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Abstract

The purpose of this study is to explore the changes in functional brain networks of AD patients using complex network
theory. In this study, resting-state fMRI datasets of 10 AD patients and 11 healthy controls were collected. Time series of 90
brain regions were extracted from the fMRI datasets after preprocessing. Pearson correlation method was used to calculate
the correlation coefficient between any two time series. Then, a wide threshold range was selected to transform the
adjacency matrix to a binary matrix under a different threshold. The topology parameters of each binary network were
calculated, and all of them were then averaged within a group. During the evolution, node betweenness and the Euclidean
distance between the nodes were set as control factors. Each binary network of healthy controls underwent evolution of
100 steps in accordance with the evolution rules. Then, the topology parameters of the evolution network were calculated.
Finally, support vector machine (SVM) was used to classify the network topology parameters of the evolution network and
to determine whether evolution results matched the datasets from AD patients. We found there were differing degrees of
decline in global efficiency, clustering coefficient, number of edges and transitivity in AD patients compared with healthy
controls. The topology parameters of the evolution network tended toward those of the AD group. The results of SVM
classification of the evolution network show that the evolution network had a greater probability to be classified as an AD
patients group. A new biological marker for diagnosis of AD was provided through comparison of topology parameters
between AD patients and healthy controls. The study of network evolution strategies enriched the method of brain network
evolution. The use of SVM to classify the results of network evolution provides an objective criteria for determining
evolution results.
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Introduction

Exploring brain development during the aging process and

pathogenesis of the brain is an important part of human research

[1,2]. The human brain, as a control center, consumes a great deal

of energy compared to its own weight [3]. However, the brain is

fragile as occasional minimal trauma or variability of the nervous

system can cause lifelong disease with little chance of recovery [4].

In modern societies, the incidence of stroke, traumatic brain injury

and diseases resulting from brain injury are very common [5]. At

present, there are also high rates of occurrence of mental disorders

such as schizophrenia and Alzheimer’s disease (AD) [6]. Since

these diseases seriously affect people’s lives, it is important to

practically explore the internal mechanism and the structural and

functional changes of neurological disorders of the brain [7].

Recent advances in theory and technology have been used to

diagnose or treat brain disorders and further ongoing research.

Current techniques for diagnosing brain diseases include electro-

encephalography (EEG) [8], magnetoencephalography (MEG) [9]

magnetic resonance imaging (MRI) [10] and positron emission

tomography (PET) [11]. Different research methods accompanied

by diagnostic techniques have also emerged, for example, using

dynamic causal modeling (DCM) and fMRI datasets, Grefkes

et al. established a model of stroke patients and healthy controls to

explore changes in motor areas of stroke patients [12]. Boord et al.

analyzed changes in spinal cord injury (SCI) by independent

component analysis (ICA) and EEG sources [13]. Other common

research methods include SEM [14] and FNC [15].

However, as the brain itself is an extremely complex system

[16,17], it is very difficult to reveal the mechanism of brain

incidence by studying unrelated parts of brain regions. Recently,

complex networks have allowed for the exploration of brain

development [18] and pathogenic mechanisms of brain diseases

[19]. The topological parameters of the complex network can

measure and assess the state of the brain network (including global

efficiency, clustering coefficient, shortest path length, node

degrees, small-world property, betweenness, transitivity and

synchronization etc.) [20]. Using this method, many new reports

have emerged in recent years. Dosenbach et al. predicted the

brain development [18], Meunier and Chen explored the aging

process of the brain [21,22]. In addition, complex network theory

has been used to research various nervous system diseases [23,24].

In short, complex networks have penetrated all sub-disciplines of

brain research.
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Until now, the use of complex network theory to explore the

development and changes in nervous system diseases has generally

been applied to comparing one or several brain network topology

parameters [19,22,23,25]. Although this method can be used to

find the quantization parameters of brain maturation or brain

lesions, it is not suited for studying the mechanism of brain

development or brain lesions. Network evolution is a method for

generating a new network or for modifying existing networks by

employing evolution strategies and control factors [26]. A study of

evolution strategies and control factors can further an understand-

ing of mechanisms underlying network formation. Evolutionary

processes from network A to network B under various evolutionary

strategies and control factors allow us to evaluate essential points of

difference between network A and network B. This research

method has obvious implications for studying brain development

and the progression of brain disease.

