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Abstract

In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides,
which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection
to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of
intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment
through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed
algorithm can significantly improve the accuracy and precision of peptide ratio measurements.
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Introduction

16O=18
O labeling is often coupled with Liquid Chromatogra-

phy-Mass Spectrometry (LC-MS) for protein quantification. In

such experiments, two 16O atoms are typically replaced by two
18O atoms by enzyme-catalyzed oxygen-exchange in the presence

of H2
18O in the heavy sample [1]. This method has the following

advantages [2]: 1) It does not target peptides containing particular

amino acids and does not require an additional affinity-based step

for labeled peptide enrichment; 2) It is amenable to clinically

relevant samples; and 3) It is well suited for amount-limited

samples. Due to these advantages, 16O=18
O can be used in clinical

or time critical applications where more accurate metabolite

labeling methods [3] cannot be applied. However large experi-

mental variation exists [4] in 16O=18
O data since samples are

combined after the digestion stage. This poses a great challenge in

data processing, which is the focus of this paper.

Before detailed discussion, we need to clarify the definition of a

few terminologies. An LC-MS peptide feature is the series of two

dimensional (retention/elution time – mass/charge (m/z)) signals

registered by a single charge variant of a peptide at different

isotope positions. If we further integrate the 2D signals within

narrow windows around the center m/z values of peptide isotopes,

the feature is reduced to a group of LC peaks at different isotope

positions. We further define peptide features of identical peptides

in different replicates as corresponding ones.

In LC-MS, many co-eluting peptides have overlapping LC

peaks, which will significantly increase the variance of measured

Heavy/Light ratios (HLR)s between labeled and unlabeled

peptides. Although numerous algorithms [5–7] have been

proposed for separating overlapping peaks, they are generally

computationally expensive and difficult to adopt. In this paper, we

consider the relatively simpler problem of LC peak boundary

detection (BD), which aims at removing LC peak segments that

have been corrupted by co-eluting peptides. Besides BD, there is

the issue of peptide mass ambiguity when the monoisotope mass is

unknown. Wrongly assigned mass will lead to increased quanti-

fication error. Although these problems plague all LC-MS

quantification methods, they severely affect the applicability of
16O=18

O labeling, which has high variance due to sample

preparation [4].

LC peak boundary detection determines which scans should be

included in the LC peaks of a peptide feature. Current software

packages do not employ accurate boundary detection especially on

crowded Extracted Ion Chromatograms (XICs): QUIL [8] and

ProteinQuant [9] determine LC peak boundary by the apex and

the full-width-half-maximum (FWHM) of a peak; MsInspect [10]

and SuperHirn [11] use thresholds; ASAPRatio [12] and

MapQuant [13] use peak apex and FWHM; and MaxQuant

[14] uses local minima after XIC smoothing. These algorithms

cannot guarantee the exclusion of noise or interference-corrupted

scans. Recently in MRCQuant [15], an algorithm that uses MS

peak templates extracted at the highest isotope positions is

proposed for boundary detection. However, MRCQuant is

designed for low resolution label-free LC-MS applications, where

there is significant noise and interference. The boundary detection

method in MRCQuant is not effective for keeping the entire

intensity pattern consistent within the boundary of LC peaks of
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16O=18
O data, because it only uses MS peak templates at the

highest isotope positions.

Given the importance of interference removal, we propose a

simple but effective method for boundary detection. The proposed

method is based on the observation that in most cases, a peptide

has a consistent intensity pattern on scans within its non-corrupted

LC peak segment. Interference from co-eluting peptides can be

detected once such consistency is violated. The consistency of

intensity patterns is calculated using the Kullback-Leibler (KL)

distance [16]. Our testing results show that most peptides can be

accurately quantified even if their LC peaks are partially corrupted

by co-eluting peptides.

To address the issue of peptide mass ambiguity, we propose to use

model fitness check (MFC) to remove peptide features with

erroneously assigned masses. Given an assumed peptide se-

quence/mass and estimated heavy and light peptide intensities, we

first construct a theoretically predicted intensity pattern. Subse-

quently, the predicted intensity pattern will be compared to the

observation. If a match is found, the assumed peptide sequence/

mass will be accepted. While the idea of comparing natural isotope

patterns to observation data has been used for peptide identification

in software like msInspect, the idea of using predicted intensity

patterns constructed from estimated heavy/light intensities and

isotope patterns for MFC has not been used previously. More

background information on isotopic distribution can be found in

[17].

In the proposed algorithm, the required input includes an LC-

MS data file and a list of mass and charge (m/z) values, which can

be compiled from currently or previously identified peptides

through tandem MS with or without elution time information.

The algorithm will perform BD and MFC for each peptide entry

first, and after which, existing quantification methods [18–22]

designed for 16O=18
O data can be applied.

