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Abstract

Background: China experienced several large measles outbreaks in the past two decades, and a series of enhanced control
measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type
measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace
has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of
molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for
virus neutralizing antibodies.

Principal Findings: Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains
circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and
cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000.
The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino
acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which
removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose
epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was
estimated to be approximately 0.7661023 substitutions per site per year, and the ratio of dN to dS (dN/dS) was ,1
indicating the absence of selective pressure.

Conclusions: Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several
amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties
of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.
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Introduction

Measles virus (MeV), a member of the genus Morbillivirus of the

family Paramyxoviridae, is an enveloped virus with a nonsegmented

negative-sense RNA genome. Measles virus is highly contagious

and causes a disease characterized by high fever, cough, coryza,

conjunctivitis, and appearance of a maculopapular rash [1].

Despite the existence of an effective vaccine, many developing

countries are still experiencing endemic measles. In China,

measles remains a major public health concern because of

frequent outbreaks although the two effective vaccines, Shang-

hai191 (S191) and Changchun47 (C47) have been widely used to

prevent illness. In 2005, China set a goal of measles elimination

by 2012, and the goverment has been making great efforts to

achieve this goal including strengthening routine immunization,

expanding epidemiologic and virologic surveillance, increasing

vaccination of internal mobile poopulations, and initiation of

large-scale supplemental immunization acitivities (SIA). For

example, the SIA of September 2010 targeted 100 million

children and teenagers.

MeV is a monotypic virus, but 24 genotypes (A, B1–B3, C1–

C2, D1–D11, E, F, G1–G3 and H1–H2) have been described [2–

4]. In China, genotyping of wild-type MeV strains circulating

during 1993–1994 led to identification of a novel genotype, H1

[5]. Since then, continuous molecular surveillance revealed that

genotype H1 MeVs were endemic throughout mainland China.

The genotype H1 sequences could be divided into 2 clusters

based on phylogenetic analysis of the 450 nucleotides coding for

the carboxyl-terminus of the nucleoprotein (N) gene (N-450).

Cluster1 viruses have been the most frequently detected strains

since 2000 and cluster2 viruses were not detected after 2005 [6–

10].

The genome of MeV contains six genes that encode the

nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F),

hemagglutinin (H), and polymerase (L) proteins. The H protein,

an 80 kilodalton (kD) glycoprotein, is responsible for receptor-

binding and is the major target for neutralizing antibodies [11].

The H protein usually contains five potential N-linked glycosyl-

ation sites which are clustered at amino acid positions 168, 187,

200, 215, 238. Some genotypes have an additional N-linked

glycosylation site at position 416 [12,13]. MeV uses up to three

cellular receptors, including Signaling Lymphocyte Activation

Molecule (SLAM, CD150), CD46 and nectin-4 [14,15,16,17] .

The H protein contains 13 cysteine residues, seven of which are

located at amino acid positions 287, 300, 381, 394, 494, 579, 583.

These amino acids play a critical role in maintaining the

antigenic structure of the H protein [18]. A few linear

neutralizing epitopes have been identified using monoclonal

antibodies [19,20].

We carried out this study to describe the genetic variability of

the H genes of MeVs circulating throughout China over a 17-year

period. This work provides the first detailed report of the

sequences of the H genes of Chinese MeVs as well as a unique

opportunity to analyze genetic changes in the H genes from a

single genotype of MeV over an extended period of time.

Results

The epidemiologic profile of measles in China
The number of reported measles cases and deaths and the

incidence of measles were obtained from the National Notifiable

Disease Report System (NNDRS) (Figure 1). Nationwide out-

breaks of measles occurred every 3–4 years because of the

accumulation of susceptible children, especially in areas with lower

routine immunization coverage. Viral isolates were obtained

throughout the period shown in Figure 1.

