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Abstract

Massively-parallel DNA sequencing using the 454/pyrosequencing platform allows in-depth probing of diverse sequence
populations, such as within an HIV-1 infected individual. Analysis of this sequence data, however, remains challenging due
to the shorter read lengths relative to that obtained by Sanger sequencing as well as errors introduced during DNA
template amplification and during pyrosequencing. The ability to distinguish real variation from pyrosequencing errors with
high sensitivity and specificity is crucial to interpreting sequence data. We introduce a new algorithm, CorQ (Correction
through Quality), which utilizes the inherent base quality in a sequence-specific context to correct for homopolymer and
non-homopolymer insertion and deletion (indel) errors. CorQ also takes uneven read mapping into account for correcting
pyrosequencing miscall errors and it identifies and corrects carry forward errors. We tested the ability of CorQ to correctly
call SNPs on a set of pyrosequences derived from ten viral genomes from an HIV-1 infected individual, as well as on six
simulated pyrosequencing datasets generated using non-zero error rates to emulate errors introduced by PCR. When
combined with the AmpliconNoise error correction method developed to remove ambiguities in signal intensities, we
attained a 97% reduction in indel errors, a 98% reduction in carry forward errors, and .97% specificity of SNP detection.
When compared to four other error correction methods, AmpliconNoise+CorQ performed at equal or higher SNP
identification specificity, but the sensitivity of SNP detection was consistently higher (.98%) than other methods tested.
This combined procedure will therefore permit examination of complex genetic populations with improved accuracy.
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Introduction

Massively parallel sequencing (MPS) or next generation (‘‘next-

gen’’) sequencing technologies [1] allow for the generation of

millions of sequence fragments (‘‘sequence reads’’) from a single

specimen. These technologies have the potential to replace Sanger

sequencing for many applications, including de-novo sequencing,

re-sequencing and metagenomics [2,3]. However, the promise of

MPS has to be balanced with its caveats. Each MPS platform has a

much higher rate of error compared to Sanger sequencing [1,4,5].

If the sample must be PCR-amplified prior to sequencing, the

errors occurring during PCR are also present in the MP sequences

and can be impossible to distinguish from real variation, except in

cases when using random sequence tags coupled with over-

sequencing to generate consensus sequences from each amplicon

[6,7]. The 454/pyrosequencing platform results in uniquely high

rates of overcalls and undercalls (resulting in erroneous insertions

and deletions in the sequence reads) [1,5]. Carry forward errors

are also unique to pyrosequencing and are caused by leftover

nucleotides in a sequencing well [1].

Error rates for the GS-FLX Titanium pyrosequencing technol-

ogy have been estimated on an extensive dataset of Roche Corp.

quality control DNA fragments and the sequences generated were

found to have a mean error rate of 1.07% with errors showing a

non-random distribution [5]. Error rates as high as 50% were

reported in a few positions with the highest incidence of errors in

homopolymer regions. Approximately 89% of the reads had some

form of error. Thus, instead of removing reads with errors from

downstream analysis, error correction methods are typically

applied to an entire dataset to improve the overall accuracy of

sequences, such as by filtering out regions of lower quality within

reads [8].

Pyrosequencing errors have been corrected using two ap-

proaches: correcting the measured light intensities (called flow-

grams) [9,10], or correcting the generated sequences [11–18].

Methods to correct errors in pyrosequences using a Poisson or

binomial probability model have traditionally assumed, incorrectly

[1,5,8], that all base calls are of equal quality [11,13,16,19]. Other

error correction methods rely on comparing variants to an

empirical control data set, mapping read segments to a consensus

template and refining alignments locally [12]. Salmela and

colleagues corrected errors by taking sequences sharing common

k-mers and forming multiple alignments with these reads. The

reads are then corrected based on a consensus sequence made

from the resulting alignments [15]. Other correction methods

employ phase (co-variation) information within reads to distin-
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guish between real variation and systematic error [17]. These

algorithms do not alter the flowgram data, instead they correct

pyrosequencing errors on the translated bases. The program

AmpliconNoise corrects pyrosequencing errors by clustering

flowgrams and calculating the likelihood that each of the reads

from these flowgrams was generated from a mixture of correct and

incorrect sequences [9,10]. Following this, an expectation-maxi-

mization algorithm is applied to the clusters to determine a true

sequence for each cluster. AmpliconNoise has been used in

determining microbial diversities of the human gut [20] and for

viral population genetics [21].

Goals of the current study were twofold: to develop a widely

applicable error correction method utilizing inherent base call

quality and sequence context to correct pyrosequencing errors,

and to make SNP calls based on the quality of the sequenced base.

