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Abstract

Heat stroke (HS) is a life-threatening illness induced by prolonged exposure to a hot environment that causes central
nervous system abnormalities and severe hyperthermia. Current data suggest that the pathophysiological responses to heat
stroke may not only be due to the immediate effects of heat exposure per se but also the result of a systemic inflammatory
response syndrome (SIRS). The observation that pro- (e.g., IL-1) and anti-inflammatory (e.g., IL-10) cytokines are elevated
concomitantly during recovery suggests a complex network of interactions involved in the manifestation of heat-induced
SIRS. In this study, we measured a set of circulating cytokine/soluble cytokine receptor proteins and liver cytokine and
receptor mRNA accumulation in wild-type and tumor necrosis factor (TNF) receptor knockout mice to assess the effect of
neutralization of TNF signaling on the SIRS following HS. Using a systems approach, we developed a computational model
describing dynamic changes (intra- and extracellular events) in the cytokine signaling pathways in response to HS that was
fitted to novel genomic (liver mRNA accumulation) and proteomic (circulating cytokines and receptors) data using global
optimization. The model allows integration of relevant biological knowledge and formulation of new hypotheses regarding
the molecular mechanisms behind the complex etiology of HS that may serve as future therapeutic targets. Moreover, using
our unique modeling framework, we explored cytokine signaling pathways with three in silico experiments (e.g. by
simulating different heat insult scenarios and responses in cytokine knockout strains in silico).
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Introduction

Heat stroke (HS) is a life-threatening illness characterized by

profound central nervous system dysfunction, severely elevated

core temperature, as well as organ and tissue damage resulting

from environmental heat exposure [1]. Environmental heat

exposure is one of the most deadly natural hazards in the United

States with ,200 deaths per year. In the past two decades,

extreme heat exposure claimed more American lives than the

combined effects of hurricanes, lightning, earthquakes, floods and

tornadoes [2]. HS is also an international hazard as demonstrated

by the high incidence of death (.15,000 individuals) during the

2003 heat wave in France [3,4]. Clinical and experimental

evidence suggests that the pathophysiological responses to HS

are the result of a systemic inflammatory response syndrome

(SIRS) that ensues following HS collapse. The SIRS is regarded as

a response to bacteria and/or endotoxin leakage across ischemic-

damaged gut epithelial barrier membranes, which stimulates

cytokine and other inflammatory pathways that are thought to

mediate a variety of pathophysiological responses. The liver has

been implicated as an early key player in the heat-induced SIRS

based on its function as a major site of endotoxin clearance [5].

Cytokines are important regulators of the acute-phase response

(APR) to inflammation/injury and have been implicated as

mediators of the SIRS with HS [6].

Several studies have characterized peripheral cytokine distur-

bances in HS patients. At the time of clinical admission or shortly

after cooling, the concentration of circulating interleukin (IL)-1a,

IL-1b, IL-1 receptor antagonist (IL-1Ra), IL-6, soluble IL-6

receptor (sIL-6R), IL-10, interferon (IFN)c, tumor necrosis factor

(TNF)a, and/or soluble TNF receptors subtype I (sTNF-RI) and

subtype II (sTNF-RII) have been shown to be elevated in some HS

patients [7–10]. Unfortunately, circulating cytokines are often

determined primarily at end-stage HS, which has limited our

understanding of the time course of changes in the balance of these

mediators during progression of the SIRS. Moreover, the complex

interactions among cytokines that mediate the APR and SIRS

remain unknown. Development of a conscious mouse model that

simulates the human pathophysiological responses to HS has

demonstrated that plasma concentrations of IL-1b, IL-6, IL-10,

and IL-12p40 are increased in a time- and core temperature (Tc)-

dependent manner [6]. Furthermore, concomitant elevation of
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pro- (e.g., IL-1) and anti-inflammatory (e.g., IL-10) cytokines

suggests that a complex network of interactions orchestrates the

SIRS during HS recovery.

Accompanying elevations in cytokines, organ (kidney, liver,

spleen) and tissue (gut, skeletal muscle) damage are common

manifestations of the HS syndrome [11–13]. The liver is a major

immune organ known to produce and respond to cytokines during

inflammation [14] and damage to this organ is primarily observed

in long-term survivors of HS [15]. However, it is unknown if liver

damage is a consequence of direct thermal injury or cytokine-

induced pathophysiological changes associated with the SIRS,

indicating the importance of correlating changes in circulating

cytokine levels with inflammatory changes occurring at the organ

and/or tissue level. Helwig and Leon [14] determined plasma,

liver, and spleen mRNA accumulation patterns for the IL-1 family

members in mice following HS; increased IL-1a, IL-1b, and IL-1

receptor subtype I (IL-1RI) and subtype II (IL-1RII) mRNA

accumulation in the liver and spleen suggested these organs may

contribute to circulating IL-1 family protein levels following HS,

but the absence of studies on protein translation that include

protein tagging precluded a conclusive association.

TNF-a has been shown to have deleterious actions in

endotoxemia [16,17] and it has been assumed that this cytokine

functions similarly in HS. Leon [18] conducted the first studies

using TNF receptor subtype I (TNF-RI) and subtype II (TNF-RII)

knockout mice (TNFR KO; i.e., can produce TNF, but do not

have signaling receptors) and showed slower heating and faster

cooling rates in KO compared to wild-type mice. Although the Tc

responses displayed by TNFR KO mice would be considered

protective against HS, these mice showed a trend towards

increased mortality compared to their wild-type controls during

the second day of recovery (40% vs. 100% survival, respectively).

This preliminary study indicates that TNF might have time-

dependent pro- (early) and anti-inflammatory (late) actions in the

HS syndrome, although the mechanisms mediating the early

actions of this cytokine in HS remain unidentified. It is important

to elucidate the pro-inflammatory actions of TNF in the heat-

induced SIRS to determine if this cytokine may be an important

therapeutic target to mitigate morbidity/mortality associated with

this syndrome.

Using a conscious mouse HS model, we showed previously that

several pro- and anti-inflammatory cytokines are elevated in the

circulation and liver following HS collapse [14,18]. TNF is known

to interact with several other cytokine pathways during bacterial

infection and it is assumed that similar mechanisms of inflamma-

tion are mediating the SIRS to HS. Therefore, using a conscious

mouse HS model we measured circulating cytokine/soluble

cytokine receptor (IL-1a, IL-1b, IL-6, IL-10, TNF-a, sIL-1RI,

sIL-1RII, sIL-6R, sTNF-RI, and sTNF-RII), liver cytokine and

receptor mRNA accumulation (IL-1a, IL-1b, IL-6, IL-10, TNF-a,

IL-1RI, IL-1RII, IL-6R, TNF-RI, and TNF-RII), and liver

HSP70 mRNA accumulation in wild-type (WT) and TNFR KO

mice. HSP70 mRNA accumulation levels were used as a sensitive

measure of stress to this organ, as this pathway is activated by

many factors that are inherent in our HS model (e.g., heat stress,

dehydration, oxidative stress).

The mediators involved in progression of the HS syndrome and

the intricate map of interactions between them form a complex

system that can only be truly understood using a systems

approach. Although several computational models of acute

inflammation exist [19,20], the aim of this study was to

incorporate a level of mechanistic detail that was not previously

incorporated into these models. Therefore, we developed a

mathematical model that integrates relevant biological knowledge

with our novel experimental data from wild-type mice to identify

testable hypotheses that will delineate the molecular mechanisms

mediating the complex etiology of the heat-induced SIRS. This

mechanistic dynamic model describes intra- and extracellular

changes (in the liver and in the plasma, respectively) in cytokine

signaling pathways under HS and was fitted to genomic and

proteomic data of wild-type mice by means of global optimization

techniques. Model validation was performed using a completely

different set of data from TNFR KO mice that were not used for

calibration purposes, but demonstrate the predictive capabilities of

our framework. The broader applicability of the developed model

in the context of acute inflammation was assessed by comparing its

predictions with experimental data from mice treated with LPS

[21]. The purpose of this study was to: 1) assess the complex

interaction of cytokines in the liver and the circulation during early

progression of the heat-induced SIRS; 2) gain insight into

molecular mechanism(s) that may serve as future therapeutic

targets for HS patients; 3) analyze the correlation of organ (liver)

mRNA accumulation and circulating levels of cytokines; 4)

determine whether the TNFR KO responses in the liver and the

circulation are altered due to differences in heating and cooling or

represent a direct effect of the absence of TNF signaling.

Moreover, we provide a unique modeling framework that supports

identification of the role of different cytokine signaling pathways

using three in silico experiments that can be used to guide further

in vivo experiments. Specifically, we examined the response to the

exposure to a more severe heat insult, the injection of a dose of

LPS, and the knockout of IL-10R.

Results

Mathematical Model of the Cytokines Network
The primary mechanisms represented in this model are the

following: activation of various transcription factors (TFs) by

stimulation via a set of external and internal signals triggered by

heat stress; regulation of cytokine and cytokine receptor gene

transcription involved in the network by means of these TFs;

translation of mRNA into proteins; transport of the soluble

proteins to the pericellular milieu; binding of plasma cytokines to

their cognate receptors; and signaling back to the TFs. Details

about the modeling assumptions are given in the Methods section.

The elevated Tc in response to heat insult is one of several

factors that is thought to induce organ damage and increase the

concentration of denatured proteins (DP), endotoxins (lipopoly-

saccharide, LPS), and reactive oxygen species (ROS) that

concomitantly initiate a network of cytokine responses. Four TFs

were assumed to be the primary regulators of this network,

namely, heat shock factor 1 (HSF-1), nuclear factor-kB (NF-kB),

activator protein 1 (AP-1), and signal transducer and activator of

transcription 3 (STAT-3). The implicated ligands and receptors

were classified into six families (heat shock protein (HSP)70, toll-

like receptor (TLR)-4, IL-1, IL-6, IL-10, and TNF) and their inter-

and intracellular activity was incorporated into the model as six

interconnected modules (Figure 1 and Supporting Information

S2).