Genetic characterization of the H genes of Chinese MeVs
The H glycoprotein is the major target for neutralizing

antibodies directed against the virus. For this report, 46 new H

gene sequences were obtained from viral isolates and compared

to 10 previously published H gene sequences. Analysis of the

predicted amino acid sequences of the H proteins showed that

genotype H1 cluster1 isolates circulating in 2000–2009 had a

conserved substitution of Ser240Asn, which removed the

predicted N-linked glycosylation site at amino acid 238

(Figure 2). In addition, 23 of 56 genotype H1 strains showed

an exchange of Pro397Leu, this 397 amino acid is a part of the

linear hemagglutinin noose epitope (HNE) which is located at

amino acids 379–410. However, all of the putative binding sites

for SLAM and CD46 were conserved (Figure 2). The seven

cysteine residues presumably responsible for the antigenic

structure of the H molecules (amino acids 287, 300, 381, 394,

494, 579, and 583) were highly conserved [18]. The amino acids

236–250 predicting B Cell epitopes (BCE) were relatively

conserved [21], excluding the previously described substitutions

at amino acids 240 and 243 in the Chinese vaccine strains

(Arg243, Gly243).

The complete H gene sequences of 56 H1 MeVs, the Chinese

vaccine strains, and other genotype reference strains were used for

phylogenetic analysis (Figure 3). The sequences of genotype H1

isolates could be divided into at least 2 clusters without obvious

chronological and geographical distributions. Fifty-one isolates

belonged to cluster1 which also contained a few more diverse

strains isolated in 1993–1994. Five isolates belonged to cluster2.

Genetic Characterization of Measles Virus H Gene
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The topology of the tree suggested that multiple chains of virus

transmission were present and the sequences showed no temporal

or geographic distribution (Figure 3).

The evolutionary rates of the H gene for the genotype H1 and

H1 cluster1 viruses were 0.7661023 and 0.6561023 substitutions

per site per year, respectively. The dN and dS were calculated for

selection pressure analysis, the results indicated the dN/dS ratios

for the genotype H1 and H1 cluster1 were 0.21 and 0.20,

respectively.

Discussion

The results of the sequence analysis reported here provide

another example of the genetic stability of MeV. The H genes of

56 MeVs isolated over a 17 year time span showed remarkable

conservation of functionally important amino acids. In particular,

the stability of the amino acids comprising the receptor-binding

sites likely contributes to the monotypic nature of MeV [22–24].

The cysteine residues responsible for the tertiary structure of the H

molecule were also highly conserved [18] . The amino acid

substitutions detected appeared to be the result of a gradual

accumulation of genetic changes and the degree to which these

amino acid mutations contribute to antigenic changes of the H

protein is being investigated.

The H protein of MeV usually contains five or six potential

N-linked glycosylation sites. The fifth site, located at amino acid

238, was absent in all the H1 cluster1 strains circulating in

2000–2009. Hu et al. showed that the fifth glycosylation site had

minimal impacted on the processing and antigenicity of the H

molecule, though the other glycosylation sites played important

functional roles [25,26]. Shi et al. demonstrated that the

neutralization titers of serum samples from human vaccinees

were lower against some of the wild-type viruses than against

vaccines strains and antigenic differences have been detected by

monoclonal antibodies directed against the H protein [27,28].

The linear hemagglutinin noose epitope (HNE; amino acids

379–410) was highly stable in both vaccine and wild-type strains

[29–31]. We found that nearly half of the genotype H1 strains

showed an exchange of Pro397Leu, a mutation that results in

loss of recognition of two monoclonal antibodies directed against

HNE [32]. Though the H protein of a few genotype H1 MeVs

would presumably not be recognized by antibodies directed

against the HNE, serum from human vaccines neutralized H1

MeVs with either Pro or Leu at position 397 [36]. This

conservation of neutralizing epitopes was also noted by Bouche

et al.[33]. The strong conservation of the seven cysteine residues

also clarified the antigenic structure and processing of the H

molecules [18]. The Chinese vaccines have been very effective at

dramatically reducing the incidence of measles in China.

However, since amino acid substitutions were observed on the

H protein between genotype H1 strains and the Chinese vaccine

strains, it will be important to continually monitor the

antigenicity and genetic characteristics of the H protein of

circulating MeVs.