Computational experiments and computer simulation technol-

ogy can approach a rational model of the brain under laboratory

conditions [27]. In the course of computational experiments, the

system can be designed, analyzed, controlled, and integrated. The

purpose of a computational experiment aims to realistically model

actual systems set as the unique reference and standard to test

whether simulation results are reasonable. Computational exper-

iments can describe the multiple possible outcomes of evolution,

resulting in a series of models which approximate more closely to

the actual evolution of the brain. It will show that the use of

computational experiments for brain network evolution is a viable

research method.

As part of the study of brain network formation mechanisms,

Vértes et al. have established a brain model using computational

experiment and simulation technology similar to a rational brain

network using the node degree and node distance as control

factors. However, this model merely establishes a connection

between the isolated nodes, while differences between actual brain

development and disease processes remain [28]. Alzheimer’s

disease (AD) is a disease caused by a variety of nervous system

lesions, is a primary degenerative disease of the central nervous

system and is characterized by cognitive deficits and prominent

memory impairment [29,30]. Recently, there have been great

difficulties for early diagnosis and treatment of AD in patients [2].

In this study, the topology parameters of functional brain networks

of AD patients and healthy controls were calculated and the

differences between them analyzed. Then, reasonable network

evolution strategies were formulated, and the evolution network

hypothesized to approach that of the AD patient group was

generated from a network of healthy controls using the compu-

tational experiment method. In order to assess the evolution

results, the global efficiency, clustering coefficient, number of

edges and the network transitivity of AD patients and healthy

controls undergoing evolution was calculated. Finally, a support

vector machine (SVM) [31] was used to classify the topology

parameters of the evolution network.

Materials and Methods

Ethics Statement
This study was approved by the internal Institutional Review

Board of Tongji Hospital and written informed consent was

obtained from all participants; in the case of patients with

dementia, consent was obtained from family members.

Subjects
In this study, each subject received routine MRI examination to

exclude prior neurologic diseases and multi-echo T2- and T2*-

weight imaging to measure transverse relaxation rate R2. In

addition, each subject underwent extensive neurologic and

neuropsychologic examinations in clinic and was evaluated

according to the NINCDS-ADRDA criteria for probable AD

[32]. 10 right-handed AD patients (4male; age range: 52–81;

mean: 65.669.88) and 11 right-handed healthy volunteers (4male;

age range: 55–82; mean: 63.867.61) were selected to take part in

this study. The AD patients were not symptomatic of other mental

illness or brain damage. The specific circumstances of the patients

are shown in Table 1.

MRI Acquisition
During MRI acquisition, a 3T GE Signaxs scanner (General

Electric) was used to acquire datasets. Specific scanning param-

eters are as follows: TR/TE=2000/30 ms, FA= 90u,
FOV=24624 cm2, Phase FOV=1, Slice thickness 5.0 mm

without space, Matrix = 64664, NEX=1, slices number: 33,

Scan time 8 min. In order to achieve three-dimensional recon-

struction and spatial registration, 3D SPGR (spoiled grass gradient

recalled) was performed for each subject with the following

parameters: TR/TE/TI = 6.5/2.1/400 ms, FA= 15u,
FOV=25.6625.6 cm2, Phase FOV=1, Slice thickness 1.0 mm

without space, Matrix = 2566256, NEX=1, Scan time 4 min

8 sec.