We test the proposed algorithm based on data collected from

two experiments using a Thermo LTQ Orbitrap Velos ETD mass

spectrometer, and a Waters SYNAPT G2 Time-of-flight (TOF)

mass spectrometer. While no tandem MS scans are collected on

TOF, tandem MS scans are collected on Orbitrap, which provide

a list of peptide m/z and elution time values after peptide

identification.

In the first experiment, cells in the same biological condition are

separated into two parts. Then they are labeled and combined at

predefined ratios of 1:1, 2.5:1 and 5:1 to create samples for

checking the overall performance of the proposed algorithm. We

evaluate the receiver operating characteristic (ROC) curves and

show significant improvement of the proposed algorithm compar-

ing to a popular software that can process high resolution 16O=18
O

data, MaxQuant [14].

To further verify the proposed algorithm, cells in two biological

conditions are labeled with 16O and 18O respectively in the second

experiment, and equal amount of proteins from each condition are

combined and analyzed. Technical replicates are collected on both

instruments. This represents a typical scenario in biomedical

research. Since peptide HLRs are not known in this case, we can

not assess accuracy and precision by the mean and the standard

deviation of measured HLRs. Instead, we employ two alternative

measures, Normalized Mean Absolute Error (NMAE) for accura-

cy, and Log-Ratio-Difference (LRD) for precision. LRD is

calculated by taking the difference between two log(HLR)
measurements of the same peptide. The variance of LRD can

be attributed to the instrument and the data analysis process, but

not the sample preparation process. Sample preparation causes a

common deviation on the two measurements of the same peptide,

which is canceled out when calculating the LRD. We have verified

that NMAE and LRD are correlated with classical accuracy and

classical measures, and they can be used on samples without

predefined ratios for performance evaluation. Our experimental

results show a significant improvement in NMAE and LRD by

using the proposed processing steps on Orbitrap and TOF data.

We anticipate that the proposed algorithm can be incorporated

into many kinds of LC-MS quantification software for significant

improvement in quantification accuracy and precision.

Data Collection

Experiment one sample preparation
In experiment one, the samples from Human embryonic kidney

293T cells were divided into two groups. The two groups of samples

were lysed in 8 M urea, and 50 mM ammonium bicarbonate

(pH 8.3). The lysates were subjected to centrifugation at 13,000 rpm

for 20 minutes and the supernatants were collected. The two

samples were then denatured in 8 M urea, reduced using 10 mM

dithiothreitol (DTT), alkylated with 30 mM iodoacetamide, and

digested with trypsin (using an enzyme to protein ratio of 1:50) at

37uC overnight. The samples were desalted with Sep-Pak cartridges,

separated into two tubes and dried in a speedvac. The first sample

was resuspended in 100 mL 18O-water (Purity .98%) containing

50 mM ammonium bicarbonate, 10 mM calcium chloride, and

trypsin (1 to 50 w/w trypsin: peptide) pH 7.8. The second sample

was treated in the same manner except that the 18O-water was

replaced with purified 16O-water. After incubation with shaking at

450 rpm for 5 hours at 37uC the labeling reaction was terminated by

first boiling the sample for 10 minutes and then adding 5 mL of

formic acid to further inhibit any residual trypsin activity. A

bicinchoninic acid (BCA) assay was performed to determine peptide

concentration. The two samples were combined equally or in

selected ratios (1:1, 2.5:1, and 5:1 Heavy/Light) and were subjected

to reverse phase liquid chromatography (LC) followed by ETD-

LTQ-Orbitrap Velos mass spectrometry (MS) analysis (see Exper-

imental section for 1D LC and ETD-LTQ-Orbitrap Velos MS

conditions in document S2).

Figure 1. Flow Diagram of LC/MS Processing Steps. The right top
panel shows a segment of XICs at different isotope positions of a
peptide. There exists interference of co-eluting peptides. After
processing, as shown in the bottom right panel, we determine the
boundary of the LC peak (indicated by the stem pairs in the middle),
that excludes segments which have been corrupted by signals of co-
eluting peptides. The initial boundary (indicated by the lower pair of
stems) includes a lot of interference from co-eluting peptides.
doi:10.1371/journal.pone.0072951.g001
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Experiment two sample preparation
In experiment two, the samples from Human embryonic kidney

293T cells were cultured in Dulbecco’s modified Eagle’s medium

with 10% fetal bovine serum (FBS). One group was transfected

with an expression vector expressing microRNA-K1 of Kaposi’s

sarcoma-associated herpesvirus (KSHV) while the control group

was transfected with a vector for 48 h [23]. The sample

preparation on these two groups of samples is the same as in

experiment one. Equal amounts of 16O and 18O labeled samples

were combined to obtain one sample. Two hundred micro grams

of combined sample was fractionated into four fractions using

strong cation exchange (SCX) (see Experimental section on strong

cation exchange for LC conditions in document S2). The four

samples were then subjected to reverse phase-reverse phase LC

followed by ETD-LTQ-Orbitrap Velos MS and SYNAPT G2 MS

analysis (see Experimental section for 2D LC and MS conditions

in document S2).