Molecular surveillance of wild-type MeVs from 1993 to 2008

based on analysis of the 450 nucleotides coding for the carboxyl-

terminus of the N gene indicated that genotype H1 cluster1

viruses were continuously circulating in China [6,9,10]. The

phylogenetic tree constructed based on the H gene sequences,

confirmed the analysis based on the N-450 sequences that

genotype H1 cluster1 viruses were the predominant strains in

China during 1993–2009. Cluster1 was divided into 3 lineages

and lineages 1 and 2 were considered to be an intermediate

group that appeared to be the predominant strains in 1993–

1994 and have not been found since 1995 [6–8]. Lineage 3 was

further divided into lineage 3a and 3b and all of the strains

isolated from 2000–2009 belonged to lineage 3b. Genotype H1

cluster2 viruses have not been detected since 2002. Although

there was a temporal distribution among the MeV strains of the

3 lineages of cluster1, multiple transmission chains of were

apparent in lineage 3b without an obvious temporal distribution

(Figure 3). The observation that the phylogenetic analysis based

Figure 1. Reported measles cases and incidence in China, 1991–2009. The number above the column represents the number of
representative measles strains selected for the complete H gene sequence analysis. Blue bars indicate the number of reported measles cases and
yellow solid diamonds indicate the incidence (/100,000 population) of each year, the Arabic numerals above the x-axis indicates the number of
deaths. X-axis denotes year, y-axis on left denotes reported number of cases and y-axis on right denotes the incidence per 100,000 population.
doi:10.1371/journal.pone.0073374.g001
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on the H gene sequences gave results that were consistent with

results obtained after analysis of the much larger set of N-450

sequences suggests that the H gene sequences provide a

reasonable representation of MeVs circulating in China. The

caveat is that virologic surveillance is incomplete and we cannot

be sure that all of the lineages were represented by the H gene

or N-450 data sets.

Viral RNA polymerases have high error rates due to the lack of

proofreading ability, which leads to the high mutation rate of the

viral genome and rapid evolutionary rates. In some cases, these

mutations allow the virus to adapt to a new host or escape the

host’s anti-viral responses. This study estimated that the mutation

rate of the predominant group (Cluster1) of genotype H1 MeVs

was 0.6561023 substitutions per site per year based on the analysis

of the complete H genes. This rate is slightly higher than the rates

previously reported by Jenkins et al. (0.461023) and Rima et al.

(0.561023), but it is low when compares with some other RNA

viruses such as enterovirus 71 (3.1861023), human influenza A

(1.861023), and equivalent to the mutation rates reported for

dengue virus and human rotavirus [34–36]. The dN to dS ratios for

both H1 and H1 cluster1 were ,1 that demonstrating that the H

gene of the MeVs analyzed was not subject to antigenic selection.

Rather, the data suggest that the amino acid substitutions in the H

gene were the result of random genetic drift, rather than

accumulated mutations.

In summary, the H gene of the MeVs endemic in China should

be monitored continuously for genetic variations that could affect

antigenic properties. Our group is currently using the bioinfor-

matics methods to understand the disappearance of cluster2 and

map the antigenic domains on the 3-dimentional crystal structure

Figure 2. Alignment of the predicted amino acid sequences of the partial H gene. The variation of amino acid Ser240Asn (highlighted in
blue) leads to the absence of a glycosylation site; the exchange of Pro397Leu (highlighted in pink) that results in loss of recognition of two
monoclonal antibodies directed against HNE; the amino acid residues of putative binding sites for CD46, SLAM and seven cysteine residues were
highlighted in red, yellow and purple, respectively.
doi:10.1371/journal.pone.0073374.g002
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of the H protein. This information will be helpful to evaluate the

efficiency of the current vaccines.

Materials and Methods

Epidemiologic information
As a class B reportable disease, suspected measles cases are

reported to the National Notifiable Disease Reporting System

(NNDRS) in China. The number of measles cases, the annual

measles incidence, and measles-associated deaths were retrieved

directly from NNDRS reports.

Selection and isolation of viruses
In 2001, the National Measles Laboratory Network was

established to carry out measles surveillance in China. Genotyping

and genetic analysis of wild-type viruses were included in the

laboratory surveillance. These strains were chosen from viral

strains bank of the National Measles Laboratory (NML) to achieve

representative chronological and geographical distributions (cov-

ering 25 provinces). All of the selected strains were cultured and

propagated in Vero/hSLAM cells, which were maintained in

minimal essential medium supplemented with 2% fetal bovine

serum [37]. Viruses were harvested when the classic measles CPE

was maximal.

