfusing the organs with the mitochondrial KATP-channel

opener diazoxide for 20 min prior to stimulations (Fig. 2D).

Conversely, the selective EET-antagonist 14,15-EEZE-mSi re-

versed the protection of hypertrophied CYP2J2-TG hearts against

ventricular arrhythmia inducibility (Fig. 2D).

Since gap junctional remodeling may predispose to arrhythmia,

we also analyzed the left ventricles for TAC-induced changes in

the intracellular localization of connexin 43 (Cx43), the major

ventricular gap junction protein (Fig. 3). Double immunostaining

with antibodies directed against Cx43 and N-cadherin revealed a

redistribution of Cx43 from the intercalated discs to the cytoplasm

or lateral boarders in WT mice 4 weeks after TAC. In contrast, the

left ventricles of CYP2J2-TG mice were largely protected against

gap junctional remodeling upon chronic pressure overload.

Typically, the Cx43 expression was preserved in intercalated discs

with only little redistribution (Fig. 3).

Effect of CYP2J2-overexpression on chronic b-adrenergic
stimulation-induced cardiac hypertrophy

Chronic ISO infusion caused moderate cardiac hypertrophy in

both WT and CYP2J2-TG mice (Fig. 4A). After two weeks, the

heart weight to tibia length ratio (HW/TL) was significantly

higher in ISO compared with vehicle treated animals. However,

the hypertrophic response was not different comparing WT and

CYP2J2-TG mice (Fig. 4A). Also, the ISO-induced increases in

heart rate were almost identical in WT and CYP2J2-TG mice

(Table 2). Systolic function (EF) was significantly higher in

CYP2J2-TG compared with WT mice (5962 vs. 4763%) two

weeks after ISO but not vehicle treatment (Fig. 4B; compare Table

S3 for the full set of echocardiographic data).

Effect of CYP2J2-overexpression on chronic b-adrenergic
stimulation-induced electrical remodeling

Chronic b-adrenergic stimulation specifically modulated the

atrial effective refractory period (AERP) without having any

detectable effect on ventricular refractoriness (Table 2). ISO-

treatment strongly decreased the AERP in WT mice. This

shortening of atrial refractoriness was significantly ameliorated in

CYP2J2-TG mice.

In line with its specific effect on atrial refractoriness, ISO

significantly increased the inducibility of atrial but not ventricular

arrhythmia in WT mice (Fig. 5A). After ISO treatment, almost

50% of the PES protocols (13 out of 27 in 9 animals) induced atrial

fibrillation in WT mice compared with only about 9% (2 out of 22

in 8 animals) in the vehicle control (Fig. 5B). We also observed a

higher proportion of atrial fibrillation episodes lasting longer than

30 seconds, which we considered as sustained arrhythmias. The

percentage of animals showing sustained atrial fibrillation in any of

the PES protocols increased from about 30 to 80% comparing

vehicle and ISO-treated WT mice (Fig. 5C).

In contrast to WT mice, CYP2J2-TG mice were largely

protected against the development of atrial fibrillation inducibility.

Two weeks after ISO treatment, CYP2J2-TG mice showed an

atrial fibrillation inducibility of about 17% (4 out of 24 protocols in

8 animals) that was significantly lower than in the corresponding

WT group (Fig. 5B). Also, the relative percentage of induced

sustained fibrillations was markedly lower in CYP2J2-TG than in

WT-mice (Fig. 5C).

CYP2J2 and Arrhythmia
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Chronic b-adrenergic stimulation did not increase the vulner-

ability to ventricular arrhythmia. The ratios of effective vs. total

protocols were 1/24 vs. 3/24 for vehicle and ISO treated WT

mice, and 0/15 vs. 0/24 for vehicle and ISO treated CYP2J2-TG

mice. The ECG parameters of vehicle-treated WT and CYP2J2-

TG mice were not significantly different (Table 2). ISO treatment

for two weeks clearly reduced PQ interval in both animal groups

compared to the vehicle controls. Other ECG parameters

remained essentially unchanged. In particular, ISO treatment

did not induce QRS or QTc prolongation neither in WT nor

CYP2J2-TG mice.