Tandem MS data processing and LC-MS quantification by
MaxQuant

We download MaxQuant 1:3:0:5 from the webpage www.

maxquant.org, which uses Andromeda for tandem MS search.

International Protein Index (IPI) human database version 3.83 is

selected as the source of protein sequences. We set MS1 tolerance

to 20 ppm for the first search and 6 ppm for the main search. We

set MS/MS tolerance to 20 ppm, peptide FDR to 0.01, and select

18O as the heavy label. We select Oxidation (M) and Acetyl

(Protein N-term) as variable modifications, and Carbamidomethyl

as the fixed modification. In database search, ‘‘minimum length of

peptide’’ is set to 7, and ‘‘maximum missed cleavage sites’’ is set to

2. Peptide identification results are exported into text files and

further imported into MatLab for quantification analysis. For

further details of MaxQuant parameter settings, please visit the

project website at http://compgenomics.utsa.edu/zgroup/

boundarydetection/boundarydetection.html, where we provide

screen shots of parameter settings.

Data Model

Before further discussion, we would like to describe the data

model used in this paper. Suppose a given peptide with mass m

and z charges has sequence information, and based on which, we

can theoretically predict its natural isotope pattern as

P~fp0,p1, � � � ,pi, � � � ,pIg [24], where pi is the probability that

the peptide has i extra neutrons comparing to the monoisotope,

and I is the total number of isotopes considered. The

corresponding m/z values of these isotopes are given by

M~fm=zzHz,(mzD)=zzHz, � � � ,(mzi �D)=zzHz,

� � � ,(mzI �D)=zzHzg,
ð1Þ

Figure 2. Histograms of measured log(HLR)s after applying BD and MFC. The vertical lines indicate the predefined ratios. We can see that
MaxQuant returns biased ratio measurments while the proposed algorithm does not.
doi:10.1371/journal.pone.0072951.g002
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Figure 3. Comparison of accuracy and precision of different methods based median and standard deviation of log(HLR)s.
doi:10.1371/journal.pone.0072951.g003

Figure 4. ROC Curves with (+) or without (2) boundary detection (BD) and model fitness check (MFC).
doi:10.1371/journal.pone.0072951.g004
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where Hz stands for the mass of the charge, and D is the mass of

an extra neutron.

Given an unlabeled peptide in 16O=18
O data, the signal of its

heavy labeled version can be found at masses with 2 to 4 Daltons’

shift with one or two incorporated 18O2s. Suppose P2 and P3 are

isotope patterns of the peptide in heavy forms with one or two 18O

labels respectively, we can write

P2~½0 0 p0,p1, � � � ,pI{2�

P3~½0 0 0 0 p0,p1, � � � ,pI{4�, ð2Þ

in which, extra zeros are padded to reflect the mass shifts. In this

paper, we consider a maximum of I~6 isotopes starting from the

monoisotopic position of the unlabeled peptide. In this way, at

least four and two isotopes of singly and doubly 18O labeled

peptides are included. Now we can express the observed peptide

intensities in the lth scan as:

yl~e(l) � (AL � PzAH1 � P2zAH2 � P3)zNl , ð3Þ

where AL, AH1, and AH2 are the abundances of the unlabeled and

labeled peptides with one or two 18O2s, e(l) represents the

normalized elution profile of the peptide at the lth scan, and Nl

represents a noise vector added on I isotope positions. We can see

that the observed intensities of a peptide, yl , only changes in the

scale e(l), but not in the relative intensity pattern

(AL � PzAH1 � P2zAH2 � P3) on different scans during the

elution process.

If we consider all scans within the elution time of a peptide, then

its feature can be represented by a two dimensional data matrix

Y~fy1, � � � ,yl , � � � ,yLg, which has I columns and L rows,

representing the number of isotope positions and scans respec-

tively. If we further sum Y along the rows, we can get an overall

intensity vector at all isotope positions:

X~
X

l

yl~(AL � PzAH1 � P2zAH2 � P3)zN, ð4Þ

where N~
X

l
Nl .

A quantification algorithm generally takes X as the input, and

estimate peptide abundances as fALAL, gAH1AH1, and gAH2AH2. Based on these

Table 1. Number of quantified peptides on samples with
predefined ratios with (+) or without (2) boundary detection
(BD) and model fitness check (MFC).