We developed a new error correction algorithm, CorQ that

utilizes a multiple sequence alignment to map base qualities to the

positions within the alignment. Reduction in base quality for an

overcall/undercall error is detected by calculating the average

drop in base quality between adjacent bases and the base in

question, making use of quality scores from all the reads mapping

to a position within the alignment. CorQ uses a set of sequences

and associated quality files as a starting point for error correction.

Carry forward errors that follow a specific pattern of single base

insertions occurring after homopolymeric nucleotides are also

identified and corrected as part of the program. In addition, we

adapted CorQ to utilize sequence and associated quality files from

other error correction and base recalibration algorithms [9,10,22].

We compared our method to other recently developed error

correction and SNP calling methods, including CORAL [15],

QuRe [18], SegminatorII [12] and V-Phaser [17]. We evaluated

the sensitivity and specificity of these methods in identifying true

SNPs found within a plasmid clone mixture of ten HIV-1 genomes

derived from the blood plasma from one infected individual.

We also performed sensitivity and specificity analyses using

CorQ and other error correction methods on six simulated

pyrosequencing datasets. For these latter analyses we used two

polymerase error rates 0.005, 0.01, selected based on experimental

tests (Larsen et al., Manuscript under revision), to emulate errors

generated during PCR amplification.

Materials and Methods

Pyrosequencing of HIV-1 Genomes
Ten HIV-1 genome sequences were PCR amplified, cloned and

sequenced using the Sanger method from one HIV-1 infected

individual [23]. We mixed these ten HIV-1 plasmid clones

(GenBank accession numbers: JN024165–JN024168, JN024170–

JN024173, JN024495 and JN024537) in equal proportion,

linearized the DNA with a restriction enzyme, and performed

pyrosequencing using the standard protocols provided in the GS-

FLX Titanium Rapid Library preparation kit (454.com/products/

gs-flx-system/index.asp).

Generation of Simulated Pyrosequences
We generated a total of six additional simulated pyrosequencing

datasets with Flowsim [24] using two starting configurations

(Table S2). The first three datasets (Set 1a–c, Table S2) were

generated using a single 1500 nt HIV-1 sequence as the starting

template. Three simulation runs were conducted: The first had no

additional SNP errors. The second and third had added SNP error

rates of 0.005 and 0.01, respectively, set to approximate those

generated during template PCR amplification, and were selected

based on experimental tests (Larsen et al. Manuscript under

revision). The templates for the fourth through sixth simulated

pyrosequencing datasets (Set 2a–c, Table S2) were generated from

a multiple sequence alignment of 28 previously published HIV-1

sequences [23]. A 1500 nt region was selected (alignment

positions: 1–1522, File S1) and used as input for Flowsim. Again,

three simulation runs were conducted: with no additional SNP

errors, and with SNP error rates of 0.005 or 0.01.

Error Correction with AmpliconNoise
AmpliconNoise [10] (version 1.24) was run on flowgrams using

default settings. Error correction with AmpliconNoise suite of

programs consists of two components, first clustering and

correcting the flowgrams with AmpliconNoise followed by

correcting PCR based errors with SeqNoise. In our preliminary

evaluation we found that SeqNoise was computationally intensive

yet it often failed on datasets larger than 20,000 reads and lacked

important user definable parameters. Hence, we did not use the

SeqNoise component for our subsequent analyses. The sequence

and associated quality files obtained after AmpliconNoise flow-

gram correction were aligned with MOSAIK (http://

bioinformatics.bc.edu/marthlab/Mosaik) using a sample-specific

consensus sequence as reference. We adjusted the reference to

query sequence mismatch parameter in MOSAIK to vary between

20–30%. This mismatch includes both SNP and indels and

allowed mapping a greater number of reads to the reference

sequence subsequently resulting in smaller loss of data.

Read Filtering and Chimera Check
Sequences with ambiguous base calls (N) or less than 100 bases

in length were removed, and we implemented an optional check to

test for chimeric sequences. Chimeras are generated when

sequences are amplified from a multi-template population [25]

as well as naturally during HIV infection. The majority of in-vitro-

generated chimeras arise due to incomplete primer extension

during PCR [25]. To detect chimeras, we counted the number of

SNP mismatches in a given read relative to the consensus

sequence. In the CorQ analyses presented here we set this

parameter to a default of 20% SNP mismatches between the

consensus sequence and a given read to assign a sequence as a

chimera, since this mismatch rate was optimal for chimera

detection amongst several methods [26]. For analyzing sequences

with inherently greater diversity, we recommend varying this

parameter to better distinguish a sequence variant from artificially

generated chimeric sequence.