Chronic b-adrenergic stimulation resulted in the development

of atrial fibrosis as indicated by significantly increased Col1, Col3

and fibronectin mRNA levels in ISO- compared to vehicle-treated

WT mice (Figs. 6A–C) and confirmed by Sirius red staining of

atrial sections (Fig. S2). The expression of these features of ISO-

induced atrial fibrosis was clearly ameliorated in CYP2J2-TG mice

(Figs. 6A–C and Fig. S2).

Discussion

Our study shows that cardiomyocyte-specific overexpression of

the human epoxygenase CYP2J2 protects against arrhythmia

susceptibility in two mouse models of cardiac hypertrophy.

CYP2J2-overexpression reduced the vulnerability towards ven-

tricular tachyarrhythmia after chronic pressure overload (TAC

model), and suppressed atrial fibrillation inducibility after chronic

b-adrenergic stimulation (ISO model). The beneficial effects on

cardiac electrical stability occurred without, or only moderately,

reducing the hypertrophic response. Our data suggest that

CYP2J2 overexpression prevented arrhythmogenic substrate

formation primarily by maintaining gap junction integrity in the

TAC model and by attenuating the development of atrial fibrosis

in the ISO model. In isolated hypertrophied hearts, the EET

antagonist 14,15-EEZE-mSi reversed the antiarrhythmic effect of

CYP2J2 overexpression, indicating a direct role of CYP2J2-

derived metabolites in preserving cardiac electrical stability.

Figure 1. Chronic pressure overload-induced mortality and cardiac hypertrophy. (A) The survival rate was significantly higher in CYP2J2-
TG (15 out of 16 animals survived over 8 weeks after TAC operation) compared with WT mice (11/19); Log rank-test `p,0.05. None of the sham
operated WT (n = 17) or CYP2J2-TG mice (n = 11) died over the same period. (B) TAC-induced left ventricular hypertrophy was gradually ameliorated
in CYP2J2-TG compared with WT mice. The difference was significant 8 weeks after TAC (13.160.8 vs. 15.160.8 mg/mm in 15 CYP2J2-TG vs. 11 WT
mice). (C) Myocyte area significantly increased in both WT and CYP2J2-TG mice. (D) Systolic function was significantly decreased in both animal
groups two weeks after TAC compared to the sham controls. Eight weeks after TAC, CYP2J2-TG mice (n = 15) showed significantly higher EF values
(20.462.8 vs. 10.761.9%) than WT littermates (n = 11). Results represent mean6SEM; ANOVA, Post-Hoc Tukey; *p,0.05 vs. WT+Sham; {p,0.05 vs.
CYP+Sham; `p,0.05 vs. WT+TAC.
doi:10.1371/journal.pone.0073490.g001

CYP2J2 and Arrhythmia
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Pressure overload-induced cardiac hypertrophy is associated

with structural and electrical remodeling eventually leading to

heart failure and increased propensity to ventricular tachyarrhyth-

mia and sudden cardiac death [20]. CYP2J2 overexpression

markedly reduced the mortality after TAC. However, cardiac

hypertrophy and decline in pump function were only moderately

ameliorated. Thus, we assumed that the increased survival rate of

CYP2J2-transgenic mice was predominantly related to an

improvement of cardiac electrical stability. Supporting this notion,

ventricular tachyarrhythmia inducibility that strongly increased in

WT mice after TAC was completely suppressed in CYP2J2-TG

mice. Moreover, CYP2J2 TG mice displayed less severe QRS

interval prolongation than WT mice. QRS prolongation indicates

ventricular conduction slowing and has been considered as a

predictor of mortality in congestive heart failure patients [21,22].

In agreement with the antiarrhythmic effect, CYP2J2 overexpres-

sion increased ventricular refractoriness. Prolongation of VERP

protects against reentry tachycardias as known from the mecha-

nism of action of antiarrhythmic drugs. EETs inhibit the open

probability of cardiac Na+-channels resembling the action of Class

I antiarrhythmics such as lidocaine [9]. This effect may have

contributed to the ventricular refractoriness prolongation observed

in CYP2J2-TG mice. Action potential prolongation, as induced by

Class III antiarrhythmics, would provide an alternative explana-

tion. However, in contrast to this expectation, cardiac action

potential duration is significantly shortened in CYP2J2-TG

compared with WT mice [7] and we did not observe QT interval

prolongation.