MaxQuant
BD (2)
MFC (2)

BD (+)
MFC (2)

BD (+)
MFC (+)

1:1 Sample 2228 1923 1791 750

2.5:1 Sample 1827 1540 1441 903

5:1 Sample 2076 158 1456 1067

doi:10.1371/journal.pone.0072951.t001

Figure 5. The correlation between the proposed precision and accuracy measures (NMAE and LRDSTD), and classical ones (median
deviation and standard deviation of log(HLR)s). All three samples with predefined ratios are evaluated in all three cases: 1. BD (2) MFC (2); 2.
BD (+) MFC (2); and 3. BD (+) MFC (+).
doi:10.1371/journal.pone.0072951.g005
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estimated abundances, we can construct an estimated peptide data

model as eXX [25],

eXX~fALAL � PzgAH1AH1 � P2zgAH2AH2 � P3: ð5Þ

Elaborate models that consider the effect of 17O [20–22] can be

employed for more accurate HLR calculation. However, since the

primary focus of this paper is on BD and MFC, we have not

expand our discussion in this direction.

Finally, the peptide HLR can be estimated as

r~(gAH1AH1zgAH2AH2)=fALAL.

If two observed features of a peptide are X1 and X2, and based

on which two HLR estimations are r1 and r2, then the log-ratio-

difference (LRD) is defined as LRD~log(r1){log(r2).

Approaches

Given a peptide with sequence, mass, and charge values from

the input list, we start the quantification process by extracting its

relevant XICs at different isotope positions as in (1). The goal of

LC peak boundary detection is to find elution time intervals within

which, the LC peaks on all XICs can be grouped to peptide

features with matching mass and charge values to that of the

peptide of interest. For this purpose, we first select an XIC at an

isotope position with high abundance according to the predicted

isotope pattern for both the unlabeled and the labeled peptide.

Then we employ an initial LC peak picking algorithm on the

selected XICs, which generates a list of candidate LC peak

intervals. Then the consistency of intensity patterns within each

LC peak interval will be checked to detect accurate boundaries.

Subsequently, we perform a model fitness check step to filter out

features that are incompatible with the mass and charge values of

the peptide of interest. Features that passes these processing will be

relayed to a quantification algorithm for HLR calculation. If

elution time information is available, the feature with matching

elution time will be reported. Otherwise, all features with

matching mass and charge values will be reported.

In Figure 1, we have shown the flow diagram of the proposed

algorithm.

Initial LC peak detection
The goal of initial LC peak detection is to find a list of candidate

elution time intervals that could be matched to the peptide of

interest. A procedure similar to that of MaxQuant [14] is

employed.

1. Given a peptide’s mass (m) at a charge state (z), determine its

theoretical m=z values at all 6 isotope positions, as in (1).

2. Predict the natural isotope distribution pattern P, and select the

highest isotope position, i.e. the index of maxfPg, i. Usually

i~1 or i~2. We consider the XICs at (mzi)=zzHz and

(mziz4D)=zzHz for the unlabeled and the labeled peptide

respectively.

3. Employ a simple moving average (10 points) filter to smooth

out the XICs selected. Since our initial LC peak detection does

Figure 6. NMAE and LRD on Orbitrap 1:1 sample with (+) or without (2) boundary detection (BD) and model fitness check (MFC) on
three intensity groups. Intensity Group 1: lower 20%; 2: middle 60%; 3: upper 20%. (a) Normalized Mean Absolute Error (NMAE). (b) STD of LRD. (c)
Median of LRD.
doi:10.1371/journal.pone.0072951.g006
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not require high accuracy, the requirement on the the

smoothing algorithm is not high.

4. Combine the two selected XICs by summing them, and in this

way, peaks generated by light and heavy peptides can be

combined.

5. Estimate the background noise, and apply a threshold on the

combined XIC. The threshold is set at three times the

estimated background noise standard deviation.

6. For segments above the threshold, we derive first order

derivatives and set initial LC peak boundaries at local minima.

If an interval contains multiple LC peaks, the interval will be

split to ensure that only one peak apex is contained in each

interval.

Boundary detection and model fitness check
The initial boundaries could include scans that have been

corrupted by co-eluting peptides at certain isotope positions. We

propose an additional peak boundary detection step to exclude

interference.

1. Determine accurate LC peak boundaries of a peptide feature

by checking the intensity pattern consistency. Since the

observed intensities of a peptide, yl as defined in (3), only

changes in the scale, but not in the relative intensity pattern

during the elution process, we can detect interference by co-

eluting peptides when the relative intensity pattern changes.