CorQ Implementation: Correcting Poor Quality Indel and
Miscall Errors
CorQ uses the filtered sequence alignment file to correct indel

and miscall errors. First, quality values are mapped to the bases in

a multiple sequence alignment, and positions (Equation 1) with

insertions and deletions in homopolymer and non-homopolymer

regions are flagged. Two or more consecutive bases of the same

kind are considered part of a homopolymer. In the flagged

positions, the average base quality, Qi, of indel bases is estimated.

The average base qualities of all called bases with associated

qualities (A, G, T or C) in a non-indel position, Qi-1 and Qi+1,

adjacent to flagged positions are also estimated. For each indel

occurring after a homopolymeric or non-homopolymeric se-

quence, the average base quality difference, Qreduction,i, between

the flagged and adjacent column is compared against a

distribution of quality reductions across the entire alignment

(Equation 1). Positions with greater than average base quality

reduction are flagged for correction, handling single and multi-

Quality Based Pyrosequencing Error Correction
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base indels in a similar manner. Indels present only in one read are

also flagged for correction. Sequences containing flagged insertions

are corrected by removing the incorrectly inserted base and

sequences with flagged deletions are corrected by adding the

consensus base. CorQ also creates an annotation file that tracks

changes made to each corrected read.

Qreduction,i~1=2

Pn
1

Qi{1

ni{1
{

Pn
1

Qi

nindel,i

0
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1
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2
664

z
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To identify and flag potential sequencing miscalls, the difference

between the average base quality of all consensus bases,

Qi,consensus, and average base quality of variant, Qi,SNP, bases is

calculated for all positions with a SNP relative to the consensus

sequence (Equation 2). The average reduction in SNP quality from

the consensus is compared against a distribution of quality

reductions for all SNPs and is flagged for correction if it is larger

than the average in the distribution (Equation 2). The consensus

character at that position then replaces a flagged SNP. Positions

with a SNP present only within a single read in the dataset are also

flagged for correction.

Qreduction,i~

Pn
1

Qconsensus,i

nconsensus,i
{

Pn
1

QSNP,i

nSNP,i

ð2Þ

To accommodate uneven read coverage (number of reads

mapping to each base) from the two different sequencing

orientations, we implemented additional checks when correcting

potential sequencing miscalls. We have made read coverage

difference as one of the input parameters in CorQ to allow users to

set a coverage difference threshold that best captures the observed

read coverage differences. SNPs that fall within regions of the

designated fold difference are marked but not corrected, as we

cannot rule out the possibility that a detected SNP is not ‘‘true’’

simply due to lack of adequate reads mapping to that position.

We also implemented a method within CorQ to identify and

correct carry forward errors. Carry forward errors occur when

insufficient flushing between the flows results in leftover nucleo-

tides in a well, resulting in signal peaks at the wrong position

during the next base incorporation [1]. The presence of

homopolymers increases the likelihood of this type of errors

[1,4]. Carry forward events cause single base insertions usually

near, but not adjacent to homopolymer regions [4]. CorQ detects

this specific pattern of single base insertions occurring after runs of

homopolymeric nucleotides and flags them as carry forward errors

if the inserted base is not the consensus at that position, and if it is

the same base type as the preceding homopolymeric stretch. The

flagged inserted bases are removed from reads.

Comparison to other Error Correction Methods
We tested the sensitivity and specificity of CorQ to identify true

SNPs within a dataset created by pyrosequencing ten HIV-1

genomes that had previously been sequenced, after cloning into

plasmids, by the Sanger method, as well as the set of six simulated

datasets. CorQ was tested against four other pyrosequencing error

correction programs: CORAL [15], Segminator II [12], QuRe

[18] and V-Phaser [17] and the flowgram correction method

AmpliconNoise [10] using reads mapping to the three HIV genes

gag, env and nef. All programs were run according to the default

parameters recommended by the authors. We implemented CorQ

on the following set of data files: a) uncorrected fasta and quality

files, b) Flowgram corrected fasta and quality files (from

AmpliconNoise) and c) files generated from the quality recalibra-

tion program Pyrobayes [22]. Pyrobayes uses data likelihoods and

prior distributions to determine the Bayesian posterior probability

of the correct number of bases given a measured incorporation

signal [22] and results in a recalibrated base quality for each called

base. We used the consensus of the Sanger sequences from the 10

viral genomes as the reference for generating multiple sequence

alignments in all the above comparisons. V-Phaser results for

simulated datasets were not included, as errors invariably occurred

while running the program with these sequences that were not

resolved in time for manuscript submission.

We also compared the performance of each program on indel

attrition. The exact count of insertions and deletions are not

obtained from the output from QuRe and SegminatorII, hence

these programs were not included in this comparison.