TAC-induced cardiac hypertrophy was associated with gap

junction remodeling as indicated by delocalization of Cx43 in WT

mice. In contrast, the hypertrophied hearts of CYP2J2-TG mice

showed a preserved Cx43 expression pattern. Reduced and

heterogeneous Cx43 expression causes ventricular conduction

slowing and irregular impulse propagation and thus increases the

risk of fatal ventricular tachyarrhythmia [23,24]. Changes in the

phosphorylation state of Cx43 are obviously responsible for loss of

gap junction integrity during chronic pressure overload.

Providing an impressive proof of this notion, mice expressing

a phosphatase-resistant mutant of Cx43 are protected against

TAC-induced gap junctional remodeling and development of

arrhythmia vulnerability [25]. Our study suggests that CYP2J2-

derived metabolites such as EETs may play a critical role in the

regulation of ventricular Cx43 remodeling. The mechanism

may be related to the capacity of EETs to activate mitochon-

drial KATP channels. Mitochondrial KATP activity is higher in

cardiomyocytes from CYP2J2-TG compared to WT mice and

can be increased in WT cardiomyocytes by exogenous EET

administration [18]. Activation of mitochondrial KATP channels

by ischemic preconditioning or diazoxide protects against

ischemia-induced Cx43 redistribution and electrical uncoupling

[26]. Inhibition of mitochondrial KATP channels blunts

arrhythmia protection in ischemic exercised hearts [27]. In

our study, short-term diazoxide treatment abolished the high

arrhythmia susceptibility of hypertrophied WT hearts, indicat-

ing that increased mitochondrial KATP channel activity would

be indeed sufficient to confer the protection observed in

CYP2J2-TG mice. Indicating a general link between EETs

and connexins, EETs also increase inter-endothelial and

myoendothelial gap junctional communication in the vascula-

ture [28,29]. However, further studies are necessary to

understand the actual molecular mechanisms that may link

EET-mediated mitochondrial K(ATP) channel activation to

protection against Cx43 redistribution and arrhythmia.

Atrial fibrillation is the most common chronic cardiac

arrhythmia in humans [30,31]. Adrenergic stimulation from

catecholamines can cause atrial fibrillation in patients [32]. By

chronic ISO infusion in mice, we have established a new

disease-relevant model for investigating the mechanisms of

arrhythmogenic atrial remodeling. We observed, presumably for

the first time, that chronic b-adrenergic stimulation indeed

enhances atrial fibrillation inducibility without increasing the

vulnerability to ventricular arrhythmia in WT mice. Consistent

with the specificity of this effect, atrial but not ventricular

refractoriness was decreased. CYP2J2-overexpression protected

against AERP shortening and atrial fibrillation induction.

However, CYP2J2 overexpression did not affect the general

hypertrophic or chronotropic response to chronic ISO infusion.

Arrhythmogenic atrial remodeling was associated with increased

fibrosis in WT mice. This feature was significantly ameliorated

in CYP2J2-TG mice. Atrial fibrosis causes conduction abnor-

malities and is generally considered as an important component

of the remodeling process creating the substrate for atrial

fibrillation [33].

Previous studies used inhibitors of the soluble epoxide

hydrolase (sEH) or sEH knockout mice to increase the

cardiovascular EET levels by preventing the metabolism of

EETs to the corresponding less active dihydroxyeicosatrienoic

acids [34]. These measures were highly effective in protecting

against pressure overload- and angiotensin II-induced cardiac

hypertrophy and heart failure. Some of these studies also

showed that blockade of sEH protects against increased cardiac

arrhythmia susceptibility [35,36]. However, whether reduced

arrhythmia vulnerability was a concomitant feature of reduced

hypertrophy and heart failure or due to mechanisms that

specifically ameliorate electrical remodeling remained unclear.

Combined with the results of the present study, we can now

conclude that the epoxy-metabolites produced by CYP2J2 or

stabilized upon sEH inhibition exert a direct antiarrhythmic

effect that protects the heart from arrhythmia even under

conditions of severe hypertrophy and pump failure.