The boundary detection process starts at the LC peak apex

within the initial LC peak boundary. The basic assumption is

that the intensity pattern at peak apex is not corrupted by co-

eluting peptides. The normalized raw intensity values at all 6

isotope positions in the scan of peak apex a, �yya~ya=
X

ya will

be used as a template. Then we move towards the beginning of

the initial boundary one scan at a time, and compare the

template pattern with that in the current scan �yyc. The

difference between the intensity patterns is measured with

KL distance [16] dkl~D(�yyxDD�yyc), where given two normalized

intensity vectors p and q, D(pDDq)~
X

pilog(pi=qi). If log(dkl)

is smaller than {2:5, which indicates good matching, then the

current scan will be included in the boundary. Otherwise, the

current scan is deemed corrupted and will be excluded. The

process stops once such a scan is encountered. We determine

the threshold on log(dkl) in the same way as that in

MRCQuant [15]. Note that the KL distance is not used as a

boundary detection criteria in MRCQuant as we proposed

here, it is only used as a performance evaluation criteria, which

is also used by MsInspect [10].

2. After boundary detection, all remaining elution intervals have

consistent intensity patterns throughout the elution process,

and can be considered as the candidate feature for the peptide

of interest. Our next step aims at determining if these candidate

features match in mass with the peptide of interest. To achieve

this goal, we perform model fitness check by comparing the

constructed data model, eXX in (5), to the observed intensities X.

If there is a match, then the constructed data model, which is

calculated based on the peptide’s isotope pattern, should match

to the observed data. Otherwise, the actual isotope pattern

must have been generated by another peptide. Again KL

Figure 7. NMAE and LRD on sample with two conditions on Orbitrap with (+) or without (2) BD and MFC with three intensity
groups. Intensity Group 1: lower 20%; 2: middle 60%; 3: upper 20%. (a) Normalized Mean Absolute Error (NMAE). (b) STD of LRD. (c) Median of LRD.
doi:10.1371/journal.pone.0072951.g007
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distance between the normalized models is used as a

measurement of deviation. A log(KL) distance of less than

22.5 is considered as an indication of good match.

At the end of this process, a list of Ni (Niw~1) peptide features

are identified for the ith mass and charge value.

In Figure 1, we show the flowgram of the proposed algorithm,

and we plot one of the detected features. Six colors are used to plot

six XICs at different isotope positions. We can see that the peak

detection process successfully locates boundaries that exclude

interference from co-eluting peptides.

Quantification
After LC peak boundary detection and model fitness check, the

identified peptide features can be further processed by quantifi-

cation algorithms designed for 16O=18
O data. We employ a

quantification algorithm to estimate the abundance of heavy and

light labeled peptides, and calculate their ratios. We have surveyed

the field and identified two popular methods: Yao’s method [18]

and the bilinear regression (BR) method [19].

Given X as defined in (4), Yao’s method simply estimates the

abundance of the light peptide using the intensity at the first

isotope position. Subsequently, the expected intensity due to the

unlabeled peptide is subtracted from the total intensity at the 3rd

isotope position. The remaining value is used to estimate the

abundance of the singly 18O labeled peptide. After these two steps,

the algorithm proceeds to estimate the total abundance of the

doubly 18O labeled peptide. This simple algorithm performs very

well.

The BR method is a more sophisticated optimization method

which aims at minimizing the mean square error between X and
eXX. This implies that it considers the intensity at all isotope

positions as independent. We employ both quantification algo-

rithms after LC peak boundary detection and model fitness check

to report final quantification results.

Employing more sophisticated quantification methods that

consider the effect of 17O [20–22] could further improve the

performance of HLR calculation.

Accuracy evaluation by Normalized Mean Absolute Error
(NMAE) in samples without predefined ratios

In experiment two, samples from two biological conditions are

combined with equal amount of proteins. Without knowing the

actual HLR, we can employ NMAE as an accuracy measure. The

NMAE is defined as:

NMAE~

P6
i~1 D eXiXi{XiDP

i Xi
, ð6Þ

where eXX and X are the fitted and the observed intensities as

defined before. Theoretically, if the abundance values

AL,AH1,andAH2 are estimated accurately by a quantification

algorithm, then NMAE should be small. Thus NMAE can be

used as an accuracy measurement for quantification algorithms.

Performance evaluation by Log Ratio Difference (LRD)
It is a general practice to evaluate the precision of a

quantification algorithm by using samples with known ratios.

However, the calculated variance of such samples comes from

many sources including sample preparation, LC-MS instruments,

and the algorithm itself. If we want to focus more on the variation

caused by the algorithm, we can use LRD, in which, deviations

caused by sample preparation are canceled out. Given the same

accuracy in estimating the ratios (which is indicated by NMAE),

and if the LRD is calculated between two replicates, then it reflects

the sum variation caused by different runs of LC-MS, the

instrument and the algorithm. When we split the scans within one

LC peak into two parts, then the LRD reflects algorithm and

instrument variation only. Ideally LRDs should have zero mean

and small variance.