Data Preprocessing
SPM8 (www.fil.ion.ucl. ac.uk/spm ) was used on MRI datasets

for preprocessing. First, slice timing was used to correct for time-

domain. The datasets was realigned to remove movement artifacts

in the fMRI time-series. For in-group comparison, all the datasets

were normalized to MNI space. Image datasets were smoothed by

a FWHM of 4*4*4. Finally, datasets were drifted and filtered with

0.01 Hz–0.0 6Hz.

Construction of Brain Functional Network
Covariates were removed after preprocessing, and time series of

90 brain regions for each subject, defined by the Automated

Anatomical Labeling (AAL) [33], were extracted. Pearson

correlation was used to establish the relationship between any

two time series, so that a 90 * 90 correlation coefficient matrix was

obtained for each subject. In order to compare the differences

between AD patients and healthy controls in a wide threshold

range, we set the threshold from 0.50 to 0.60, which is increased

Table 1. The clinical data of patients with AD (** represents
MMSE score unfinished).

Number Gender Age MMSE

1 M 52 23

2 F 61 15

3 M 60 16

4 F 79 23

5 F 55 18

6 M 73 25

7 F 69 **

8 F 67 14

9 M 81 13

10 F 59 21

doi:10.1371/journal.pone.0073186.t001
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by 0.01 each step, to transform the correlation coefficient matrix in

a binary matrix. The binary matrix was used to establish the

functional brain network of the AD patients and the healthy

controls.

Network Evolution Rules
In a previous study, Vértes et al. simulated the brain network

used by the control factors of node degree and the distance

between the nodes [28]. In a complex network, node degree is the

number of connections between the node and other nodes. It

measures the degree of importance for the node and the number of

connections in the network. Node betweenness is defined as the

number of nodes that participate in the shortest paths of the

network. Previous studies have illustrated that the brain is an

optimized structure selecting the shortest path during information

processing to save time and energy [34,35]. Therefore, we believe

that the betweenness which reflects the shortest number of paths

may be more suitable for network evolution.

For evolution processing from one network to another,

connection weights (Equation 1) and disconnect weights (Equation

2) were formulated in this study:

CP(i,j)~(KizKj) �D(i,j)({2) ð1Þ

DP(i,j)~(KizKj)
({1) �D(i,j)2 ð2Þ

Where CP(i,j) and DP(i,j) denote the connection weights and

disconnect weights. Ki, Kj represents the i-th and j-th node

betweenness respectively, D(i, j) represents the anatomical distance

between the node i and j. In order to coincide with the individual

differences and uncertainties in the disease process, a random

factor R(i, j) is added to the evolution process. R(i,j) is a 90 * 90

matrix of uniform distribution between 0 to 1. During the

evolution process, there is no connection between the nodes i, j,

and a new connection is established between the i-th and j-th node

only if CP(i,j)$0.5 and R(i,j)#0.03. If a connection exists between

the node i, j, and simultaneously satisfies DP(i, j)$0.5 and R(i,

j)#0.03, then i, j are disconnected. Otherwise, the state between i

and j remains. Our results show that the topology parameters of

evolution network remain stable when the evolution does not

exceed 100 steps (Figure 1). Therefore, the evolution process stops

when the evolution reaches 100 steps.

The Network Topological Parameters
Global efficiency and clustering coefficient: The global efficien-

cy and clustering coefficient of functional brain network of each

subject and evolution networks under different thresholds were

calculated and averaged within a group.

Number of edges: The number of edges of each network of each

subject and of evolution networks under different thresholds were

counted and averaged within a group.

Transitivity: Transitivity is the ratio of ‘triangles to triplets’ in

the network [36]. For each network, transitivity was computed.

Support Vector Machine Classification
Support vector machines (SVM) were first proposed in 1995 by

Corinna Cortes [31]. SVM is based on the VC dimension of

statistical learning theory and structural risk minimization

principle. SVM seek the best compromise between model

complexity (i.e., the learning precision of the specific training

samples) and learning ability (i.e., the ability to identify any sample

with no error). SVM posses many unique advantages in solving

small sample size, nonlinear and high dimensional pattern

recognition problems.