Table 1. Electrophysiological parameters of WT and CYP2J2-
TG mice four weeks after TAC or sham operation.

WT Sham CYP Sham WT TAC CYP TAC

HR (bpm) 459.267.2 483.6617.4 599.3±20.4* 511.8±27.6`

P (ms) 16.760.2 16.560.2 14.4±0.4* 15.860.6

PR (ms) 39.461.1 38.860.7 42.065.5 39.861.0

QRS (ms) 10.960.3 11.760.3 14.0±1.4* 12.060.3

QTc (ms) 53.761.3 58.661.0 55.362.0 54.661.7

AV WB (ms) 73.163.4 73.761.6 69.661.9 69.262.4

AV 2:1 (ms) 52.061.9 52.061.0 53.661.2 50.462.7

AVNERP (ms) 50.261.6 48.061.0 44.361.8 45.660.8

AERP (ms) 20.361.0 14.760.6 16.761.4 18.461.4

VERP (ms) 24.061.4 31.4±0.8* 30.9±2.2* 45.6±1.2*{`

WT – Wildtype; CYP – CYP2J2 overexpressing mice; TAC – Transverse aortic
constriction; HR – Heart rate; bpm – Beats per minute; ms – milliseconds; P – P-
wave duration; PR – PR interval; QRS – QRS interval; QTc – QT interval (corrected
for heart rate); AV WB – 1:1 Atrioventricular node conduction capacity
( = Wenckebach point); AV 2:1 - 2:1 Atrioventricular node conduction capacity;
AVNERP – Atrioventricular node effective refractory period; AERP – Atrial
effective refractory period; VERP - Ventricular effective refractory period.
p,0.05 * vs. WT Sham,
{vs. CYP Sham,
`vs. WT TAC.
doi:10.1371/journal.pone.0073490.t001

CYP2J2 and Arrhythmia

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e73490



Materials and Methods

Detailed Methods are provided in the Online Supplement.

Animals
Male CYP2J2-transgenic mice (CYP-TG) and corresponding

wild-type (WT) littermates [18] were kept on a 12 h/12 h light/

dark cycle in temperature-controlled rooms and fed with standard

chow (ssniff, Soest, Germany) and water ad libitum. All animal

procedures were performed in accordance with the guidelines of

the American Physiological Society and were approved by local

authorities (Landesamt für Gesundheit und Soziales, Berlin,

Germany).

Pressure overload-induced cardiac hypertrophy
Transverse aortic constriction (TAC) was performed as

described previously [37]. Left ventricular mass (LVM) and

Figure 2. Arrhythmia susceptibility after pressure overload-induced cardiac hypertrophy. (A) Representative original tracings showing
the induction of ventricular tachyarrhythmia by programmed electrical stimulation in WT mice 4 weeks after TAC (upper panel) and the resistance of
TAC operated CYP2J2-TG mice under the same conditions (lower panel). (B) Ventricular arrhythmia inducibility significantly increased in WT mice after
TAC (n = 5) compared with the sham control (n = 7). Arrhythmias were not inducible in any of the CYP2J2-TG mice both after sham (n = 5) and TAC
operation (n = 6). Each animal was subjected to three protocols of programmed electrical stimulation and statistical evaluation was performed as
described in Materials and Methods. (C) The severity of ventricular tachyarrhythmias scored according to the length of induced episodes (number of
consecutive ventricular extrasystoles; VES) increased in WT mice after TAC compared with the sham control, whereas neither non-sustained nor
sustained arrhythmias were inducible in corresponding CYP2J2-TG mice. (D) Analysis of arrhythmia inducibility in Langendorff preparations of
isolated perfused hearts (n = 4 per group). Comparison of the vehicle treated groups confirmed the contrasting vulnerabilities of hypertrophied WT
and CYP2J2-TG hearts after TAC. Perfusion with the mitochondrial KATP-channel opener diazoxide (100 mM, 20 min prior to programmed electrical
stimulation) reduced the arrhythmia inducibility of WT-TAC hearts to the levels of hearts isolated from sham WT mice as well as CYP2J2-TG mice after
TAC. Pretreatment with the EET antagonist 14,15-EEZE-mSi (48.5 mM for 20 min) reversed the protection of hypertrophied CYP2J2-TG hearts towards
arrhythmia inducibility. Results represent mean6SEM; ANOVA, Post-Hoc Tukey; *p,0.05 vs. WT-Sham (vehicle); `p,0.05 vs. WT-TAC (vehicle);
# p,0.05 vs. CYP-TAC (vehicle).
doi:10.1371/journal.pone.0073490.g002