The model is described by a system of 65 ordinary differential

equations (ODEs) and 217 parameters from which 130 parameters

were fitted to experimental data corresponding to a strain of WT

mice (B6129F2) using the toolbox SensSB [22]. The model was

built based on the hypothesis that the liver is the main source of

circulating cytokines. In order to test this hypothesis, during model

fitting we gave priority to the liver qPCR data (higher weights in

the cost function); therefore, we tried to achieve the best possible

fitting for the liver and analyze whether it was possible to

Modeling Cytokine Signaling under Heat Stroke
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simultaneously fit the circulating cytokines based on the afore-

mentioned hypothesis. For the mRNA expression of the WT

animals, the fitting lies within the confidence interval of almost

every experimental point. Only the values of mIL6 and mIL10 for

Tc,max are considerably smaller than those predicted by the model;

disregarding these two points, the average of the absolute values of

the standardized residuals (e�i ~(~yyi{yi)=s) is smaller than one,

meaning that, on average, the error of the fit is smaller than one

standard deviation from the mean [23]. The model was validated

using a set of data corresponding to TNFR KO mice that was not

used for model calibration. Note that, for validation purposes, all

parameters were fixed to the best values obtained in the calibration

step except for those related to TNF-RI and II transcription,

which were set to zero. A file with the value of the parameters,

reaction rates, and model equations is included as Supplementary

Information S3. SensSB files needed to reproduce the results are

provided as Supporting Information S4. Matlab figures containing

the estimated time course for all the states are available as

Supporting Information S5.

Figure 1. Cellular network of interactions amongst HSP70, TLR4, IL-1, IL-6, IL-10, and TNF families induced by heat stroke. Prolonged
exposure to a high ambient temperature increases core temperature and is associated with organ damage, increase of denatured proteins (DP),
reactive oxygen species (ROS), and LPS. As a consequence, transcription factors (TF) HSF-1, NF-kB, AP-1, and STAT-3 are activated and regulate the
transcription of a set of cytokine genes in the cell nucleus represented by the inner grey circle (each of the colored boxes contains the genes
regulated by a certain TF: HSF in yellow, NF-kB in green, AP-1 in blue, and STAT-3 in dark grey). These mRNAs are exported to the cytoplasm and
translated into proteins (not represented in the figure). These cytokines/soluble cytokine receptors can exit the cell throughout the cell membrane
(outer grey circle) and be released into the blood stream. The proteins that are embedded into the cell membrane represent transmembrane
receptors.
doi:10.1371/journal.pone.0073393.g001
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Experimental Data, Model Fitting and Validation
Liver mRNA accumulation and circulating cytokines and

receptors concentration were measured at four sampling points:

1) baseline (prior to heat exposure); 2) maximum core temperature

(Tc,max~42:40C), also referred to as HS collapse, at which time

the mice were removed from the heat; 3) ,30 minutes of HS

recovery when the core temperature returns to baseline (RTB; first

Tc value ƒ36:00C during cooling); 4) ,3 hours of recovery when

mice exhibit hypothermia depth (lowest Tc value with cooling rate

of 0:010C �min during recovery). Liver mRNA accumulation of

AP-1 and NF-kB related genes is shown in Table 1. Liver mRNA

accumulation of HSP, cytokines, and cytokine receptors is

summarized in Table 2. The experimental protocol is detailed in

the Methods section.

Mouse core temperature profiles. The two strains of mice

used in this study, WT and TNFR KO, showed significantly

different Tc profiles under the same heat stress protocol (Figure 2).

TNFR KO mice maintained ,0.6uC lower Tc than WT mice

during hyperthermia but experienced similar thermal load (a

measure of heat strain), although the time to reach Tc,max was ,30

minutes longer than the WT mice (271+8% vs. 240+8%,

respectively; ANOVA, Pv0:05) and associated with a significantly

higher level of dehydration (11:8+0:3% vs. 10:0+0:3%, respec-

tively; ANOVA, Pv0:05) [24]. TNFR KO mice also showed a

significantly faster cooling rate than WT mice from Tc,max to

hypothermia depth. Despite genotype differences in heating and

cooling profiles, hypothermia depth was virtually identical

between genotypes and was observed ,3 hours after removal

from the heat stress environment. Taken together, these data

indicate a direct effect of TNF signaling on Tc regulation during

heat exposure and recovery [24].

Liver transcription factor mRNA accumulation. We

measured liver mRNA accumulation of all the NF-kB family

members, namely, NF-kB1, NF-kB2, RELA, RELB, C-REL, and

IkB (see Table 1). Liver NF-kB1, NF-kB2, RELA, and IkB

Table 1. Liver fold-change in mRNA accumulation during
heat stroke recovery in WT and TNFR KO mice for NF-kB and
AP-1 related genes.

Gene Strain TC,max RTB Hypothermia

NF-kB1 B6129F2 0.750 0.872 1.14{a

TNFR KO 0.846 1.04 1.29{1a

NF-kB2 B6129F2 1.37a 1.65 1.86

TNFR KO 1.55a 2.08 2.06{

RELA B6129F2 1.08 1.08 1.46{

TNFR KO 1.18 1.37 1.38

RELB B6129F2 1.55 2.02 2.03

TNFR KO 2.141 2.14 3.16{

C-REL B6129F2 4.26 3.75 4.27

TNFR KO 4.54 3.69 4.32

IkB B6129F2 1.30 1.36 1.67

TNFR KO 1.05 1.42 1.52

JUN B6129F2 53.0a 109.9{ 41.7

TNFR KO 40.8a 86.9{ 93.0{

FOS B6129F2 46.7 52.8 24.2a

TNFR KO 53.6 53.6 115.9{a

Data represent fold-change in liver mRNA accumulation relative to controls at
the same time point. Bold fonts represent significantly higher than time-
matched controls (one-way ANOVA, Pv0:05);
{represents significant difference from Tc,max ;
1represents significant difference from return-to-baseline;
arepresents significant difference between genotypes within each gene. Tc,max ,
maximum core temperature (42.4uC); TNFR KO, tumor necrosis factor receptor
knockout; WT, wild-type strain (B6129F2).
doi:10.1371/journal.pone.0073393.t001

Table 2. Liver fold-change in mRNA accumulation during
heat stroke recovery in WT and TNFR KO mice for HSP,
cytokines, and cytokine receptors.

Gene Strain TC,max RTB Hypothermia

HSP70 B6129F2 657.9 780.4{ 1204.5{1

TNFR KO 565.8 783.2{ 1071.1{1

aIL-1 B6129F2 2.0a 3.0a 2.1

TNFR KO 1.41a 1.6{a 3.7{

bIL-1 B6129F2 2.6a 10.7{a 4.7

TNFR KO 2.2a 4.7{a 7.0{

IL-1RI B6129F2 3.1 3.0 9.0{1

TNFR KO 3.0 2.9 4.7{

IL-1RII B6129F2 0.6a 1.9a 9.4{1

TNFR KO 0.5a 0.8{a 6.3{1

IL-6 B6129F2 1.11a 14.9{a 2.71a

TNFR KO 0.91a 6.7{a 6.4{a

IL-6R B6129F2 1.2 1.1 1.71

TNFR KO 1.2 1.2 1.4{

gp130 B6129F2 1.4 1.0 1.5

TNFR KO 1.2 1.4 1.2

IL-10 B6129F2 1.0 11.3{a 14.0{

TNFR KO 1.1 4.6{a 19.3{1

aTNF- B6129F2 0.4 2.0{ 1.1{

TNFR KO 0.5 0.7 0.8

Data represent fold-change in liver mRNA accumulation relative to controls at
the same time point. Bold fonts represent significantly higher than time-
matched controls (one-way ANOVA, Pv0:05);
{represents significant difference from Tc,max ;
1represents significant difference from return-to-baseline;
arepresents significant difference between genotypes within each gene. Tc,max ,
maximum core temperature (42.4uC); TNFR KO, tumor necrosis factor receptor
knockout; WT, wild-type strain (B6129F2).
doi:10.1371/journal.pone.0073393.t002
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mRNA accumulation was not significantly or little altered (less

than two-fold) at any time point in either genotype. C-REL was

upregulated ,4-fold at all sampling time points after the onset of

HS (Tc,max, RTB, and hypothermia depth) and RELB was ,2-

fold increased at RTB and hypothermia with less mRNA

accumulation observed at Tc,max for the WT mice. Although we

did not directly measure NF-kB nuclear localization, some studies

suggest that increased RELB transcription and translation is a

direct measure of this activity [25]. Overall, we did not detect any

genotype differences in liver mRNA accumulation of the NF-kB

family members.

The most robust changes between genotypes in the liver were

observed in JUN and FOS mRNA accumulation profiles (Table 1).

While both TFs were significantly upregulated (fold-change ,55.3

and ,38.5, respectively) at Tc,max, JUN mRNA accumulation was

significantly lower at Tc,max in TNFR KO compared to WT mice.

Liver JUN mRNA accumulation reached peak levels at RTB in

the WT mice (fold-change ,123) whereas TNFR KO mice

showed delayed mRNA accumulation with maximum values

observed at hypothermia (fold-change ,92). Interestingly, JUN

and FOS mRNA accumulation at baseline was slightly but

significantly lower (fold-change ,0.8) in the liver of TNFR KO

compared to WT mice suggesting homeostatic regulation of this

response by TNF.