Results

Pyrosequencing of 10 HIV-1 genomes resulted in 26,620 reads

mapping to gag, 48,927 reads mapping to env and 21,963 reads

mapping to the nef genes. Read coverage for both sequencing

orientations is shown in Figure 1. While these coverage maps are

more uneven than typical pyrosequencing runs performed by us

(unpublished results), they highlight an important concern for

algorithms calling SNPs in regions of poor read coverage and for

determining the actual depth of population sampling across a

genome – coverage and depth vary across the target sequences,

and thus are poorly summarized by a single measure.

Figure 2 outlines the steps carried out by the CorQ error

correction method. Following AmpliconNoise, a reference-guided

multiple sequence alignment is generated with MOSAIK. Reads

less than 100 bases and reads with ambiguous bases are removed

as part of the preprocessing step. Short reads are generally a result

of premature stops in strand synthesis or out-of-phase strand

synthesis. These out-of-phase strands show early deterioration in

signal quality, leading to shorter read lengths [1,5]. Regions within

the multiple sequence alignment with insertions and deletions are

classified as occurring in homopolymer (a region with two or more

consecutive nucleotides of the same type) or non-homopolymer

regions. The average difference in base quality between an indel

position and adjacent positions are then calculated. The rationale

for this step is that in the event a base corresponds to a sequencing

overcall or undercall, the quality of that base should be lower than

the neighboring bases – CorQ measures this drop in base quality

relative to the adjacent bases. A distribution of average base

quality reductions across indel positions within the alignment is

used to make error correction calls. We observed similar patterns

of quality reductions across the three gene regions (Figure S1).

This bolsters our hypothesis that erroneous bases have poorer

quality in the reads that contain them, and that the base quality

adjacent to an erroneous base should be higher in the majority of

reads. This allows CorQ to identify regions with a drop in average

base quality across an alignment.

Next, we compared the ability of CorQ and previously

described algorithms for their ability to flag and correct

Quality Based Pyrosequencing Error Correction
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sequencing overcalls and undercalls (Figure 3), using true indels

observed within the Sanger sequences as an indicator of

effectiveness. QuRe and SegminatorII programs did not output

indel counts per position and hence we omitted these programs

from this comparison. Vphaser run alone or the combination of

AmpliconNoise flowgram correction followed by the CorQ

algorithm on fasta and quality files reduced indel counts most

effectively (95.4/96.7% reduction in gag, 95.3/94.7% in nef and

93/97% in env, respectively). CORAL, and Pyrobayes followed by

CorQ did not result in a substantial reduction in erroneous indels

(10–70%). Combinations of error correction methods performed

better than applying a single correction method ranging from 93–

97% reduction in indels. The combination of AmpliconNoise+-
CorQ and AmpliconNoise+CORAL performed better than other

tested methods, achieving between 95–97% reduction in indels.

Among the individual correction methods, VPhaser performed

best, reducing indels by 92–96%.

CorQ also corrects carry forward errors [1] near homopoly-

meric regions. The percent carry forward errors retained within

reads after application of error correction methods is shown in

Figure 4. Carry forward errors present in raw uncorrected reads

are shown for comparison. In the uncorrected reads, carry forward

insertion errors make up about 10–30% of the total insertions

errors observed. Flowgram error correction (AmpliconNoise)

corrects homopolymeric overcall insertion errors to a greater

extent than carry forward insertion errors, hence, 20–30% of the

insertion errors are of carry forward type after flowgram

correction. Vphaser and CORAL corrected carry forward errors

better than AmpliconNoise, but still retained about 10–15% of

these errors. The combination of AmpliconNoise+CORAL

performed only slightly better than using CORAL alone, retaining

,10% of carry forward errors. The combination of Vphaser

correction followed by the carry forward correction segment of the

CorQ program resulted in a further, substantial reduction in the

number of carry forward errors compared to correction with

Vphaser alone, retaining between 2–5% of these errors. The

combination of AmpliconNoise+CorQ removed the most carry

forward insertion errors, retaining only ,2%.

The sensitivity and specificity of SNP identification was then

compared for four pyrosequencing error correcting and variant

calling algorithms within the gag, env and nef gene regions from our

10 HIV-1 genome dataset. Since the mixture was derived from ten

whole genome plasmids mixed in equal proportion, the lowest

observable valid SNP would be 10%, with SNPs calls in

pyrosequences validated by comparison to variants identified in

Sanger sequences [23]. A total of 28 SNPs in gag (1500 nt

positions), 61 in env (2550 nt) and 21 in nef (681 nt) were

compared. As shown in Table 1, the sensitivity of detection of

variants was usually 97% or higher for most error methods, with

the exception of the QuRe algorithm, which filters out regions

with lower levels of coverage, and VPhaser when applied to the nef

gene sequences. QuRe filtered out 3% of bases from correction for

gag and nef but 33% of bases from correction in env. These filtered

regions fell within areas of poor coverage, usually at the start of the

gene. V-phaser had reduced sensitivity on the nef dataset (61%)

due to a change of valid SNPs to consensus in a region with an in-

frame 18 nt deletion present in 30% of the Sanger sequences.