CYP2J2 and Arrhythmia
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Figure 3. Chronic pressure overload-induced alterations in Cx43 localization. (A) Representative immunofluorescence staining of left
ventricular cryosections prepared from WT and CYP2J2-TG mice 4 weeks after TAC surgery. The sections were co-stained for detecting Cx43 (green
fluorescent signal) and N-cadherin (red). Cx43 and N-cadherin are colocalized (yellow) to the intercalated disks (indicated by white arrows). This
normal Cx43 localization was largely preserved in CYP2J2-TG mice, whereas WT mice featured TAC- induced redistribution of Cx43 to the cytoplasm
and lateral borders of the cardiomyocytes (pink arrows). Nuclei were stained with DAPI (blue). Scale bar: 50 mm. (B) Quantitative analysis of Cx43 and
N-cadherin colocalization. Results represent mean6SEM based on the analysis of 5 sections per heart and 4–6 animals per group; ANOVA, Post-Hoc
Tukey; *p,0.05 vs. WT-Sham; `p,0.05 vs. WT-TAC.
doi:10.1371/journal.pone.0073490.g003

Figure 4. Induction of cardiac hypertrophy by chronic b-adrenergic stimulation. (A) Two weeks of chronic ISO infusion significantly
increased the heart weight to tibia length-ratio in WT and CYP2J2-TG mice (n = 7 per group) compared with the vehicle controls (n = 7 and 5). The
hypertrophic response was not different in CYP2J2-TG compared to WT mice. (B) Systolic function was not significantly altered upon chronic ISO
infusion as indicated by preserved EF values compared to the respective vehicle controls. EF was slightly but significantly higher in CYP2J2-TG than
WT mice two weeks after chronic ISO stimulation. Results represent mean6SEM; ANOVA, Post-Hoc Tukey; *p,0.05 vs. WT+Vehicle; {p,0.05 vs.
CYP+Vehicle; `p,0.05 vs. WT+ISO.
doi:10.1371/journal.pone.0073490.g004

CYP2J2 and Arrhythmia
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Table 2. Electrophysiological parameters of WT and CYP2J2-TG mice two weeks after chronic vehicle or isoproterenol infusion.

WT Vehicle CYP Vehicle WT ISO CYP ISO

HR (bpm) 509.0614.7 507.8639.5 650.7±3.9* 642.9±7.4{

P (ms) 16.160.4 15.460.2 15.860.4 16.860.2

PQ (ms) 38.860.9 39.261.0 35.3±0.6* 34.5±0.8{

QRS (ms) 10.560.3 10.860.4 9.660.2 10.560.2

QTc (ms) 53.161.1 52.660.8 49.760.9 51.461.0

AV WB (ms) 71.361.3 67.560.5 67.861.0 70.061.8

AV 2:1 (ms) 52.060.5 5061.6 49.660.6 53.361.4

AVNERP (ms) 48.761.3 46.361.1 46.761.2 48.7±1.3`

AERP (ms) 21.760.9 22.261.1 13.1±0.5* 18.0±0.7{`

VERP (ms) 28.961.0 36.161.9 30.560.6 36.860.6

WT – Wildtype; CYP – CYP2J2 overexpressing mice; TAC – Transverse aortic constriction; HR – Heart rate; bpm – Beats per minute; ms – milliseconds; P – P-wave
duration; PR – PR interval; QRS – QRS interval; QTc – QT interval (corrected for heart rate); AV WB – 1:1 Atrioventricular node conduction capacity ( = Wenckebach point);
AV 2:1 - 2:1 Atrioventricular node conduction capacity; AVNERP – Atrioventricular node effective refractory period; AERP – Atrial effective refractory period; VERP -
Ventricular effective refractory period.
p,0.05 * vs. WT Vehicle.
{vs. CYP Vehicle.
`vs. WT ISO.
doi:10.1371/journal.pone.0073490.t002