HSPs. Baseline liver HSP70 mRNA accumulation did not

differ between genotypes and values observed in non-heated

controls were similar across all time points (data not shown). At

Tc,max, both genotypes showed ,600-fold increase in liver HSP70

mRNA accumulation that was significantly higher than controls,

similar between genotypes, and sustained through RTB in both

groups (Table 2; one-way ANOVA, Pv0:001). Peak mRNA

accumulation of HSP70 was observed at hypothermia with no

significant difference between genotypes (WT: 1364-fold;

TNFRKO: 1034-fold; Table 2).

Figure 3 shows model prediction based on WT data versus

experimental data from TNFR KO mice for liver mRNA

accumulation of HSP70. In accordance with literature [26] as

well as our experimental data, the model accurately predicts

increased liver HSP70 mRNA accumulation shortly after HS

collapse (,4–4.5 hours), with peak mRNA accumulation (.1000

fold) occurring at ,7 hours, when mice are hypothermic. As

illustrated in Figure 3, our model accurately fits the WT data used

for calibration (solid purple line) and, more importantly, predicts a

slightly delayed and attenuated response of the TNFR KO strain

(dashed green line). Although our experimental data from TNFR

KO mice suggested attenuated liver HSP70 mRNA accumulation,

this trend was not statistically significant. However, one might

expect such a response to occur in the TNFR KO mice since the

higher level of dehydration experienced by these mice would

generate greater ROS production and consequent inhibition of

HSF-1.

IL-1 family. Figure 4 represents model predictions (solid and

dashed lines) and experimental data (markers) for IL-1a and IL-1b
at the four sampling points (baseline, Tc,max, RTB, and

hypothermia). The left panels (4A and 4C) correspond to model

fitting using WT data, while right panels (4B and 4D) illustrate

model validation using TNFR KO data that were not used for

calibration. The top panels (4A and 4B) represent the fold change

for liver mRNA accumulation (mIL-1a, mIL-1b) and the bottom

panels (4C and 4D) correspond to the concentration of soluble (i.e.,

circulating) cytokines (sIL-1a, sIL-1b).

IL-1a, IL-1b, and IL-1Ra promoters contain NF-kB and AP-1

regulatory elements [27,28]. However, IL-1a and IL-1b exhibited

differential mRNA accumulation in the liver of HS mice, with IL-

1b fold change significantly higher than IL-1a at all time points

(see Table 2 and Figures 4A–B). Notably, liver IL-1a and IL-1b
mRNA accumulation was significantly delayed in TNFR KO

mice; these experimental data were captured by the model

(Figure 4B). That is, our model predicted an earlier peak of mIL-

1a and b mRNA accumulation in the WT at RTB (third sampling

point) at ,5 hours while TNFR KO mice presented maximal

mRNA accumulation between RTB and hypothermia (third and

fourth sampling point) at ,6 hours. IL-1RI mRNA accumulation

was similarly elevated in both genotypes throughout recovery (,3-

fold increase), but showed peak mRNA accumulation at hypo-

thermia (,8-fold for WT and ,4-fold for TNFR KO) compared

to the earlier time points. IL-1RII mRNA accumulation was

similar between groups with a significant increase in heated

animals compared to controls at hypothermia only (fold change

,6).

The concentration of sIL-1b (i.e., circulating protein) was ,10-

fold higher than sIL-1a at all time points regardless of genotypes

(Figures 4C–D). This difference in plasma levels might be due to

the different signaling mechanisms of IL-1a and IL-1b that induce

Figure 2. Averaged core temperature responses for WT and TNFR KO mice during heat exposure and recovery at a constant
ambient temperature. Experimental data were collected at four different points based on mouse core temperature responses (baseline
Tcƒ36:00C, Tc,max~42:40C, return to baseline, and hypothermia depth); therefore, the average was computed along the temperature axis.
doi:10.1371/journal.pone.0073393.g002

Modeling Cytokine Signaling under Heat Stroke
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expression of their own genes in an autocrine and paracrine

manner, respectively [29]. In addition, HS had no significant effect

on sIL-1a sIL-1b, sIL-1RI or sIL-1RII levels in either genotype.

The dissociation between liver IL-1 family mRNA accumulation

and circulating protein levels, reproduced by the computational

model, suggests that the proteins generated in the liver are not

extensively released into the blood stream or present a long delay

not captured within the time frame of our experimental protocol.

IL-6 family. Figure 5 shows the dynamics of IL-6 and IL-6R

with a structure analogous to Figure 4 (left panels for WT, right

panels for TNFR KO; top panels for mRNA accumulation fold

change, bottom panels for circulating concentration). WT liver

mIL-6R was not significantly affected by HS (dashed line); in

contrast, mIL-6 was undetectable at baseline, but ,13-fold higher

than the limit of detection at RTB, which represented the peak

time of mRNA accumulation of this cytokine. The model

accurately fits the experimental data for both IL-6R and IL-6

(Figure 5A) and model validation showed that the model

accurately predicts the TNFR KO response. That is, the model

predicts a delay with respect to WT data with maximum mRNA

accumulation between RTB and hypothermia (,6 hours) in

contrast to the maximum at RTB experienced by WT animals (,5

hours, Figures 5A–B). The model predictions for sIL-6 are

reasonable with peak levels expected at ,5–6 hours (Figures 5C–

D). On the contrary, sIL-6R responses were dissociated from the

time course and magnitude of changes observed in mIL-6R

Figure 3. Model simulation (solid and dashed lines) versus experimental data (markers) for the mRNA accumulation of HSP70
under heat stroke. The model accurately fits the WT data; moreover, it predicts a slightly delayed and attenuated response for the TNFR KO mice in
agreement with the experimental data (data used for validation only).
doi:10.1371/journal.pone.0073393.g003

Figure 4. Model simulation (solid and dashed lines) versus experimental data (markers) for the IL-1 family. (A) represents the mRNA
accumulation of IL-1a and IL-1b for WT, (B) the mRNA accumulation of IL-1a and IL-1b for TNFR KO (data used for validation only), (C) the plasma
concentration of IL-1a and IL-1b for WT, and, (D) the plasma concentration of IL-1a and IL-1b for TNFR KO (data used for validation only).
doi:10.1371/journal.pone.0073393.g004

Modeling Cytokine Signaling under Heat Stroke
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indicating that the liver is not an important source of this

circulating protein. As a consequence, the model is not able to

accurately predict the experimental changes in sIL-6R for either

WT or TNFR KO.

IL-10 family. In our experimental mouse study, liver mIL-10

was undetectable at baseline and peaked at hypothermia showing

,20-fold increase above the limit of detection observed in both

WT and TNFR KO mice (see Figures 6A–B); this response was

accurately captured by our model. We observed dissociation

between mIL-10 and sIL-10 levels that the mathematical model

was not able to capture (see Figures 6C–D). That is, liver mIL-

10 mRNA accumulation differed between strains at RTB with

significantly higher levels observed in WT compared to TNFR

KO mice (Table 2 and Figures 6A–B). On the other hand, we

have observed significantly lower sIL-10 levels in WT compared to

TNFR KO mice at hypothermia (,150 and ,500 pg/ml,

respectively; [24]), which was not accounted for by our model

(Figures 6C–D). This disconnect between predicted and experi-

mental sIL-10 levels might indicate that the mRNA accumulated

in the liver is not consistently translated into proteins and/or

transported to the plasma, as noted previously for some of the IL-1

and IL-6 family members.

TNF-a family. Liver mTNF-a did not show significant

change in response to HS in either genotype (Table 2). TNFR

KO mice showed ,6-fold higher sTNF-a levels than WT mice at

baseline and all time points of HS recovery in our model, with no

effect of heat exposure on this cytokine (Figure 7, [24]). Our model

slightly overestimates the sTNF-a concentration observed for the

WT mice and predicted a sTNF-a profile for the TNFR KO mice

significantly higher than the one observed experimentally

(Figure 7A). Liver mTNF-RI and mTNF-RII were not signifi-

cantly altered by HS; yet, sTNF-RI and sTNF-RII levels showed a

significant increase during HS recovery (up to ,5 fold-change for

sTNF-RI at Tc,max; see Figure 7B). The failure of our model to

capture this robust change in sTNFRI and II indicates that the

liver profile was not accurately reflecting circulating changes in

protein; as such, the liver did not appear to be the main source of

these soluble receptors. As expected, plasma levels of the sTNF-RI

and RII proteins were undetectable at all time points in TNFR

KO mice.

Sensitivity and Correlation Analysis
Despite the use of global optimization techniques, we found

several sets of parameters that accurately fit the data, with

differences on the order of the precision of the experimental data.

Some of the sets lead to indistinguishable model predictions that

can be explained by the correlation between parameters, the low

sensitivity of some of them, and/or different alternative pathways

that the available data are not able to discriminate. The set with

the smallest objective function value was selected as the optimal set

and used for the simulations depicted in the figures and further

analyses.

Local relative sensitivities revealed that, for the optimal

parameter set, 30% of the parameters account for less than 2%
of the information while the 12% most influential account for

more than 50% of the total sensitivity. The most influential

parameters are those related to HSP transcription, LPS action

(initial LPS content in the guts and signaling through TLR4), and

IL-6 and IL-1b transcriptional activation mediated by AP-1 and

NF-kB.