During the experiment, the topology parameters of AD patients

and healthy controls were set as two categories. They were used as

training samples to train SVM classification. Then, the topology

parameters of evolution network were classified by SVM. If the

topology parameters of network evolution were assigned to an AD

group, the classification was accurate. Otherwise, the classification

was wrong.

Results

Differences between the Healthy Controls and the AD
Patients
In order to compare the topology parameters of the functional

brain network between the AD patients and the healthy controls,

the number of edges (Figure 2), the number of long-distance edges

(Figure 3), global efficiency (Figure 4), clustering coefficient

(Figure 5) and transitivity (Figure 6) of each functional brain

network of each AD patient and healthy control were calculated.

In figure 2, the blue triangle represents the number of edges of

functional brain network of the healthy control group under

different thresholds, and the black square indicates the number of

edges of the AD patients group. We found that the number of

edges in the functional brain network of the AD group is less than

that of the healthy group under different thresholds. Red

represents the number of long distance edges of the healthy

group, while black represents that of the AD group in figure 3. The

number of long distance edges in the healthy group is more than

that of the AD group. Blue triangles of Figures 4, 5, 6 represent the

values of the global efficiency, the clustering coefficient and

transitivity of healthy group under different thresholds. Black

rectangles represent the values of the AD group. As can be seen

from the figures, global efficiency, clustering coefficient and

transitivity among the AD group were lower than among the

healthy group.

Figure 1. The trend of the network topology parameters
during the process of evolution. The black line represents
transitivity, the red line indicates the global efficiency, the blue line
shows the clustering coefficient. Excluding the impact of random
factors, the topology parameters can be considered stable for evolution
steps up to 100.
doi:10.1371/journal.pone.0073186.g001
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Comparison between the AD Group and the Evolution
Group
The evolution networks were obtained from the binary network

of healthy controls according to our evolution strategies under

different thresholds. Topology parameters of the evolution

network group are shown in Figure 2, 4, 5, 6 (red dot). From

figure 2, we can see that the number of edges in the evolution

network is closer to that of the AD group compared to the healthy

group. The results of Figure 4 show that the global efficiency of the

evolution network is closer to that of the AD group. Figure 5, and

figure 6 imply that the clustering coefficient and transitivity of the

evolution network are also closer to those of the AD group under

wide threshold range.

SVM Classification Results
The global efficiency, clustering coefficient, total number of

edges, transitivity were set as eigenvalue for SVM classification.

The accuracy of the classification is shown in Table 2. From

table 2, the accuracy is above 55% of the total eigenvalue under

different thresholds, and the average results of each characteristic

are higher than 63%. The average accuracy of the eigenvalue for

clustering coefficient and transitivity is 93.45%.

Discussion

In this study, using the resting state fMRI datasets of the AD

patients and the healthy controls, functional brain networks of

each subject were established. The topology parameters within

groups were calculated by averaging the dataset. The results

illustrate that the density of the functional brain network of AD

group is lower (Figure 2), and that the number of long distance

edges of the AD group is less (Figure 3) than those of the healthy

group under wide threshold range. The global efficiency,

clustering coefficient, transitivity have different degrees of decline

in the functional brain network of AD group. Using computational

experiments and computer simulations, we set the node between-

ness and distance between nodes as the evolution control factors

and obtained a network evolution group from the functional brain

network of the healthy group. The results suggest that the topology

parameters of the evolution network are closer to those of the AD

group than the healthy group. Such results imply that we can use

network evolution to study the changes of functional brain

networks in Alzheimer’s patients. Finally, SVM algorithm was

used to classify the evolution results. The classification result shows

that there was higher probability for classifying the topology

parameters of the evolution network to the AD group. This proves

the feasibility of the evolution method for the study of brain

lesions.