Figure 5. Arrhythmia susceptibility after chronic b-adrenergic stimulation-induced cardiac hypertrophy. (A) Representative original
tracings showing the induction of atrial fibrillation by programmed electrical stimulation in WT mice 2 weeks after chronic ISO infusion (upper panel)
and the resistance of CYP2J2-TG mice treated in the same manner (lower panel). (B) Atrial fibrillation inducibility significantly increased in WT mice
after chronic ISO infusion (n = 9) compared with the vehicle control (n = 8) and was significantly higher than in CYP2J2-TG mice (n = 7 and n = 8 for the
vehicle and ISO groups). (C) The relative percentage of inducible sustained atrial fibrillation was markedly higher in WT compared with CYP2J2-TG
after chronic ISO infusion. For statistical evaluation of arrhythmia inducibilities and severity scoring compare Fig. 2. Results represent mean6SEM;
ANOVA, Post-Hoc Tukey; *p,0.05 vs. WT+Vehicle; {p,0.05 vs. CYP+Vehicle; `p,0.05 vs. WT+ISO.
doi:10.1371/journal.pone.0073490.g005
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ejection fraction (EF) were determined by echocardiography

following published procedures [38]. Cohort 1 was analyzed four

weeks after TAC by ECG and electrophysiological studies in vivo or

in an isolated heart system. Cohort 2 was sacrificed eight weeks

after TAC or sham surgery.

Cardiac hypertrophy upon chronic b-adrenergic
stimulation

ISO was continuously infused via subcutaneously implanted

osmotic minipumps (Alzet) at a rate of 40 mg/kg/d for two weeks.

Echocardiography was performed before and after 13 days of ISO

infusion. After two weeks of treatment, ECG and electrophysio-

logical data were recorded.

In vivo electrophysiological studies
Programmed electrical stimulation (PES) was performed in the

right atrium or right ventricle using a digital electrophysiology lab

(EP Tracer; CardioTek) to determine refractory periods and

arrhythmia inducibility [39]. Atrial arrhythmias were defined as

fast (.800 bpm) electrical activity in the right atrial electrograms,

with ECG P waves different to normal sinus rhythm and

subsequent fast, but physiological activation of the ventricles

(ECG R wave and right ventricular electrograms similar to normal

sinus rhythm). Atrial fibrillation was defined as fast, irregular

activity in the right atrial electrograms with irregular conduction

to the ventricles (high variability of R-R intervals). Ventricular

arrhythmias were defined by fast (.800 bpm) activity originating

from the ventricular myocardium (change in morphology of ECG

R waves and local right ventricular electrograms compared to

normal sinus rhythm). During inhalation anesthesia with isoflur-

ane (2% with 360 ml/min air flow; Univentor 400 anesthesia

unit), the animals’ body temperature was kept constant at 37uC
using a homeothermic blanket control unit (Hugo Sachs

Elektronik, Harvard Apparatus) with rectal temperature control.

After preparation of the right jugular vein, a 2 French octapolar

electrophysiology catheter (CIB’ER mouse cath; NuMed) was

placed in the right heart, including atrium and ventricle. PES was

performed using a standardized protocol that included trains of 10

basal stimuli (S1) followed by up to 3 extra stimuli (S2–S4),

delivered with a coupling interval decreasing in steps of 5 ms until

ventricular or atrial refractoriness was reached. The stimulation

procedures were repeated at three different basal cycle lengths

(100 ms, 90 ms, 80 ms) with each animal. Occurrence and

duration of inducible arrhythmias were documented. Only

stimulation protocols with reproducible arrhythmias longer than

five consecutive beats in ventricle and episodes longer than 350 ms

in the atria were considered positive. ‘‘Arrhythmia inducibility’’