Figure 8 depicts the relative sensitivity indices (SI) and the

correlation matrix for the parameters of the Hill functions involved

in AP-1 target genes transcriptional activation. SI show that IL-

1Ra-related parameters (k mIL1ra AP1, kk mIL1ra AP1, and

n mIL1ra AP1) are the least influential whereas IL-1b-related

parameters (k mIL1b AP1, kk mIL1b AP1, and n mIL1b AP1)

are the most important; this is in agreement with the experimental

data, which indicated that IL-1b was the main member of the IL-1

family with actions during HS recovery. The correlation matrix

shows strong correlation among the three parameters involved in

Figure 5. Model simulation (solid and dashed lines) versus experimental data (markers) for the IL-6 family. (A) represents the mRNA
accumulation of IL-6 and IL-6R for WT, (B) the mRNA accumulation of IL-6 and IL-6R for TNFR KO (data used for validation only), (C) the plasma
concentration of IL-6 and sIL-6R for WT, and (D) the plasma concentration of IL-6 and sIL-6R for TNFR KO (data used for validation only).
doi:10.1371/journal.pone.0073393.g005
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each of the Hill equations (see Eq. 6), which may be the source of

some of the identifiability issues.

Strong correlations were also found among the parameters that

regulate AP-1 activation by ROS and LPS. This is due to the lack

of ROS and LPS experimental data, which makes the distinction

between the two main mechanisms for AP-1 activation very

difficult.

In silico Experiments
To test the strength and utility of our model for analysis of the

heat-induced SIRS, we conducted a series of in silico experiments

testing the effect of higher heat stress temperature, and knockout

of genes that have been implicated in the inflammatory response

(i.e., IL-10R). Moreover, an LPS injection experiment similar to

the one performed in [21] was simulated and the predicted values

for liver mRNA accumulation and plasma concentration for

several cytokines were qualitatively compared with the mice data.

Severity of the Heat Insult
Several studies show divergent results with respect to the

circulating TNF-a response to HS. Hammami et al. [9] were

unable to detect elevated circulating TNF-a concentrations in

21 HS patients at the time of clinical presentation or shortly after

cooling. On the contrary, Bouchama et al. [30] observed high

circulating TNF-a levels at clinical admission in 17 HS patients. It

is unclear if incongruity between studies is a complication of

differences in experimental procedures, extent of heat injury or

other unidentified factors. Several experiments have shown that

HSP70 (induced by heat or oral glutamine) inhibits TNF-a [31–

34]. Moreover, Shell et al. [35] have observed that heat shock

inhibits NF-kB activation in a dose- and time-dependent manner.

Figure 6. Model simulation (solid and dashed lines) versus experimental data (markers) for IL-10. (A) represents the mRNA accumulation
of IL-10 for WT, (B) the mRNA accumulation of IL-10 for TNFR KO (data used for validation only), (C) the plasma concentration of IL-10 for WT, and (D)
the plasma concentration of IL-10 for TNFR KO (data used for validation only).
doi:10.1371/journal.pone.0073393.g006

Figure 7. Model simulation (solid and dashed lines) versus experimental data (markers) for the TNF family. (A) represents the plasma
concentration of TNF-a for WT and TNFR KO, and (B) the plasma concentration of the soluble isoforms of receptors TNF-RI and TNF-RII for WT.
doi:10.1371/journal.pone.0073393.g007
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An in silico experiment using a more severe heat insult as an input

to the model resulted in increased TNF-a mRNA accumulation

levels (Figure 9). In response to Tc,max of 42.4uC, which simulates

the heat severity experienced by WT and TNFR KO mice in our

in vivo study, we observed decreased TNFa mRNA accumulation

throughout HS recovery (Figure 9). Interestingly, no significant

changes in TNFa mRNA accumulation were observed during the

initial 8 hours of experimentation, which fits our experimental

data. Conversely, increasing the Tc,max to 45.0uC induced ,4 fold

increase in TNFa mRNA accumulation within ,16 hours of

recovery. This in silico experiment supports the hypothesis in [35]

that high or low concentrations of TNF-a are a function of the

duration and severity of the heat insult that might also influence

the severity of the damage to the gut epithelial barrier and

therefore the release of LPS.

IL10-R KO. The anti-inflammatory actions of IL-10 are

thought to be mediated through the suppressor of cytokine

signaling 3 (SOCS-3) pathway. An in silico KO of the IL-10R

showed that SOCS-3 signaling was significantly decreased

compared to the response observed in WT mice (Figure 10). That

is, WT mice showed peak accumulation of SOCS-3 mRNA at ,9

hours; although the time course of this response was similar in the

IL-10R KO, SOCS-3 signaling was significantly attenuated

compared to the WT condition (Figure 10). These data suggest

that SOCS-3 signaling is a downstream target of IL-10 signaling

that may regulate the inflammatory response during recovery.

LPS injection. In order to assess the validity of our model in a

broader context of systemic inflammation we have simulated the

experiment described in [21] where WT (C57BL/10) mice were

treated with bacterial LPS and liver mRNA levels for TNF-a and

IL1b, among other cytokines, were measured. The model

Figure 8. Sensitivity indices and correlation matrix for the Hill function parameters of the AP-1 target genes. SI show that IL-1Ra
related parameters are the least influential whereas IL-1b related are the most important. The correlation matrix shows strong correlations among the
three parameters involved in each of the Hill equations.
doi:10.1371/journal.pone.0073393.g008

Figure 9. Predicted TNF-a mRNA accumulation for WT mice under different temperature profiles. An in silico experiment using a more
severe heat insult as an input to the model resulted in increased TNF-a mRNA accumulation levels.
doi:10.1371/journal.pone.0073393.g009
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reproduces the experimental results showing a fast inflammatory

response with rapid increase of TNF-a and IL1b liver mRNA

(Figure 11). The level of TNF-a experiences a significantly higher

increase than under heat stroke experiment suggesting that LPS

might not be playing a crucial role in the SIRS following the heat

stroke protocol considered in this work. However, strain differ-

ences between studies and the use of only one dose of LPS

complicate the interpretation. Future studies will need to be

designed to determine the role of LPS as an initiating factor of the

SIRS in our heat stroke model.

Discussion

This is the first study to devise a complex mathematical model

of the intra- and extracellular cytokine signaling pathway

interactions that are stimulated in response to HS. Literature

was thoroughly reviewed and the postulated model integrates

relevant biological knowledge and novel experimental data. Tissue

damage, DP, LPS, and ROS, stimulated upon Tc increase, are

assumed to initiate a network of HSP and cytokine responses

involving HSP70 and four families of cytokines, namely IL-1, IL-6,

IL-10, and TNF. Four transcription factors (HSF-1, NF-kB, AP-1,

STAT-3) were considered to be the primary regulators of this

network. The biological assumptions made for building this model

are supported by solid scientific evidence. However, it has to be

noted that the relation among all the species is not exactly known

and further experimentation might invalidate some of the

assumptions. Moreover, model fitting and sensitivity analysis

provide important information about the strength of the postulated

interactions giving flexibility to the model for supporting or

questioning them.

Hill functions and mass action kinetics were used to build an

ODEs model that was calibrated using a set of genomic (liver

mRNA accumulation) and proteomic (circulating cytokines and

receptors) data by means of global optimization. Despite different

factors, as blood volume changes due to dehydration, could

influence the value of the model parameters, these effects were

considered negligible and all the parameters were considered

invariant during the experiment. The model was validated using

an independent set of data (not used for calibration) from TNFR

Figure 10. Predicted SOCS-3 mRNA accumulation for WT and IL-10R KO. An in silico KO of the IL-10R shows decreased levels of SOCS-3
which may result in an enhanced pro-inflammatory response.
doi:10.1371/journal.pone.0073393.g010

Figure 11. Predicted TNF-a and IL1b mRNA accumulation after an LPS injection. A simulation of an LPS injection in WT mice shows an
immediate inflammatory response with rapid increase of TNF-a and IL1b liver mRNA.
doi:10.1371/journal.pone.0073393.g011
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KO mice. For both WT and TNFR KO, the model fits the liver

qPCR data within the precision of the experimental data;

however, for some of the cytokine receptors (e.g. sIL6R, sTNF-

RI, sTNF-RII) there is no combination of parameters that

accurately fit the liver and plasma data simultaneously since the

circulating levels are elevated while the liver mRNA remains

unchanged. The deficiencies in the model fit with respect to these

soluble cytokine receptors led to this relevant conclusion:

molecules newly transcribed and translated in the liver are

unlikely to be the primary sources of sIL6R, sTNF-RI, and

sTNF-RII in the circulation during HS. Since the model was built

based on this hypothesis, this fitting mismatch can only be

overcome by changing the model structure and including other

sources of circulating cytokines. Although changes of clearance

and/or degradation rates during HS could eventually explain this

divergence, the most plausible hypothesis is that other organs/cell

types (circulating macrophages, splenocytes), which we plan to

integrate into a more comprehensive model in the future, are also

contributing to the circulating cytokine milieu. As we move

forward with this modeling effort, these insights will be critically

important for us to identify the sources of circulating cytokines and

potential therapeutic targets that can be tested physiologically in

our mouse model. Moreover, these findings motivate the

development of a multi-modular model by systematic incorpora-

tion of other relevant peripheral organs, such as the spleen and the

brain, and ultimately the entire body.

For some of the species (e.g. IL-1b, IL-1a, IL-10), changes in

liver mRNA accumulation are not reflected in the circulating

protein levels. Although our computational model is able to

capture these dynamics, the low values estimated for the

translation/transport parameters associated with these cytokines

suggest that the mRNA is not consistently translated into proteins,

the proteins generated in the liver are not extensively released into

the blood stream, and/or they present a long delay not captured

within the time frame of our experimental protocol. To

discriminate between these scenarios, studies on protein transla-

tion including liver protein concentration assays and protein

tagging should be performed.