Changes to gapwindow size parameter (to match the gap size

observed within the sequences) as part of the Vphaser correction

program did not improve nef sensitivity. A combination of

AmpliconNoise+CORAL also showed reduced sensitivity, with

values falling lower than each of these correction methods used

individually. CORAL corrects errors by forming a multiple

sequence alignment and generating a consensus sequence from

these alignments. It is possible that the low frequency of ‘‘real’’

SNPs that are seen after flowgram correction are removed in

CORAL when consensus sequences are generated, thus leading to

a higher incidence of false negatives and reducing sensitivity.

Similarly, we observed a reduced sensitivity when we combined

AmpliconNoise with Vphaser, with sensitivity values falling lower

than each of these correction methods used individually. The

combination of AmpliconNoise+CorQ consistently resulted in

higher sensitivity than the other tested error correction methods

used individually or in combination.

With regard to specificity, the uncorrected reads had a high false

positive rate (low specificity), and with the exception of

Figure 1. 454 read coverage across the HIV-1 genome. Locations of the gag, env and nef genes evaluated in this study are shown. A total of
26,620 reads mapped to gag, 48,927 to env and 21,963 to the nef gene. Reads were aligned to a sample-specific consensus using MOSAIK (http://
bioinformatics.bc.edu/marthlab/Mosaik).
doi:10.1371/journal.pone.0073015.g001
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SegminatorII each of the correction pipelines resulted in an

increase in specificity. Repeated analyses with SegminatorII

produced a high number of false positives, despite using a

sample-specific consensus sequence as reference for the alignment

and default settings recommended by the program authors.

VPhaser alone, or flowgram correction (AmpliconNoise) in

combination with CorQ, consistently produced the highest

specificity for variant detection. Overall, combinations of error

correction methods (AmpliconNoise+CORAL, AmpliconNoi-

se+Vphaser and AmpliconNoise+CorQ) consistently exhibited

between 86–100% specificity.

We also performed a test to assess the effects of read coverage

differences across sequencing orientations on the sensitivity and

specificity of CorQ to detect and correct SNPs. We used

pyrosequences mapping to the ,2500 nt env region from the ten

HIV-1 plasmid clones for this comparison and ran the combina-

tion of AmpliconNoise+CorQ with 2-fold, 5-fold, 10-fold and 20-

fold coverage differences as thresholds for SNP correction (Table

S1). As expected with a lower read coverage difference threshold

(2- or 5-fold), more positions were marked to be poor coverage

regions – SNPs falling within these regions are not corrected,

resulting in higher false positives (reducing specificity to 95%).

With higher coverage difference thresholds (20-fold), more regions

with SNPs are corrected, resulting in correction of real variation

present within the sequences and giving more false negatives

(reduced sensitivity to 95%). We therefore used a 10-fold coverage

difference (98% sensitivity and 99% specificity) with CorQ to

achieve a balance between sensitivity and specificity.

We tested the ability of error correction algorithms to reduce

indel and substitution error rates in both homopolymeric and non-

homopolymeric regions (Tables S3 and S4, respectively) on

simulated pyrosequences generated with a single starting template

(Sets 1a–c, Table S2). QuRe was not included in this analysis since

it generates indel-removed haplotypes as the final result.

SegminatorII was also excluded since it does not give indel

information in the final results. The combination of Amplicon-

Noise+CORAL gives the highest reduction in substitution error

rates for these simulated datasets. This mostly likely is a result of

CORAL error correction whereby a regional consensus sequence

is used to correct for low frequency variants. In the case where

multiple sequencing templates are present, this correction method

runs a risk of removing ‘‘true’’ low frequency variants (as we have

shown with our sensitivity analyses), whereas in this case where

only a single template was used for simulation, correction of low

frequency variants is more efficient. Similar trends for indel and

Figure 2. Overview of the CorQ 454 error correction methodology. The starting point for the CorQ algorithm is a set of sequence and base
quality files. MOSAIK (http://bioinformatics.bc.edu/marthlab/Mosaik) is used for reference-based alignment. Positions with out-of-frame insertions
and deletions (indels) are identified within the alignment and average base qualities are calculated for these regions (See Materials and Methods
Equation 1). SNPs are similarly identified and called (See Materials and Methods Equation 2).
doi:10.1371/journal.pone.0073015.g002
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Figure 3. Attrition in indel counts after application of error correction methods. The percent reduction in number of indels within the HIV-
1 ten-plasmid dataset compared to uncorrected sequences is presented. While Pyrobayes is not an error correction algorithm, but rather recalibrates
quality values, the accuracy of recalibrated bases are meant to reflect overcalled and undercalled bases accurately. The % reduction in indels
compared to uncorrected sequences is shown for gag (A), env (B) and nef (C), and all three genes combined (D).
doi:10.1371/journal.pone.0073015.g003

Figure 4. Carry forward errors retained after error correction. Raw uncorrected values and the percentage of carry forward errors retained
after error correction is plotted for each of the three gene regions gag, env, nef and all the three genes combined.
doi:10.1371/journal.pone.0073015.g004
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SNP error rate reduction was observed in homopolymeric and

non-homopolymeric regions (compare Tables S3 and S4).