Determination of the complete H gene nucleotide
sequences

Total viral RNA was extracted from the infected Vero/hSLAM

cells with the QIAamp Viral RNA mini kit (Qiagen, Valencia, CA)

according to the manufacturer’s instruction. The entire protein-

coding region of the H gene was amplified with the sequence-

specific primers (Table 1) by using the SuperScriptTMIII One-Step

RT-PCR kit (Invitrogen, Carlsbad, CA). The PCR products were

sequenced directly after purification (QIA gel extraction kit,

Qiagen, Valencia, CA) by the dye terminator method (BigDye

Terminator, version 3.1, cycle sequencing kit; Applied Biosystems)

in an ABI PRISM 3100 genetic analyzer (Applied Biosystems,

Hitachi, Japan). The primers used for sequencing are listed in

Table 1.

Sequence and phylogenetic analysis
Sequence data were assembled and edited using Sequencher

software version 4.0.5 (GeneCodes, Ann Arbor, MI); sequence

alignments were assembled with BioEdit version 7.0 (Tom Hall,

North Carolina State University, Raleigh, NC), and phylogenetic

trees were constructed by the neighbor-joining method (1000

bootstraps) using MEGA version 4.0 [38,39]. The 24 WHO

reference genotype strains, 56 genotype H1 strains and two

Chinese vaccine strains were used to construct the phylogenetic

trees.

Estimation of evolutionary rate
Because of the lack of a true ‘‘ancestor’’ strain and the apparent

presence of multiple lineages, to estimate the evolutionary rate of

genotype H1 and genotype H1 cluster1 viruses, we used the oldest

strain in each target group as a reference. The evolutionary

distances were calculated by overall mean scope according to the

Kimura two-parameter method of the MEGA program. The dS

(synonymous substitutions per synonymous site), dN (non-synon-

ymous substitutions per non-synonymous site), and the ratios of dS

to dN values also were analyzed.

Nucleotide sequence accession numbers
Nucleotide sequences of the complete H gene (1854 nucleotides)

of the 46 measles virus strains which were determined have been

submitted and deposited in the GenBank database, the accession

numbers are JN997482 to JN997527. Accession numbers of

Chinese circulating strains in 1993–1994, all the WHO reference

strains of each genotype and Chinese vaccine strains are given in

Figure 3.
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Figure 3. Phylogenetic relationship based on the complete H gene sequences. Neighbour-joining tree was reconstructed with full-length H
gene sequences from 56 genotype H1 wild-type measles isolates from mainland China, the WHO reference strains of each genotype and Chinese
vaccine strains. The sequences of the circulating strains in 1993–1994 and in 2000–2009 are indicated by symbol ‘‘m’’ and ‘‘N’’, respectively, each
color of symbol ‘‘N’’ represents the annually circulating strains. The genotype H2 reference strain below cluster 2 which is also marked by a triangle
was identified in 1994, China. The branches for the different lineages are marked by various colors. The WHO standard name of MeVs and GenBank
accession numbers of all the sequences are available in the figure. Numbers at nodes represent the percentage of 1,000 bootstrap replicates (values
,70 are not shown). Bar, 0.005 nucleotide substitutions per site.
doi:10.1371/journal.pone.0073374.g003

Table 1. Primers used for amplification and sequencing of
the entire H gene.

Primera Sequence(59-39orientation) Positionsb Ampliconc

MHs GTGCAAGATCATCCACAATGTCACC 7254-7278 1,919 bp

MHas GTATGCCTGATGTCTGGGTGA 9172-9152

H1s GTGCAAGATCATCCACAATGTCACC 7254-7278 Seq

H2as GTCAGAGATGAATTTCAC 7630-7613 Seq

H3s TTGGTGAACTCAACTCTACTG 7766-7786 Seq

H4as GGA ACTGAGTTTGACATCAC 7811-7792 Seq

H5as GTATGCCTGATGTCTGGGTGA 9172-9152 Seq

a: s, sense orientation; as, antisense orientation.
b: the primers’ nucleotide locations and range on the basis of the Measles
prototype strain: Edmonston complete genome (GenBank ID: AF266288).
c: Length of the PCR product or use of the primer for sequencing (Seq).
doi:10.1371/journal.pone.0073374.t001
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