NF-kB remains practically unchanged in the liver of WT and

TNFR KO mice under the experimental HS protocol used in this

study. These findings are in agreement with those of [36] that

showed that NF-kB DNA binding activity did not change in

response to heat stress in rats; yet, they are somewhat surprising

since NF-kB has been implicated as the main TF that regulates

cytokine mRNA accumulation during inflammation [37]. More-

over, both TNF-a liver mRNA accumulation and plasma

concentrations (activated by NF-kB) were not affected by the

heat insult in contrast to other studies that reported elevated

concentrations of this cytokine after HS [30]. Although these

discrepancies between studies may be partly explained by species

differences in HS responses, a more plausible explanation is that

the highly elevated mRNA accumulation of HSP70 inhibited the

translocation of NF-kB to the nucleus in a dose- and time-

dependent manner [35]. We hypothesize that activation of NF-kB

and increased concentration of TNF-a depend on the duration

and severity of the heat insult. An in silico experiment with a more

severe heat insult illustrates that our model supports this

hypothesis with a molecular mechanism (inhibition of NF-kB by

HSP70) capable of explaining the different behaviors, encompass-

ing the apparently contradictory results from the literature.

AP-1 is revealed here as the main transcription factor activated

in the liver during HS recovery and it appears to be responsible for

the high expression of many pro-inflammatory cytokines (i.e. IL-

1b, IL-6, and IL-10) in spite of the low activation of NF-kB. The

fact that JUN and FOS liver mRNA accumulation is lower in

TNFR KO mice at baseline indicates that the differences in

TNFR KO responses are not only due to differences in heating

and cooling but a direct effect of the lack of TNF signaling. It is

intriguing to speculate that lower JUN and FOS mRNA

accumulation may be a direct consequence of the absence of a

TNF autocrine cascade effect on AP-1 activation, which has been

shown to be triggered in hepatocytes in response to TNF [38]. IL-

1b, IL-1RI, IL-6, and IL-6R also presented lower mRNA

accumulation in normothermic conditions for TNFR KO, which

can be explained by the lower activation of AP-1. However, we

reject the hypothesis that the changes in liver gene expression in

our model were only related to the TNF autocrine cascade since

we failed to detect changes in liver TNF mRNA accumulation in

WT mice at any time point of HS recovery. Rather, our data

suggest that delayed liver gene expression was due to a

combination of factors that include: 1) lower initial (baseline)

expression; 2) indirect effect of other genes that activate liver AP-1

that also showed a delayed response (i.e. IL-6, IL-1); 3) lower core

temperature of TNFR KO mice during heat exposure. Unfortu-

nately, it was not possible to normalize the heating responses

between genotypes since the absence of TNF signaling induced a

downward shift in the temperature set point, thus causing the KO

mice to regulate Tc and metabolic rate differentially from WT

mice [24].

AP-1 may deactivate the heat shock response during stress

recovery by hyperphosphorylating HSF-1 to inhibit its function

[39,40]; hence, robust activation of AP-1 (e.g. due to an excess of

LPS) could lead to considerably decreased HSP70 gene expression

in response to HS. Since HSP70 is concomitantly inhibiting the

activation of NF-kB, HSP70 downregulation could exacerbate the

situation leading to a lethal concentration of proinflammatory NF-

kB dependent genes, such as TNF-a. Therefore, AP-1 and its

related cofactor genes (Jun and Fos families) are revealed here as

promising targets for future therapeutic intervention to accelerate

HS recovery. In contrast, HSPs exert an anti-inflammatory effect

by inhibiting the translocation of NF-kB to the nucleus; therefore,

it is expected that drug-induced increases in HSP70 gene

expression prior to or following HS collapse may attenuate the

heat-induced SIRS in the liver and perhaps other organ systems.

An important outcome of our predictive model is the

identification of a differential time course of circulating cytokine

responses in TNFR KO mice compared to their WT controls.

This is an important aspect of our model as it identified unique

time windows that should be considered in future analyses of the

circulating biomarkers that may be mediating damage. Further-

more, it suggests that alterations of the cytokine balance (i.e., WT

vs. TNF KO) may skew the cytokine milieu towards a pro- or anti-

inflammatory phenotype that alters the time course of progression

of the SIRS. Future studies in our mouse HS model that target

different time points or core temperatures for cytokine analysis will

be instrumental in defining the rapid changes in cytokine

production that mediate changes in our model and may have

been missed in our current analysis.

The uneven distribution of the parameter sensitivities found in

this study reinforces Gutenkunst et al. [41] who concluded, after

testing several systems biology models, that ‘‘sloppy’’ spectra of

parameter sensitivities, i.e. with eigenvalues roughly evenly

distributed over many decades, are universal in systems biology

models. This property may explain the difficulty of extracting

precise parameter estimates from collective fits and reinforces the

need for establishing a parameter ranking. For that reason, in this

work the parameter estimation was done in two stages; first we

focused on the most influential group of parameters, whereas the
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less important group was fitted in a second stage. Despite the

sequential parameter identification and the use of global

optimization techniques, the identifiability analysis revealed a

number of difficulties with estimating a unique value for the

parameters. Although model reduction could be attempted at this

stage, we preferred to analyze the detailed mechanistic model and

exploit the identifiability deficiencies encountered for planning

future experiments aiming to obtain a complete picture of the

SIRS ensuing during HS recovery. In particular, further

experimentation that assesses changes in circulating LPS concen-

trations or the effect of neutralizing its effects (with antibiotics or

gut sterilization treatments) will be important to improve

identifiability and discriminate among ROS and LPS overlapping

mechanisms. In this direction, the work recently published [42]

showing increased mortality of TLR4 KO mice under heat stroke

suggests that LPS might not play a significant pathogenic role.

In summary, the present work provides new insights into the

molecular mechanisms underlying the complex etiology of HS and

defines a framework that supports in silico exploration of cytokine

signaling pathways in response to HS. This type of modeling

framework not only aids in the development of new methods that

will reduce the need for timely and costly animal experiments, but

also increases the rapidity and accuracy with which novel

pharmacologic intervention and/or treatments are identified to

treat this debilitating illness. However, it should be noted that this

study is exploratory and a larger scale study is needed to confirm

the results in the future.

Methods

Ethics Statement
In conducting the research described in this report, the

investigators adhered to the ‘‘Guide for Care and Use of

Laboratory Animals’’ as prepared by the Committee on Care

and Use of Laboratory Animals of the Institute of Laboratory

Animal Resources, National Research Council. The protocol was

approved by the Scientific Review Committee and the Institu-

tional Animal Care and Use Committee ‘‘US Army Research

Institute of Environmental Medicine Institutional Animal Care

and Use Committee’’ (Permit Number: A09-02).

Description of the Data
Details of the HS protocol are described elsewhere [43]. In this

study, conscious, unrestrained male B6129F2 (wild-type; WT) and

TNF-RI/R-II knockout (TNFR KO) mice (originally at a normal

housing temperature of 2560.2uC) were exposed to an ambient

temperature (Ta) of 39.560.2uC in an incubator, in the absence of

food and water, until a Tc,max of 42.4uC was attained. Following

removal from the heat at Tc,max, food and water were provided ad

libitum during undisturbed recovery at Ta of 2562uC.

Prolonged heat exposure induces thermoregulatory changes

consisting of hyperthermia in response to direct heat exposure, and

a biphasic response characterized by hypothermia which develops

within ,3 hours of recovery [5,18]. The initiation of the SIRS is

thought to occur within the time frame from Tc,max to

hypothermia, during which endotoxin is thought to leak across

ischemic damaged gut membranes into the portal circulation [5,6].

To identify the inflammatory pathways mediating the early stages

of the SIRS, mice were assigned to one of the following groups for

blood and tissue collection: 1) baseline (Tcƒ36:00C; immediately

prior to heat stress), 2) Tc,max (Tc~42:40C), 3) return to baseline

(RTB; first Tc valueƒ36:00C during cooling), or 4) hypothermia

depth (lowest Tc value with cooling rate of 0:010C=min during

recovery). Control mice were tested at Ta of 25uC at their original

cage location and not exposed to the incubator environment. A

HS group was assigned to each sampling time point, except

baseline, which was represented by one control (nonheated) group

for each genotype. Control groups were included at each time

point to examine circadian influences on the measured variables in

the absence of HS. Group sizes for each sampling time point were

as follows: baseline: WT, n = 10; TNFR KO, n = 8; Tc,max: WT

control, n = 7; TNFR KO control, n = 6; WT heat, n = 7; TNFR

KO heat, n = 6; RTB: WT control, n = 8; TNFR KO control,

n = 8; WT heat, n = 8; TNFR KO heat, n = 9; hypothermia: WT

control, n = 6; TNFR KO control, n = 8; WT heat, n = 8; TNFR

KO heat, n = 8. Note that owing to the need for sacrificing mice to

obtain biological samples, data at different time points correspond

to different mice, which introduced additional noise due to the

inherent variability among animals. Furthermore, this experimen-

tal design precluded an analysis of survival rates in this study.

Core temperature and dehydration. Tc was continuously

monitored at 1-min intervals using an intraperitoneally implanted

battery-free radiotelemetry transmitter (model G2 Emitter, Mini

Mitter Co., Inc., Bend, OR) in conscious, unrestrained mice. Mice

were implanted with a transmitter device at least 2 weeks prior to

experimentation to ensure full recovery prior to sample collection.

The level of dehydration was estimated by the difference in body

weight before and after heat exposure determined on a top-loading

balance (0.1 g) and corrected for transmitter weight; however, we

did not account for urine of feces loss [24]. Body weight at the

beginning of the experiment was similar between genotypes at

,27 g.