Lastly we also evaluated the sensitivity and specificity of SNP

identification on simulated pyrosequencing datasets. We used the

three simulated datasets (Sets 2a–c, Table S2) with multiple

starting templates (28 templates) for this analysis. Prior Sanger

sequencing had shown a total of 145 positions with SNPs within

these 28 templates [23]. We did not include SegminatorII in this

comparison since our previous analysis with this program (Table 1)

had shown that it led to lower specificity than raw uncorrected

reads. Vphaser was also excluded as errors in the program led to

consistently failed runs (see Materials and Methods). When we

compared the simulated sequences that lacked introduced SNP

errors (Table 2), we observed very similar trends as observed with

previous comparisons with the ten HIV-1 genome dataset

(Table 1). As shown in Table 2, the sensitivity of detection was

usually 95% or higher except in the combination of Amplicon-

Noise+CORAL that again showed a trend towards reduced

sensitivity when combined. QuRe also showed reduced sensitivity

when we included the poor coverage regions excluded by QuRe

into our sensitivity calculations. When considering a balance

between sensitivity and specificity, AmpliconNoise+CorQ per-

formed the best amongst all the methods tested. As highlighted

previously, PCR errors are harder for error correction algorithms

to remove since these mutations are present within the sequencing

templates. All error correction methods we tested on simulated

pyrosequences with additional SNP errors added to emulate PCR

errors fared poorly for the removal of false positives with the best

being AmpliconNoise+CorQ, with a specificity of 40% (Table S5).

Discussion

We described a new pyrosequence error correction algorithm,

CorQ that can identify and correct homopolymer and non-

homopolymer indel errors, sequencing misincorporation errors

and carry forward errors associated with homopolymeric regions.

When applied to a control set of ten HIV-1 genomes (without

PCR amplification), the combination of AmpliconNoise+CorQ

reduced indel errors in the gene regions gag, env and nef by 94 to

97%. In addition to testing CorQ in combination with flowgram

correction (AmpliconNoise) and base quality recalibration (Pyr-

obayes) programs, we also compared it to four recently published

pyrosequencing variant callers, CORAL, QuRe, SegminatorII

and V-Phaser. We found that when CorQ error correction is used

on flowgram-corrected fasta and quality files produced by

AmpliconNoise, we get consistently higher sensitivity and speci-

ficity of SNP detection. To tease apart the contribution of CorQ

and AmpliconNoise, we ran the programs separately, and found

Table 1. Sensitivity and specificity of error correction algorithms in SNP variant calling.

Method Sensitivity Specificity

gag nef env combined gag nef env combined

Uncorrected 454 reads 1 1 0.98 0.99 0.37 0.34 0.5 0.44

CorQ 1 1 0.98 0.99 0.79 0.86 0.94 0.88

AmpliconNoise 0.99 0.98 0.98 0.98 0.88 0.71 0.69 0.76

AmpliconNoise+CorQ 0.99 0.98 0.98 0.98 0.99 0.97 0.99 0.98

Pyrobayes+CorQ 0.97 1 0.98 0.98 0.78 0.7 0.78 0.77

CORAL 1 1 0.96 0.98 0.92 0.88 0.94 0.91

AmpliconNoise+CORAL 0.5 0.93 0.27 0.53 0.98 0.86 0.95 0.95

QuRe 0.96 (0.41)* 0.97 (0.61)* 0.98 (0.04)* 0.97 (0.11)* 0.97 0.92 0.99 0.96

SegminatorII 1 0.97 0.98 0.98 0.2 0.24 0.47 0.35

VPhaser 1 0.61 0.95 0.86 0.98 0.98 0.99 0.98

AmpliconNoise+VPhaser 0.54 0.25 0.41 0.38 1 0.99 1 0.99

Comparison of CorQ against other pyrosequence error correction and SNP calling algorithms. gag, env and nef gene regions were used to compare the sensitivity and
specificity of various algorithms. Sensitivity measures the proportion of true SNPs present in the ten HIV-1 genomes, and correctly identified by the various SNP calling
programs. Specificity measures the proportion of true negatives (positions in the gene regions that are invariant) that are correctly identified by the compared
programs.
*Shown in parenthesis are values from QuRe when the poor coverage regions excluded from sensitivity analysis are included as false negatives.
doi:10.1371/journal.pone.0073015.t001

Table 2. Sensitivity and specificity of error correction
algorithms in SNP variant calling in simulated pyrosequences
(simulated datasets 2a–c).