A large number of studies have researched, using complex

networks, the changes in functional or structural brain networks of

Figure 2. The number of edges of the functional brain network
of healthy controls, AD patients and evolution under different
thresholds. Blue triangle represents the healthy control group, black
rectangle represents the group of patients with AD, the red dot
represents the evolution network group.
doi:10.1371/journal.pone.0073186.g002

Figure 3. The number of long distance edges (.75 mm) of the
functional brain network of the healthy controls and the AD
patients. Red indicates the healthy control group, black indicates the
patients of the AD group.
doi:10.1371/journal.pone.0073186.g003

Figure 4. The global efficiency of the functional brain network
of the healthy controls, AD patients and evolution under
different thresholds. Blue triangles represent the healthy control
group, black rectangles represent the group of patients with AD while
the red dots represent the evolution network group.
doi:10.1371/journal.pone.0073186.g004
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patients with AD [19,24,37]. The results of Zhao et al. suggest that

the global efficiency of the functional brain networks of AD

patients declined compared to that of healthy controls [38]. Our

results show that the global efficiency of AD patients was reduced

under wide threshold range. Global efficiency reflects the ease of

information exchange among network nodes [39]. A reduction of

global efficiency in AD patients may mean that the efficiency of

information exchange between the nodes in AD patients has

declined [40]. Our results are consistent with previous studies.

The number of connection edges in a network is an indicator of

the proximity of node connections [41]. In our study, comparing

healthy controls, the number of edges in the functional brain

networks of AD patients declined under different thresholds

(Figure 2). This indicates that the connection density of the

functional brain network of AD patients is lower than that of

healthy controls. This means that compared to the healthy control

group, the functional brain networks of AD patients is coupled less

closely. Such a result may be a direct attribute of the efficiency

decline of a network.

The average clustering coefficient is an indicator measuring the

degree of coupling between small groups [20]. The decline in

average clustering coefficient of patients with AD may imply

degraded robustness and network optimization of functional brain

networks in AD patients [42]. These results are consistent with

previous studies of changes in functional brain networks of AD

patients [43,44].

The global efficiency of the complex network topology

parameters was used to measure the average ease of network

traffic. The clustering coefficient describes the proportion of

neighbor nodes as mutually neighbors, that is, the degree of

perfection of clique structure. Density of the network connection is

an index to measure tightness between network nodes [20]. In our

study, the global efficiency, clustering coefficient and the density of

the functional brain network of the patients with AD all declined,

implying that the efficiency of transmission of information between

nodes was decreased. The physiological reasons for this phenom-

enon may be related to the reduction of synaptic connections of

AD patients. Consequently, this may be due to the reduction of

brain volumes in AD patients. Transitivity is the ratio of ‘triangles

to triplets’ in the network [36]. It is another representation of

proximity as well as a measure of the ease of information exchange

between network nodes. The results illustrate that the transitivity

of AD patients declined under wide threshold ranges. This may be

the main reason for the decline of cognitive and memory function

in AD patients [45]. Previous studies showed less functional

connectivity between nodes of default mode network in AD

patients [46]. This study does not research changes in the local

nodes, however, it can be inferred that the reduction in the value

of the topology parameters of AD patients was due to a decrease in

the number of local connections.

In previous studies, the controlling factors of brain network

evolution were node degree and node distance [28]. Node degree

is a measure of the number of nodes directly connected to other

Figure 5. The clustering coefficient of the functional brain
network of the healthy controls, AD patients and evolution
under different thresholds. Blue triangle represents the healthy
control group, black rectangle represents the group of patients with
AD, the red dot represents the evolution network group.
doi:10.1371/journal.pone.0073186.g005

Figure 6. The transitivity of the functional brain network of the
healthy controls, AD patients and evolution under different
thresholds. Blue triangles represent the healthy control group, black
rectangles represent the group of patients with AD, red dots represent
the evolution network group.
doi:10.1371/journal.pone.0073186.g006

Table 2. Classification accuracy.

global
efficiency (%)

clustering
coefficient
(%)

the total
number
of edges (%)

transitivity
(%)