In order to use mean values for the genomic and proteomic data

obtained from different animals, an average of the Tc profile for

each of the mouse strains was used as input to the system (see

Figure 2). The sampling points for data collection were based on

mouse Tc responses; therefore, each data point corresponding to

maximum core temperature (Tc,max), RTB, and hypothermia

depth was collected at a different time point of recovery with

respect to the onset of heat exposure (i.e., mice heat and cool at

different rates despite similar body weights prior to experimenta-

tion). For this reason, averaging along the time axis would lead to

misleading results in terms of temperature values (see Supporting

Information S1); thus averaging along the temperature axis was

preferred. To this aim, we proceeded in four steps: i) filtered the

individual curves, ii) divided them into increasing and decreasing

temperature sections (to ensure bijective functions), iii) inversely

mapped by interpolating the time values for a set of temperatures,

and iv) computed the mean with respect to the temperature for the

interpolated times. Figure 2 shows the resultant Tc profiles that

were used as an input to the mathematical model. Circadian Tc,

time to reach Tc,max, thermal load, cooling time to baseline, and

time to hypothermia were analyzed using one-way analysis of

variance (ANOVA) and the Holm-Sidak method for post-hoc

comparisons, setting the significance at Pv0:05.

Previous experiments where Tc was monitored throughout 72

hours of recovery [43] showed that after hypothermia (,6 hours)

Tc remains at normothermia or lower until ,24–32 hours when a

fever-like increase is observed. The model is based on the

assumption that elevated Tc is the initiator of the inflammatory

response by means of DP, LPS, and ROS; therefore, although

temperature measurements after hyperthermia are not available

for this experiment, we assumed that between 6 and 24 hours no

LPS is released and the production of DP and ROS is not

increased from its basal level.

Liver mRNA accumulation. The threshold cycle (Ct) for a

variety of genes implicated in the response to heat stroke was

determined in liver tissue by means of qPCR (quantitative
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polymerase chain reaction). The Ct for each gene was defined as

the PCR cycle at which the emitted fluorescence signal was greater

than the background fluorescence level [44]. Amplification was

determined to be detectable if Ctv35. Changes in mRNA

accumulation were calculated as fold-change relative to the

controls matched to the same sampling point using the 2{DDCt

method [45], where

DDCt~DCtH{DCtC~(CtH,target{CtH,HK )

{(CtC,target{CtC,HK )
ð1Þ

being CtH,target, CtH,HK , CtC,target, and CtC,HK the Ct of the

target and housekeeping (HK) genes under HS and control

conditions, respectively. qPCR results are presented with asym-

metric standard error bars in the figures due to the exponential

relation between Ct and fold-change. The standard deviation,

propagating the error of both control and experimental groups, is

given by

sDDCt~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
DCtC

zs2
DCtH

q
ð2Þ

where sDDCt represents the standard deviation of DDCt; s2
DCtC

and s2
DCtH

are the standard deviation of the difference between

target and HK gene threshold cycles for mice under control and

heat stress conditions, respectively.

Liver mRNA accumulation was measured for HSP70, NF-kB

family members (NF-kB1, NF-kB2, RelA, RelB, c-Rel, and IkB),

Jun and Fos genes (related to AP-1), and the following cytokines

and cytokine receptors: IL-1a, IL-1b, IL-1RI, IL-1RII, IL-6, IL-

6R, gp130, IL-10, TNF-a, TNF-RI, and TNF-RII.

Plasma cytokines data. Plasma level of cytokines and

soluble receptors was determined on duplicate samples using the

FlowMetrixTM System (Luminex, Austin, TX), which permits the

simultaneous quantitation of multiple cytokines. The FlowMetrix

System is a ‘‘Multiplexed Fluorescent Bead-Based Immunoassay’’,

with the kits used in this study being specific for mouse cytokines.

Sensitivities of the cytokine and soluble cytokine receptor assays

were ,2 and ,20 pg/ml, respectively. The plasma cytokine and

soluble receptor data used to calibrate the model correspond to IL-

1a, IL-1b, sIL-1RI, sIL-1RII, IL-6, sIL-6R, sgp130, IL-10, TNF-

a, sTNF-RI, and sTNF-RII. The experimental data of circulating

cytokines, including control and HS measurements, were analyzed

to detect outliers and significant changes between data collected at

different sampling points. The error bars in the figures represent

the standard error of the measures (mean+SE). The original data

from this analysis are presented elsewhere [24].

Modeling and Biological Assumptions
For the sake of parsimony, we used first-order kinetics to model

activation of the TFs [46]. Therefore, the rate of activation of the

TFs is proportional to the concentration of the activator ½Xi� times

the concentration of the inactive TF, denoted by ½TF �:

Rate of activation~ki½Xi�½TF �: ð3Þ

Moreover, we assumed that the total number of active, ½TFP�,
and inactive forms of TF is conserved:

½TF0�~½TF �z½TFP�: ð4Þ

The rate of change of ½TFP� is given by the balance between its

activation rate by all the possible activators (Xi), the deactivation

due to all the inhibitors (Xj ), and an autonomous deactivation at a

rate dTF :

d½TFP�
dt

~
XNactivators

i~1

ki½Xi�½TF �

{
XNinhibitors

j~1

kj ½Xj �½TFP�{dTF ½TFP�:

ð5Þ

Since the signaling networks are usually very complex and

information is lacking from our study regarding the intermediate

states, we made some simplifications through lumped states. The

activators represent the ligand-receptor complexes or other

substances as DP that initiate and/or potentiate the signaling

cascade.

The transcriptional activation was modeled using Hill functions

and mRNA degradation rate was assumed to be linear:

d mRNAi½ �
dt

~
XNTF ,i

j~1

kmRNAi TFj

½TFj,P�n

kkn
mRNAi TFj

z½TFj,P�n

" #

{dmRNAi
mRNAi½ �:

ð6Þ

Mass action kinetics was used for describing the translation of

mRNA into proteins (cytokines and cytokine receptors) and

complex formation:

d Proti½ �
dt

~kProti mRNAi
mRNAi½ �{dProti

Proti½ �

{
XNProti

j~1

kProti Protj
Proti½ � Protj

� �

z
XNProti

j~1

dProti Protj
Proti Protj

� �
:

ð7Þ

Note that kProti mRNAi
are not pure translation rates since they

also account for the transport of the cytokines outside the cell.

The soluble receptors involved in this model (sIL-1RI, sIL-1RII,

sIL-6R, sgp130, sTNF-RI, and sTNF-RII) are produced mainly by

proteolytic cleavage of the extracellular domains of their analogous

membrane bound forms [47–49]. Therefore, their concentration

was modeled as follows:

d sProti½ �
dt

~ksProti
Proti½ �{dsProti

sProti½ �

{
XNsProti

j~1

ksProti Protj
sProti½ � Protj

� �

z
XNsProti

j~1

dsProti Protj
sProti Protj

� �
ð8Þ
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and the corresponding expression for the analogous cell-surface

receptor is given by Eq. (7) plus an additional term accounting for

the conversion into the soluble form ({ksProti
Proti½ �).

Without heat the model is assumed to be at steady state

(circadian effects were not statistically significant):

d mRNAi½ �
dt

~0: ð9Þ

We assumed a normalized expression rate for all genes and

active concentration of the transcription factors to be equal to one

(mRNAi~1 and TFj,P~1). Therefore, we computed degradation

rates as:

dmRNAi
~
XNTF ,i

j~1

kmRNAi TFj

kkn
mRNAi TFj

z1

" #
ð10Þ

and significantly decreased the number of parameters to be

estimated (from 217 to 130).
LPS. Different types of environmental stressors, including

heat, can cause increased intestinal permeability that facilitates

endotoxin leakage across ischemic-damaged gut epithelial mem-

branes and induces local and/or systemic inflammatory reactions

[50]. The presence of circulating endotoxin in some HS patients is

thought to be due to leakage following gastrointestinal barrier

disruption, but may also be related to liver damage [51]. Since the

liver is one of the major sites of endotoxin clearance, damage to

this organ may result in increased susceptibility of mammals to the

heat-induced SIRS mediated by endotoxin.

Su et al. [52] performed in vivo analyses of physiologically

relevant barrier dysfunction and determined mouse jejunal

permeability by measuring the paracellular bovine serum albumin

(BSA) flux under standard conditions as 0.18 mBSA=(h � cm).
Lambert et al. [12] and Dokadny et al. [53] showed significant

time- and temperature-dependent increases in gastrointestinal

permeability following both modest and severe heat insults.

Although several cytokines and other factors are known to regulate

the permeability of the gut epithelial barrier [54], in this work we

only considered permeability influenced by temperature, assuming

an exponential increase from the basal value (0.18

mBSA=(h � cm)) when Tc is above 41uC. Increased gut epithelial

barrier permeability at this core temperature resulted in the release

of LPS which was modeled using mass action kinetics with the

following equation:

d LPS½ �
dt

~kLPS LPSguts

� �
{ LPS½ �

� �
{dLPS LPS½ � ð11Þ

where kLPS represents the gut epithelial barrier permeability and

increases with the core temperature, ½LPSguts� is the initial

concentration of LPS in the gastrointestinal tract of the mouse and

½LPS� is the concentration of LPS in the circulation. LPS acts as

the prototypical endotoxin because it binds the Toll-like receptor 4

(TLR4) to induce a signal transduction cascade that ultimately

triggers essential signaling modules resulting in activation of the

transcription factors NF-kB and AP-1 [55] following equation (5).
Oxidative Stress. Heat stress increased reactive oxygen

species (ROS) generation and free radical-mediated splanchnic

injury of young rats [56]. Furthermore, reactive oxygen and

nitrogen species production is thought to be involved in regulation

of redox-sensitive transcription factors, such as AP-1 and NF-kB,

that mediate the expression of inflammatory mediators such as

cytokines, chemokines, and adhesion molecules [57]. Moreover,

oxidative stress impairs the heat stress response and delays

unfolded protein recovery and function, which may compromise

protective functions of some protein pathways during heat stress

[58].