Figure 6. Effect of chronic b-adrenergic stimulation on the expression of markers of fibrosis in WT and CYP2J2-TG mice. RNA isolated
from atrial tissue 2 weeks after vehicle or ISO infusion was reverse transcribed and analyzed by quantitative Taqman- or SYBR-PCR for the expression
of Col1 (A), Col3 (B) and fibronectin (C). WT+Vehicle: n = 8; CYP+Vehicle n = 5; WT+ISO: n = 10; CYP+ISO: n = 8. ANOVA, Post-Hoc Tukey; *p,0.05 vs.
WT+vehicle {p,0.05 vs. CYP+vehicle; `p,0.05 vs. WT+ISO.
doi:10.1371/journal.pone.0073490.g006
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was calculated as the percentage of effective (positive) out of total

protocols applied. Accordingly, the arrhythmia inducibility of

individual animals could take a value of 0, 33, 66 or 100%. For

statistical evaluation, the data obtained for the individual animals

in a given group were averaged and are given as mean6SEM. For

scoring the severity of induced arrhythmias, three response

categories were defined: sustained ($10 consecutive ventricular

extrasystoles, VES or atrial fibrillation episodes $30 sec in at least

one protocol), non-sustained (,10 VES or atrial fibrillation

episodes ,30 sec in at least one protocol) and no arrhythmias in

all three protocols. The data are given as percentage of animals in

a given group assigned to these categories.

Electrocardiography (ECG)
Standard limb lead surface ECGs were recorded under slight

isoflurane anesthesia using skin electrodes. Calculation of standard

ECG time-interval parameters were performed by two indepen-

dent operators based on averaged ECG lead II waveforms.

Corrections for heart rate and definition of time points were made

as described previously [39].

Langendorff preparation of isolated hearts
The mice were injected i.p. with 40 I.U. of Heparin-Na in

PBS and were sacrificed after 10 min. Hearts were rapidly

excised and placed in ice-cold modified Krebs-Henseleit buffer,

and the aortas were cannulated. The mounted hearts were

perfused in a retrograde fashion at constant pressure (60 mm

Hg) with continuously aerated (95% O2–5% CO2) modified

Krebs-Henseleit buffer containing (in mmol/l) 118 NaCl, 4.7

KCl, 1.2 MgSO4, 1.5 CaCl2, 24.7 NaHCO3, 0.23 KH2PO4,

0.06 EDTA and 11.1 glucose, at a temperature of 37uC. The

hearts were stabilized for 10 min and then treated for 20 min

with either the mitochondrial KATP-channel opener diazoxide

(100 mmol/l in the perfusion buffer), a selective EET-antagonist

(48.5 mmol/l 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonyli-

mide; 14,15-EEZE-mSI [40]) or as control with vehicle (0.1%

dimethylsulfoxide; DMSO). A pacing electrode was placed at

the left ventricle and the same PES protocols to determine

ventricular refractoriness and inducibility of ventricular ar-

rhythmias were performed as used in vivo.

Histology
In the TAC model, frozen tissue was embedded in O.C.T-

Tissue Tek (Sakura, Netherland) and cut in 2 mm sections.

Connexin 43 (Cx43) was stained using anti-Cx43 antibody

(1:1000; from Sigma-Aldrich) and Alexa488-conjugated secondary

anti-rabbit antibody (1:500; Jackson-Immuno Research). Gap

junction protein N-cadherin was stained using anti-N-cadherin

antibody (3 mg/ml; from Invitrogen) and secondary Cy3-conju-

gated secondary anti-mouse antibody (1:300; Dianova). Cx43

location was quantified by determining the colocalization of Cx43

and N-cadherin in the intercalated discs as described before [25].

Myocyte area was measured from cross-sectional area of

cardiomyocytes stained by wheat germ agglutinin (WGA) labeled

with Oregon Green 488 (1:500; Life Technologies).

Gene expression
mRNA levels of atrial and brain natriuretic peptides (ANP and

BNP) bmyosin heavy chain (bMHC), collagen 1 and 3 (Col1 and

Col3), and fibronectin were determined by Taqman or SYBR RT-

PCR protocols using 18S RNA as endogenous control. The

primers used are given in Table S1.

Data analysis and statistics
All data were tested for normal distribution and are given as

mean6SEM. Data were analyzed by a two-way ANOVA and post

hoc Tukey’s test using SPSS17 for Windows. Survival differences

were analyzed by the log-rank test. P-values ,0.05 were defined as

statistically significant.
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