0.50 55 82 64 91

0.51 64 82 64 91

0.52 64 82 64 91

0.53 64 91 64 91

0.54 64 100 64 91

0.55 64 91 64 100

0.56 64 100 64 91

0.57 73 100 64 91

0.58 64 100 64 100

0.59 64 100 73 91

0.60 55 100 73 100

Average 63.18 93.45 65.64 93.45

doi:10.1371/journal.pone.0073186.t002
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nodes [41]. Node betweenness is a measure of the importance of

the network information, material, or energy spent in the

transmission process. Nodes with high node degree do not

necessarily imply large betweenness. During our evolution, the

node betweenness was set as one control factor. Previous studies

showed that in order to save energy and time in the process of

information exchange, transfer of information generally occurs

through the shortest path among the nodes [47]. Therefore, from

actual physiology, we have reason to believe that betweenness as a

control factor is a reasonable criteria for the evolution of a brain

network.

The distance between nodes is another index to measure time

and energy required for information exchange between nodes

[48]. The distance between nodes was set as another control factor

during the evolution. We assume that the connection weights of

the two nodes were inversely proportional to the distance squared,

while the disconnection weights were proportional to the square of

the distance between two nodes. To ensure that the value of

disconnection weight increased during the process of the evolution,

the control factor of the betweenness was taken as the sum of the

betweenness of the two nodes, while the control factor of the

distance was taken as the square of the distance between two

nodes. This is in line with the general rules of the changes of a

brain network with lesions. Our actual results verified this

conclusion (Figure 2). Random disturbance factors were added

in the evolution. We hypothesized that these small perturbations in

the network evolution are more consistent with the actual process.

From the evolution results, we found that the number of edges

in the evolution networks was closer to that of AD patients

compared to the healthy controls. This proves that our evolution

strategies can allow the functional brain network of the healthy

controls to tend to that of the AD patients from the level of the

density of the network. From the macro level, this shows that our

evolution strategies and evolution method can control the

evolution from the functional brain networks of healthy controls

to that of patients with AD. In the evolution results, global

efficiency, clustering coefficient and transitivity of evolution

networks all tended to the parameters of the functional brain

networks of the AD patient group under different thresholds. This

result means that setting the distance between nodes and node

betweenness as control factors in the process of evolution was a

reasonable choice. Compared with the healthy control group, one

reason for the decline of the topology parameters of the evolution

network may be a decrease in connection density. Other reasons

may include differing coupling distance between certain key nodes

and other nodes.

A study using pattern recognition or classification standard to

objectively assess the pros and cons of the evolution is not extant in

the literature [28,47,48]. In this study, SVM was firstly used to

classify the results of evolution. These results suggest that the

topology properties of the evolution network have greater

probability (average 93.45%) of classification than the AD patients

group when clustering coefficient or transitivity are used as

markers of classification. This suggests that our evolutionary

strategies have a certain degree of reliability and rationality, and

also show that we can obtain the functional brain network of the

AD from that of healthy controls by using evolution rules.

As there is a certain impact on SVM classification accuracy due

to the small size sample used in this paper, the conclusions of this

study should be validated by a larger amount of data. At the

present stage, we have not subjected the evolution network and the

actual network of AD patients to an exact match in all details.

However, our research has laid a foundation for future study.

Conclusion

Using knowledge of complex networks and resting-state fMRI

datasets, this study has researched the differences of the functional

brain network between AD patients and healthy controls. The

distance between nodes and node betweenness were first set as

control factors in the evolution process. The results illustrate that

the density of the network, the global efficiency, clustering

coefficient and transitivity of AD patients declined compared to

that of the healthy controls. Such results might identify new

indicators for the early diagnosis of AD patients.

Evolution networks more similar to the functional brain

networks of the AD patients were obtained from the functional

brain network of the healthy controls. Our topology parameters of

evolution networks were classified by SVM and our results show

that the topology parameters of the evolution network can be

classified into the AD patient group at a greater probability. This

paper presents new evolutionary control factors for the study of

brain network evolution, thus expanding the available methods for

studying brain network evolution, and the use of SVM to classify

the results of the evolution provides an objective standard for

evaluating evolution results. We look forward to the use of our

study as a basic platform for the evolution of different brain lesions

in accordance with related research.
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