Zhang et al. [36] observed a small, transient increase in hepatic

oxidative damage in young rats that experienced minimal liver

damage under heat stress; however, this response was accompa-

nied by a sharp and significant elevation of AP-1 DNA binding

activity suggesting that this TF is mediating inflammatory changes

in the liver during recovery. In contrast, NF-kB DNA binding

activity did not change following heat stress indicating that NF-kB

might not be a main regulator of cytokine gene expression under

these conditions. It should be noted that the results of this study

cannot be examined solely in the context of heat stress because the

research design did not control for dehydration that was

experienced during heat exposure, which is an adverse physiolog-

ical response that is known to increase oxidative and cellular stress

[59]. In order to encompass these experimental studies, ROS are

generated in our model following zero-order kinetics with varying

kROS and degraded following first-order kinetics:

d ROS½ �
dt

~kROS{dROS ROS½ � ð12Þ

where kROS is a function of the temperature and the dehydration

level. ROS activates AP-1 transcription following equation (5) and

inhibits HSF as described below in equation (18).

Denatured proteins, HSPs, and HSF-1. HSPs are impor-

tant modulators of both anti-inflammatory and pro-inflammatory

responses. Asea et al. [60] introduced the term chaperokine, to

describe the dual role of most HSPs as chaperones with an

intracellular cytoprotective/antiapoptotic function and cytokines

with an extracellular immunogenic function. In non-stressed

conditions, HSPs function as molecular chaperones by maintain-

ing protein conformation and facilitating transport throughout the

cell’s various compartments. Under environmental stress condi-

tions, the structural integrity of cellular proteins is compromised

and binding of HSPs to these damaged proteins prevents

aggregation and supports refolding.

Hyperthermic temperatures cause accumulation of denatured

proteins and exposure of their hydrophobic domains which

stimulates the expression of HSP genes (especially HSP70, the

most highly heat-inducible member) through activation of HSF-1

[61]. The onset temperature for this response is usually ,40uC,

but some transitions may extend as low as 37{380C [62];

therefore, we utilized the equation in [63] to calculate the

fractional protein denaturation, Vden, as a function of the

temperature in the range of 37{450C:

Vden~ 1{
0:4

eT{37

� �
|0:03|1:4T{37: ð13Þ

The amount of protein that denatures per unit of time is

obtained by multiplying Vden by the amount of native proteins (P):

Qden~Vden P½ �: ð14Þ

The native proteins are obtained by subtracting the denatured

proteins (DP) from the total amount of native proteins susceptible

to denaturation in the range of 37–45uC (P0), approximated as
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10% of the total amount of proteins in the cell:

P0½ �~ P½ �z DP½ �z HSP DP½ �: ð15Þ

Consistent with [63], the amount of denatured proteins which

complex with HSP70 is determined by mass balance in the present

model. In contrast to the other mass balances in the model in

which there is an interaction between two substances to form a

complex, in this mass balance free HSP70 interacts with both the

denatured and the native proteins: free HSP70 (HSP) binds to free

DP (DP), reducing the amount of free DP in the cell, while the

released (renatured) proteins are added to the pool of native

proteins in the cell. The complexation is described by the following

relation:

d HSP DP½ �
dt

~

kHSP DP HSP½ � DP½ �zkHSF HSP DP HSF HSP½ � DP½ �

{dHSP DP HSP DP½ �:

ð16Þ

The first term describes the forming of the HSP_DP complexes

while the last term describes the dissociation of the complexes into

renatured proteins. The amount of free denatured proteins, DP, is

obtained from the amount of denaturing proteins per unit of time,

Qden, minus the amount of DP’s complexed with HSP70:

d DP½ �
dt

~Qden{kHSP DP HSP½ � DP½ �

{kHSF HSP DP HSF HSP½ � DP½ �:
ð17Þ

Before heat-induced activation, HSF-1 exists as a monomer

localized to the cytoplasm with much of it forming a heterodimer

complex with HSP70. HSP70 preferentially binds to denatured

proteins; therefore, it has been postulated that activation of HSF-1

may occur as a result of competitive release of this TF from the

HSF1–HSP70 complex when the concentration of denatured

cytoplasmic proteins increases as a result of heat shock [26,64]. As

a result, the equation describing HSF-1 dynamics reads:

d HSF½ �
dt

~kHSF HSP DP HSF HSP½ � DP½ �{kHSF HSP HSF½ � HSP½ �

{kHSF ROS HSF½ � ROS½ �zdHSF HSP HSF HSP½ �
ð18Þ

which is equivalent to eq. (5) being ½HSF HSP� the inactive state

of HSF, [DP] the activator, and [ROS] the inhibitor.

HSP mRNA (mHSP) transcription was modeled using eq. (6)

where the only TF is HSF. The Hill coefficient for HSF-1 was

taken from [65] as 1.5. The intermediate value for the apparent

Hill coefficient of between 1 and 2 suggests that one HSF trimer

may bind stably, and a second may bind only weakly or partially.

mHSP is then translated into HSPs through eq. (7), which exert an

anti-inflammatory effect by inhibiting translocation of NF-kB to

the nucleus and preventing expression of inflammatory mediators

in a dose- and time-dependent manner [35]. Moreover, the crucial

indirect role of HSPs in maintaining gut epithelial barrier integrity

suggests an important anti-inflammatory effect by attenuating

endotoxin leakage into the circulation, which should mitigate the

heat-induced SIRS [66].

NF-kB. NF-kB is a ubiquitous TF of particular importance in

immune and inflammatory responses. The larger NF-kB family is

composed of two subfamilies: the NF-kB subfamily that includes

NF-kB1 (p50/p105) and NF-kB2 (p52/p100) proteins, and the

Rel subfamily that includes RelA (p65), RelB, and c-Rel. All these

structurally-related proteins can form homodimers or heterodi-

mers (except for RelB, which only forms heterodimers). NF-kB

belongs to the class of ‘‘rapid-acting’’ primary TFs, which are

present in cells in an inactive state and do not require protein

synthesis to be activated. Rel/NF-kB transcription complexes are

present in a latent, inactive state in the cytoplasm due to binding to

the inhibitor IkB. A variety of stimuli, namely LPS through

binding to TLR4, rapidly activate Rel/NF-kB transcription

complexes by releasing the TFs from inhibitor binding, which

allows translocation to the nucleus for binding to kB sites that

regulate the expression of many genes [67]. The pro-inflammatory

cytokines IL-1a, IL-1b, and TNF-a experience reciprocal activa-

tion with NF-kB [68]. NF-kB also regulates the expression of

additional genes encoding proteins involved in the heat shock

response, including IL-1Ra, IL-1RII, IL-6, IL-6R, gp-130, IL-10,

IL-10R, and TNF-RII [27,68–70].

The development of mathematical models of NF-kB signaling,

tightly linked to experimental results, has been instrumental in

unraveling the forms of regulation in NF-kB signaling and their

underlying molecular mechanisms [71,72]. Unfortunately, due to

the lack of data on nuclear translocation, we were not able to

incorporate details on NF-kB activation into our model; thus, we

assumed first order kinetics (Eq. 5) treating the aforementioned TF

as a lumped state. The apparent Hill coefficient for the

transcriptional activation of downstream genes was taken from

the literature and assumed to have a value of 2 [73,74].

AP-1. AP-1 is another essential TF that regulates inflamma-

tory and immune genes. AP-1 is a group of structurally and

functionally related members of the Jun and Fos protein families.

Jun proteins exist as homo- and heterodimers whereas Fos

proteins, which cannot homodimerize, form stable heterodimers

with Jun proteins, thereby enhancing their DNA-binding activity.

AP-1 activity is regulated by a broad range of physiological and

pathological stimuli, including cytokines, growth factors, stress

signals, infectious agents, and oncogenic stimuli. Regulation of net

AP-1 activity can be achieved through changes in transcription of

genes encoding AP-1 subunits, stability of their mRNAs,

posttranslational processing and turnover of pre-existing or newly

synthesized AP-1 subunits, and specific interactions between AP-1

proteins and other TFs and cofactors [75].

Developing a detailed model for AP-1 activation is out of the

scope of this work; therefore, we assumed first order kinetics (Eq.

5) considering AP-1 as a lumped state activated by LPS through

TLR4, IL-1a, IL-1b, IL-6, and ROS. Among the genes involved

in the cytokine network with HS, nine are known to be AP-1 target

genes: IL-1a, IL-1b, IL-1Ra, IL-1RI, IL-1RII, IL-6, IL-10, TNF-

RI, TNF-RII [26,76,77]. Transcriptional activation of these genes

was modeled using Eq. (6) with a Hill coefficient of 2 (AP-1 Hill

coefficient was found to vary between 1.6 and 2.6 [78]).

STAT-3. STAT-3 is a TF with fundamental importance for

cytokine-mediated induction of acute-phase response genes and is

a key regulator of gene expression in response to IL-10 and

glycoprotein 130 (gp130) family cytokine signaling (e.g., IL-6)

[79,80]. IL-10 acts as a more potent anti-inflammatory cytokine

than IL-6, although both cytokines activate STAT-3. Cytokine

binding to cell surface receptors induces receptor-associated Janus

tyrosine kinase 1 (JAK1) activation leading to phosphorylation of a

single tyrosine residue in the STAT-3 molecule. Phosphorylation

results in STAT-3 dimerization and nuclear entry for binding to
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specific DNA sequences in the promoter regions of target genes

[80].

STAT-3 is thought to upregulate the following proteins involved

in the cytokine network during heat stroke: IL-1R1, IL-6R, gp130,

IL-10, and suppressor of cytokine signaling 3 (SOCS-3) [70,80–

82]. The initial activation of STAT-3 by IL-10 or IL-6 (Eq. 5)

precedes SOCS-3 gene expression (Eq. 6) with subsequent

inhibitory effects of SOCS-3 on gp130/IL-6 signaling pathways

[83].