Method Flowsim simulated pyrosequences

Sensitivity Specificity

Uncorrected 454 reads 0.99 0.15

CorQ 0.99 0.7

AmpliconNoise 0.99 0.89

AmpliconNoise+CorQ 0.99 0.95

Pyrobayes+CorQ 0.98 0.71

CORAL 0.95 0.88

AmpliconNoise+CORAL 0.2 0.99

QuRe 0.99 (0.44)* 0.98

Comparison of CorQ algorithm against other pyrosequence error correction and
SNP calling algorithms. Simulated pyrosequences generated from 28 HIV-1
sequences as the starting template were used to compare the sensitivity and
specificity of error correction algorithms. Sensitivity measures the proportion of
true SNPs present within the HIV-1 templates used for simulation, and correctly
identified as such by the various SNP calling programs. Specificity measures the
proportion of true negatives (positions in the gene regions that are invariant)
that are correctly identified as such by the compared programs.
*Values from QuRe are shown when the poor coverage regions excluded from
sensitivity analysis are included as false negatives (shown in parenthesis).
doi:10.1371/journal.pone.0073015.t002
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that CorQ by itself improved SNP detection specificity to a range

of 79% to 94%, whereas AmpliconNoise by itself improved

specificity to a range of 69% to 88%, whereas uncorrected reads

had a SNP detection specificity ranging from 34% to 50%.

Combining AmpliconNoise and CorQ, however, consistently gave

the highest combined SNP detection sensitivity and specificity

amongst the error correction methods tested, with the specificity of

VPhaser nearly equaling that of AmpliconNoise+CorQ. The

combinations of AmpliconNoise+Vphaser and AmpliconNoise+-
CORAL while resulting in .86% specificity, had poor sensitivity

ranging from 25%–93%.

The advantage of using AmpliconNoise+CorQ was most

pronounced for the reduction carry forward errors. We also

observed reductions in carry forward errors when we combined

corrected files from Vphaser with CorQ, indicating that CorQ can

be used in combination with other error correction programs to

maximize the number of error free pyrosequences. We observed

similar trends in sensitivity and specificity when we compared

error correction methods on simulated pyrosequencing datasets.

One caveat we observed in using AmpliconNoise is that it is

computationally intensive, with computing time increasing expo-

nentially on datasets over 20,000 reads, making this algorithm

impractical for large datasets without extensive computational

resources. Furthermore, since AmpliconNoise relies on iterative

clustering, we have observed that the frequencies of low-level

SNPs do not correlate well with the frequencies found within

uncorrected reads for sequences generated through amplicon

sequencing on the Roche 454 platform (unpublished results). We

therefore recommend use of AmpliconNoise for library pyrose-

quencing only, as described here.

CorQ takes read coverage into account when making SNP calls,

particularly in regions in which there is a large discrepancy

between the number of reads obtained in one sequencing

orientation compared to the other. Other pyrosequencing error

correction methods we tested here do not explicitly address read

coverage variation across the target sequence or in different

sequencing orientations. We addressed this by requiring a SNP to

be present in both orientations. We also made read coverage

difference threshold an input parameter for CorQ so that users

can use the fold coverage that appropriately represents the data

they are analyzing. We settled on a default setting of 10-fold

coverage difference after initial tests showed this to achieve a good

balance between SNP detection sensitivity and specificity. Thus, in

regions with over a 10-fold difference in read coverage across

sequencing orientations, SNPs are not corrected (by CorQ) due

solely to inadequate information. While this criterion does not

address all possible scenarios of read coverage across sequenced

positions, we have observed that most regions with coverage

discrepancies also tend to have inadequate or lack of reads in one

of the sequencing orientations (unpublished observations).

As expected, none of programs evaluated were able to correct

SNPs present in sequences as a result of misincorporation events

occurring during PCR of the template preparation, unless, in the

case of CorQ, these SNPs also had reduced base quality. This

makes identification of SNP errors as a result of PCR amplification

challenging by any method as shown by our error correction tests

run on simulated pyrosequences with typical PCR error rates

applied.