Results and Discussion

Performance evaluation based on samples with
predefined ratios

In the first experiment, the HLRs are predefined as 1:1, 2.5:1,

and 5:1. We apply our proposed algorithm and compare it with

MaxQuant. The histograms of the measured log(HLR)s after BD

and MFC are plotted in Figure 2, in which we can see that the

histograms of MaxQuant log(HLR)s are far from Gaussian. We

first try to compare performance using classical accuracy and

precision measures, the median and the standard deviation of the

log(HLR)s, which are plotted in Figure 3. We consider three cases

with or without the two proposed processing steps. If a step is

applied, we indicate it by a plus sign. For example, (BD (+)) stands

for the case that boundary detection is performed. The three cases

are: 1. (BD (2) MFC (2)), 2. (BD (+) MFC (2)), and 3. (BD (+),

MFC (+)). By comparing case one and case two, we can elucidate

the effect of adding BD to the proposed algorithm. By comparing

case two and case three, we can estimate the effect of MFC after

boundary detection. These plots are generated based on Yao’s

method. The results based on the BR’s method are similar. We

can see that BD and MFC improve precision and accuracy

significantly at all predefined ratios. However in Figure 3, we

cannot tell if the proposed algorithm performs better than

MaxQuant due to the phenomenon of bias-variance trade-off

[26]. MaxQuant reports larger bias but smaller standard variation

on log(HLR)s.

Since precision and accuracy cannot determine the separation

of histograms (i.e. the resolution of measurement algorithms)

when there exists bias-variance trade-off, we further employ

receiver operating characteristic (ROC) curves to measure the

separation between histograms. Specifically, we investigate the

separation between the 1:1 and the 2.5:1/5:1 histograms. At a

given threshold th, if a peptide has a log(HLR)vth, or

log(HLR)w{th, then the peptide ratio is considered to be

1:1. The ROC curve plots the percentage of samples correctly

identified as 2.5:1/5:1 (true positive rate) at different false positive

rates (percentage of 1:1 ratios identified as 2.5:1/5:1) as th varies.

If an algorithm separates histograms better, then at a given false

positive rate, the true positive rate should be higher. This is a

systematic way for comparing the resolution of different

quantification methods. The results are summarized in Figure 4.

We can see that combining BD and MFC improves the

performance significantly.

BD and MFC do lead to reduced quantification coverage. The

number of quantified peptides in samples with predefined ratios

are compared to that of MaxQuant in Table 1. We can see that

these filtering steps lead to improved ROC curves with a cost on

quantification coverage.

The histograms of measured log ratios in case one, (BD (2)

MFC (2)), and case two, (BD (+) MFC (2)), are plotted as

Figure S1 and Figure S2 in document S1.
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The validation of using NMAE and LRD standard
deviation as performance measures based on samples
with predefined ratios

We intend to use NMAE and LRD to examine the performance

of the proposed algorithm on samples without predefined ratios,

where classical precision and accuracy measures cannot be

calculated. But before we apply them, we first test if they are

appropriate substitutes. We calculate NMAE and and the standard

deviation of LRD (LRDSTD) based on samples with predefined

ratios. To calculate LRD, we partition the scans within peptide

features into two parts depending on if their scan numbers are

even or odd. Subsequently, we quantify two parts separately to get

their LRDs. In Figure 5, we plot NMAE and LRDSTD against

the median and standard deviation of log(HLR)s respectively. We

can see that NMAE and LRDSTD regress to classical measures

with correlations of 0.76 and 0.86. The establishment of NMAE

and LRDSTD as substitute precision and accuracy measurements

is very important since these two measures can be used in any

experiments for performance evaluation.

In order to understand the effect of the proposed algorithm on

LC peaks with different intensities, we partition considered

features into three groups: the lower intensity group (bottom

20%), the middle intensity group (middle 60%), and the upper

intensity group (top 20%). The analysis is carried out on these

groups in addition to the three cases with or without BD and MFC

using NMAE and LRDSTD.

In Figure 6 (a), we compare NMAE on the 1:1 sample. We can

see that, MFC and BD reduce NMAE in all cases across all

intensity groups. In Figure 6 (b), we compare the LRDSTD. We

can see that there is a slight increase of LRDSTD after BD, but a

significant reduction of LRDSTD after MFC. This is understand-

able because BD reduces the total number of scans used for

quantification, which may lead to slight increase in LRDSTD.