IL-1 family. IL-1 is an important mediator of inflammation

and tissue damage in multiple organs. The IL-1 family consists of

two agonists (IL-1a and IL-1b), two receptors (biologically active

IL-1RI and inert IL-1RII), and a specific receptor antagonist (IL-

1Ra). IL-1 signals through a single receptor (IL-1RI) that binds IL-

1a and IL-1b with equal affinity, while IL-1RII preferentially

binds IL-1b. IL-1Ra prevents the association of the IL-1 ligands

with the IL-1Rs; thus, the balance between IL-1 and IL-1Ra in

local tissues plays an important role in susceptibility and severity of

many disease conditions [27,84]. IL-1 signaling activates NF-kB

and AP-1 to induce the expression of many genes [85].

Both IL-1RI and IL-1RII have soluble isoforms (sIL-1RI and

sIL-1RII) that are generated by proteolytic cleavage of their

extracellular domains modeled by Eq. (8). These sIL-1Rs bind and

inhibit IL-1a and IL-1b signaling. Because IL-1Ra binds avidly to

both the membrane-bound and soluble forms of IL-1RI, sIL-1RI

is likely the principal antagonist of IL-lRa. Therefore, although

sIL-1RII antagonizes the action of IL-lb, sIL-1RI indirectly may

serve to facilitate the activity of IL-la and IL-1b by binding to IL-

lRa [86].

IL-6 family. Circulating IL-6 shows the highest correlation

with mortality and neurologic symptoms in HS patients, suggest-

ing this cytokine may be an important therapeutic target for

prevention/treatment strategies. However, IL-6 KO mice showed

higher mortality rates than WT mice indicating that IL-6 also has

protective, anti-inflammatory actions that are critical for survival

[18]. IL-6 is an important mediator of the acute-phase response to

injury and infection and induces its cellular actions through two

signaling pathways that have opposing actions [87]. In the

‘‘classic’’ (anti-inflammatory) pathway, IL-6 first binds to its non-

signaling membrane-bound IL-6R (also called a-receptor subunit,

IL-6Ra) followed by recruitment of the signaling transducing

receptor subunit gp130 to the complex, resulting in activation of

anti-inflammatory cascades [88,89]. Contrasting this, the IL-6

trans-signaling, pro-inflammatory pathway is activated when IL-6

binds to the soluble isoform sIL-6R and forms complexes that

intercalate into the membranes of cells that contain gp130, but

normally do not respond to the cytokine [48]. The trans-signaling

pathway is modulated by sgp130, a circulating cleavage product of

the membrane-bound receptor subunit [90]. In our model, the

dual opposing actions of IL-6 were captured by assuming that the

‘‘classic’’ pathway activates the anti-inflammatory transcription

factor STAT-3 and the trans-signaling pathway activates AP-1. IL-

6 strongly induces SOCS-3 protein through STAT-3 and in turn,

IL-6 signaling is selectively inhibited owing to the binding of

SOCS-3 to the IL-6R subunit gp130 [91].

IL-10 family. IL-10 is a potent anti-inflammatory cytokine

that modulates the expression of several cytokines, including IL-1,

IL-6 and TNF-a [76]. A major function of IL-10 is to control and

reduce excessive immune responses during infection and autoim-

munity, mainly by inhibiting the production of pro-inflammatory

cytokines in macrophages and other cell types [92,93]. IL-10 can

induce the expression of SOCS-3, suggesting that the capacity of

IL-10 to inhibit the expression of LPS-inducible pro-inflammatory

genes may depend on SOCS-3 [91]. In this model, IL-10-

induction of SOCS-3 was mediated by the transcription factor

STAT-3.

TNF family. TNF-a is a pro-inflammatory cytokine with

important actions in immunity and inflammation, including the

control of cell proliferation, differentiation, and apoptosis. Binding

of TNF-a to its two receptors, TNF-RI and TNF-RII, results in

recruitment of signal transducers that activate at least three distinct

effectors. Through complicated signaling cascades and networks,

these effectors activate caspases as well as AP-1 and NF-kB

[94,95]. Generation of soluble TNF-RI and TNF-RII, by

proteolytic cleavage, is also considered a highly regulated process.

These circulating soluble receptors modify ligand actions by

stabilizing TNF-a protein structure, decreasing membrane recep-

tor number, or specifically inhibiting ligand-receptor binding [86].

Model Calibration
Model calibration, or parameter estimation, is a key step in the

development of reliable dynamic models. Given a model structure

and a set of experimental data, the objective of parameter

estimation is to calibrate the model to reproduce the experimental

results in the best possible way. It is usually formulated as the

optimization of a scalar cost function, J(p), which measures the

goodness of the fit with respect to the model parameters p[RNP .

This function consists of a weighted distance measure between the

experimental values corresponding to the measured variables,

represented by the vector y, and the predicted values for those

variables, represented by the vector ~yy. Several estimator functions

have been suggested as metrics, where the weighted least-squares

estimator is the most common [96]:

Jls(p)~
XNE

i~1

XNVi

j~1

XNMij

k~1

wijk ~yyijk{yijk(p)
h i2

: ð19Þ

Here, NE is the number of experiments, NVi number of

measured outputs in experiment i, NMij number of measurements

of output j during experiment i, ~yyijk model predicted value k of

output j in experiment i, yijk measurement k of output j in

experiment i, and wijk the weight of measurement k of output j in

experiment i.

Special attention must be paid to the selection of the weights

since the optimal value of p will depend on them. When a good

approximation for the standard deviation of the data is available, a

good choice for the weights is wijk~1=s2
ijk where sijk is the

standard deviation of measurement k of output j in experiment i.
In this case, minimizing Jls is equivalent to minimizing the

Maximum Likelihood Estimator introduced by Fisher in 1912

[97], which maximizes the probability of the observed event.

However, in the present study, preliminary fitting indicated that

for some of the species there is no combination of parameters that

accurately fits the liver and plasma data simultaneously. In order

to test the hypothesis that the liver is one of the major sources of

circulating cytokines, we prioritized the fit of the liver mRNA

accumulation by increasing the weights of the qPCR data with

respect to those of the soluble cytokines.

Due to the nonlinear nature of the model considered here, the

resulting optimization problem is multimodal (non-convex).

Therefore, traditional gradient based methods, like Levenberg-

Marquardt or Gauss-Newton, may fail to identify the global

solution and may converge to a local minimum when a better

solution exists just a small distance away. Moreover, in the

presence of a bad fit, there is no way of knowing if it is due to a
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wrong model formulation, or if it is simply a consequence of local

convergence. Thus, there is a distinct need for using global

optimization methods which provide more guarantee of converg-

ing to the globally optimal solution. In this work, the model was

fitted to the available experimental data using SSm, a global

optimization metaheuristic based on Scatter Search developed for

parameter estimation in nonlinear dynamic biochemical systems

[98] and available in the toolbox SensSB [22].

Sensitivity and Correlation Analysis
A practical identifiability analysis aims to determine whether,

given a model structure, the parameters of a model could be

uniquely identified from the available (limited and noisy) data [99].

There are two main aspects that influence model identifiability:

the sensitivity of the parameters and the correlation among them.

Sensitivity analysis indicates which parameters are the most

important and therefore would have the greatest impact on the

predictions of the model. To analyze how the model variables

change around the best parameter set obtained, we computed

local sensitivity coefficients that are the partial derivatives of the

model state variables to the model parameters evaluated at the

optimal point. To make these measures comparable for param-

eters and states of different order of magnitude, relative measures

were used where the sensitivity function is normalized by the value

of the parameter and the state:

Sqj~
pq

yj

Lyj

Lpq

� �
y~y(t,p̂p),p~p̂p

ð20Þ

The sensitivity of all the measured states with respect to one

parameter can be summarized as:

dmsqr
q ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NV

XNV

j~1

1

NMj

XNMj

k~1

S2
qj(tk)

vuut ð21Þ

Thus, a large value of dmsqr
q would mean that a change in the

parameter pq has an important effect on the model outcome. This

makes the parameter identifiable with the data available if all the

other parameters are fixed and the larger the sensitivity, the more

accurately a single parameter can be identified. Therefore, values

of critical parameters can be refined while parameters having little

effect can be simplified or even ignored.

Although necessary, high parameter sensitivity is not sufficient

to ensure the identifiability of the model. In the case of several

parameters, the sensitivity functions of the parameters have to be

linearly independent. The degree of linear dependence among the

sensitivity functions can be measured by means of a correlation

analysis based on the Fisher Information Matrix (FIM) as

described in [100]. Correlations among parameters close to +1

or 21 mean that the parameters are not individually identifiable

because a change in one parameter can be compensated by

changes in the other parameters. In that case, an infinite number

of parameter sets fitting the experimental data with the same

accuracy would exist, thus making the confidence intervals very

large. For this reason, the model should be reduced by fixing some

of the parameters to their nominal values or by properly grouping

some sets.

Supporting Information

Supporting Information S1 Core temperature curve for each

mice and average temperature along the time axis. Different

animals reach a certain temperature at different times (A) and data

were collected based on matching core temperature; therefore,

averaging along the time axis (B) leads to confounding results, with

undistinguishable Tc,max peak and differences in heating and

cooling rates between the two strains.

(TIF)

Supporting Information S2 Schematic diagram of the cellular

network of interactions amongst HSP70, TLR4, IL-1, IL-6, IL-10,

and TNF families induced by heat stroke.

(TIF)

Supporting Information S3 Model equations and SensSB files

needed to reproduce the results.

(XLSX)

Supporting Information S4 Table with the list of parameters

and their values.

(ZIP)

Supporting Information S5 Matlab figures with the simulated

results for all the variables for WT, TNFR KO, IL-10 KO, high

temperature, and LPS injection experiments.

(ZIP)
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