We selected HIV-1 sequences as templates for generating

additional simulated pyrosequences as this technology has become

widespread in studying HIV-1 genomes. The genetic diversity of

HIV-1 found within an infected individual in chronic infection is

comparable to the global genetic variation seen in the influenza

virus [27]. The most prominent source of HIV-1 mutation is error

prone nucleic acid synthesis during replication, with rates

estimated in the range of 1.4610–5 errors per base pair, per

replication cycle [28]. Viral diversity also differs in different genes

and with the length of infection. The diversity of a viral population

within an infected individual starts low immediately after infection

but increases during the course of infection at a rate of 1% (within

the env region) reaching up to 15% or more in long term infected

individuals [29]. This extent of diversity makes pyrosequencing

both a useful and challenging tool to study HIV-1. The

information gleaned from pyrosequences thus has to be judged

carefully for errors from both the sequencing methodology and

PCR amplification.

CorQ lists frequencies of SNPs and outputs a multiple sequence

alignment that can be used for downstream analysis of a variety of

datasets, including microbial communities. Other error correction

methods such as QuRe and V-Phaser that were tested here also

generate reconstructed haplotypes that can be useful in studying

microbial communities. Researchers interested in studying diverse

microbial communities can use the information provided here to

make decisions on selecting the right set of error correction tools.

While we have tested CorQ on data derived from pyrosequencing,

this algorithm is general enough to be applied to sequences

generated from other high throughput platforms that generate

both sequence and associated quality files, making it a method

with widespread applications in variant detection. Perl scripts that

implement each step in the CorQ pipeline are available for

download at: http://mullinslab.microbiol.washington.edu/

publications/iyer_2012/.

Supporting Information

Figure S1 Average reduction in base quality for indels
found in homopolymer and non-homopolymer regions.
Reduction in base quality was measured as the average difference

in quality between flagged positions with indels and the adjacent

columns (See Materials and Methods, Equation 1). Base qualities

from uncorrected sequences (raw 454), and sequences corrected

with AmpliconNoise and Pyrobayes are shown for indels found in

non-homopolymer regions (length of 1) and varying homopolymer

lengths. Reduction in base quality is shown for indels within gag

(A), env (B), nef (C) and the three genes combined (D).

(TIFF)

Table S1 Effect of varying coverage threshold on
sensitivity and specificity of SNP variant calling. Ampli-

conNoise+CorQ error correction was used on pyrosequences

mapping to the env region (,2500 nt) from the ten HIV-1 genome

control dataset. Different fold coverage values were used as input

parameters in CorQ. Sensitivity and specificity of SNP variant

detection within this region is calculated for each fold coverage

value.

(DOCX)

Table S2 Average number of reads and average read
length for simulated pyrosequences. Two sets of simulated

pyrosequences generated using Flowsim are shown here. The first

set (Set 1a, b and c) is comprised of simulated reads generated

using a single 1500 nt HIV-1 sequence as the starting template.

The second set (Set 2a, b and c) is comprised of simulated reads

generated using a 1500 nt region located within 28 HIV-1

sequences as starting templates. Simulations were done without

additional SNP errors (1a, 2a) and with two different SNP error

rates, 0.005 and 0.01 (1b,c and 2b,c).

(DOCX)
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Table S3 Comparison of insertion, deletion and substi-
tution error rates in homopolymeric regions after error
correction on simulated pyrosequences. Simulated reads

were generated using Flowsim using a single 1500 nt HIV-1

sequence as the starting template (Simulated datasets 1a–c).

Average insertion, deletion and substitution error rates within

homopolymeric regions are shown after correction with no

additional SNP errors, and SNP error rates of 0.005 and 0.01.

(DOCX)

Table S4 Comparison of insertion, deletion and substi-
tution error rates in non-homopolymeric regions after
error correction on simulated pyrosequences. The

simulated reads were generated in Flowsim using a single

1500 nt HIV-1 sequence as the starting template (Simulated

datasets 1a–c). Average insertion, deletion and substitution error

rates within non-homopolymeric regions are shown after correc-

tion with no additional SNP errors, and SNP error rates of 0.005

and 0.01.

(DOCX)

Table S5 Sensitivity and specificity comparison of error
correction and SNP calling algorithms on simulated
pyrosequences. Simulated datasets 2a–c was used to compare

the sensitivity and specificity of error correction algorithms.

Sensitivity measures the proportion of true SNPs present within

the HIV-1 templates, and correctly identified as such by the

various SNP calling programs. Specificity measures the proportion

of true negatives (positions in the gene regions that are invariant)

that are correctly identified as such by the compared programs.

Note that QuRe failed when used on simulated pyrosequences

generated with a SNP error rate of 0.005. * Values from QuRe are

shown when the poor coverage regions were excluded from

sensitivity analysis and when these regions are included as false

negatives during analysis (the latter values are shown in

parenthesis).

(DOCX)

File S1 Sequences for generating simulated pyrose-
quences.

(TXT)
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