Given that BD reduces NMAE but increases LRDSTD, we can

see that BD causes a bias-variance tradeoff. The overall effect is

reflected by the improvement on ROC curves due to BD. MFC

greatly reduces both NMAE and LRDSTD, because it removes

peptides with wrongly assigned mass as well as peptides with

significant interference. In Figure 6 (c), we can see that there is

little difference in reported median of LRD except the case of

using Yao’s method on low and medium intensity groups. The

median of LRD are expected to be around zero. Overall, on

Orbitrap data with pre-defined ratios, there is a significant

performance improvement in NMAE and LRDSTD.

NMAE and LRDSTD analysis on the 2.5:1 and 5:1 samples are

shown in Figure S3 and Figure S4 in document S1, which largely

agree with the results of the 1:1 sample.

Effect of accurate LC peak boundary detection and
16O=18

O model fitness check on TOF and Orbitrap Datasets
with two conditions

We have verified that NMAE and LRDSTD can reflect the

improvement due to BD and MFC on samples with pre-defined

ratios, now we want to see if similar improvement on these two

measures can be obtained based samples without pre-defined

ratios, which are relevant for real biomarker discovery projects.

We first perform LRD and NMAE analysis on one replicate in

experiment two collected on Orbitrap (OrbiR1) and TOF

(TOFR1). The results on the Orbitrap data is shown in Figure 7.

We can see that the results correlate well with those shown in

Figure 6 for samples with pre-defined ratios. Significant perfor-

mance improvement can be achieved by employing BD and MFC

in common biological experiments. The LRD and NMAE analysis

on the TOF data is shown as Figure S5 in document S1.

In document S1, we have also shown the NMAE and LRD

analysis when considering two replicates collected on Orbitrap

(OrbiR1/OrbiR2) in Figure S6. After processing each replicate

separately, we obtain a union of 2035 tandem MS identified

peptides. Commonly identified peptides are considered as

corresponding ones, based on which, LRDs can be calculated.

Note that finding corresponding pairs based on tandem MS

reduces the total number of considered peptides from 2035 to

1074. As a result, while strong performance improvement is shown

for BD, no performance improvement is evident for MFC, whose

filtering effect has been masked by the process of finding

corresponding pairs using tandem MS. In practice, MFC cannot

be replaced because a lot of peptides are not commonly identified

in both replicates.

Conclusion
In this paper, we propose to add two processing steps: LC peak

boundary detection and model fitness check for 16O=18
O labeled

LC-MS data processing. The performance of the algorithm is

evaluated on samples with pre-defined ratios from cells in the same

condition, and from cells in different biological conditions. We

employ various measurements for evaluating the efficacy of the

algorithm. On samples with pre-defined ratios, it is shown that the

proposed algorithm improves the ROC curve performance

significantly over that of MaxQuant. In experiment two, we

further use NMAE and LRDSTD to evaluate the algorithm on

samples from two different biological conditions. It is shown that

significant reduction in NMAE and LRD (median and standard

deviation of LRD), can be achieved due to LC peak boundary

detection and model fitness check. The test is performed on data

collected on both TOF and Orbitrap instruments.

The proposed algorithm is critical for reliable differential

analysis for 16O=18
O labeled data, which has a wide application in

biomedical research.

Supplementary information
For additional graphs, please see document S1. For MatLab

Scripts and data processing output files, please see the following

webpage:

http://compgenomics.utsa.edu/zgroup/boundarydetection/bound

arydetection.html.

Supporting Information

Document S1 Document S1 contains supplementary
figures (Figure S1 to Figure S6) used in the manuscript.
(PDF)

Document S2 Document S2 introduces how the experi-
ment was performed.
(PDF)

Acknowledgments

We thank the Computational Biology Initiative (UTSA/UTHSCSA) for

providing access and training to the analysis software used. We also thank

the Center for Proteomics, Translational Genomics Research Institute for

LC-MS data generation.

Author Contributions

Conceived and designed the experiments: JZ SG KP. Performed the

experiments: KP BP TT. Analyzed the data: JC YJ JZ XM. Contributed

reagents/materials/analysis tools: SG. Wrote the paper: JC JZ.

Accurate LC Peak Boundary Detection

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e72951



References

1. Ye X, Luke B, Andresson T, Blonder J (2009) 18o stable isotope labeling in ms-

based proteomics. Briefings in functional genomics & proteomics 8: 136–144.
2. Ye X, Luke B, Johann D Jr, Ono A, Prieto D, et al. (2010) Optimized method

for computing 18o/16o ratios of differentially stable-isotope labeled peptides in
the context of postdigestion 18o exchange/labeling. Analytical chemistry 82:

5878–5886.

3. Geiger T, Cox J, Ostasiewicz P, Wisniewski J, Mann M (2010) Super-SILAC
mix for quantitative proteomics of human tumor tissue. Nature Methods.

4. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative
mass spectrometry in proteomics: a critical review. Analytical and bioanalytical

chemistry 389: 1017–1031.

5. Sun Y, Zhang J, Braga-Neto U, Dougherty E (2012) Bpda2da 2d global
optimization-based bayesian peptide detection algorithm for liquid chromato-

graph–mass spectrometry. Bioinformatics 28: 564–572.
6. Sun Y, Zhang J, Braga-Neto U, Dougherty E (2010) Bpda-a bayesian peptide

detection algorithm for mass spectrometry. BMC bioinformatics 11: 490.
7. Renard B, Kirchner M, Steen H, Steen J, Hamprecht F (2008) Nitpick: peak

identification for mass spectrometry data. BMC bioinformatics 9: 355.

8. Wang G, Wu W, Pisitkun T, Hoffert J, Knepper M, et al. (2006) Automated
quantification tool for high-throughput proteomics using stable isotope labeling

and LC-MSn. Analytical chemistry 78: 5752.
9. Mann B, Madera M, Sheng Q, Tang H, Mechref Y, et al. (2008) ProteinQuant

Suite: a bundle of automated software tools for label-free quantitative

proteomics. Rapid Communications in Mass Spectrometry 22: 3823–3834.
10. Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, et al. (2006) A suite of

algorithms for the comprehensive analysis of complex protein mixtures using
high-resolution LC-MS. Bioinformatics 22: 1902–1909.

11. Mueller L, Rinner O, Schmidt A, Letarte S, Bodenmiller B, et al. (2007)
SuperHirn-a novel tool for high resolution LC-MS-based peptide/protein

profiling. Proteomics 7: 3470–80.

12. Li X, Zhang H, Ranish J, Aebersold R (2003) Automated Statistical Analysis of
Protein Abundance Ratios from Data Generated by Stable-Isotope Dilution and

Tandem Mass Spectrometry. ANALYTICAL CHEMISTRY-WASHINGTON
DC- 75: 6648–6657.

13. Leptos K, Sarracino D, Jaffe J, Krastins B, Church G (2006) MapQuant: Open-

source software for large-scale protein quantification. Proteomics 6: 1770–1782.

14. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates,

individualized ppb-range mass accuracies and proteome-wide protein quantifi-

cation. Nature biotechnology 26: 1367–1372.

15. Haskins WE, Petritis K, Zhang J (2011) Mrcquant-an accurate lc-ms relative

isotopic quantification algorithm on tof instruments. BMC bioinformatics 12: 74.

16. Kullback S (1997) Information theory and statistics. Dover Pubns.

17. Valkenborg D, Mertens I, Lemiere F, Witters E, Burzykowski T (2012) The

isotopic distribution conundrum. Mass spectrometry reviews 31: 96–109.

18. Yao X, Freas A, Ramirez J, Demirev P, Fenselau C (2001) Proteolytic 18o

labeling for comparative proteomics: model studies with two serotypes of

adenovirus. Analytical chemistry 73: 2836–2842.

19. Eckel-Passow J, Mahoney D, Oberg A, Zenka R, Johnson K, et al. (2010) Bi-

linear regression for 18o quantification: Modeling across the elution profile.

Journal of proteomics & bioinformatics 3: 314.

20. Zhu Q, Valkenborg D, Burzykowski T (2010) Markov-chain-based hetero-

scedastic regression model for the analysis of high-resolution enzymatically 18o-

labeled mass spectra. Journal of proteome research 9: 2669–2677.

21. Zhu Q, Kasim A, Valkenborg D, Burzykowski T (2011) A bayesian model

averaging approach to the quantification of overlapping peptides in an maldi-tof

mass spectrum. International journal of proteomics 2011.

22. Zhu Q, Burzykowski T (2011) A markov-chain-based regression model with

random effects for the analysis of 18o-labelled mass spectra. Journal of Statistical

Computation and Simulation: 1–13.

23. Lei X, Bai Z, Ye F, Xie J, Kim C, et al. (2010) Regulation of nf-kb inhibitor ikba
and viral replication by a kshv microrna. Nature cell biology 12: 193–199.

24. Bayne C, Smith D (1984) A new method for estimating isotopic ratios from

pulse-counting mass spectrometric data. International Journal of Mass

Spectrometry and Ion Processes 59: 315–323.

25. Eckel-Passow J, Oberg A, Therneau T, Mason C, Mahoney D, et al. (2006)

Regression analysis for comparing protein samples with 16o/18o stable-isotope

labeled mass spectrometry. Bioinformatics 22: 2739–2745.

26. Hero AO III, Fessler JA, Usman M (1996) Exploring estimator bias-variance

tradeoffs using the uniform cr bound. Signal Processing, IEEE Transactions on

44: 2026–2041.

Accurate LC Peak Boundary Detection

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e72951


