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Abstract

Accurate quantification of gene expression by qRT-PCR relies on normalization against a consistently expressed control
gene. However, control genes in common use often vary greatly between samples, especially in cancer. The advent of Next
Generation Sequencing technology offers the possibility to better select control genes with the least cell to cell variability in
steady state transcript levels. Here we analyze the transcriptomes of 55 leukemia samples to identify the most consistent
genes. This list is enriched for components of the proteasome (ex. PSMA1) and spliceosome (ex. SF3B2), and also includes
the translation initiation factor EIF4H, and many heterogeneous nuclear ribonucleoprotein genes (ex. HNRNPL). We have
validated the consistency of our new control genes in 1933 cancer and normal tissues using publically available RNA-seq
data, and their usefulness in qRT-PCR analysis is clearly demonstrated.
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Introduction

Normalization of measured levels of a gene of interest against a

consistently expressed control gene is the most important action

leading to accuracy in quantitative reverse-transcriptase PCR

(qRT-PCR) experiments. However, while control gene levels can

vary greatly depending on samples used, they are usually selected

based solely on convention [1–6]. The advent of RNA-sequencing

(RNA-seq) by Next Generation Sequencing (NGS) of thousands of

transcriptomes of human samples offers new possibilities to

identify and select control genes that show the lowest variation

within the sample set for calculating relative gene expression using

the ddCt method.

Leukemia and other cancer samples are prone to higher

variability of gene expression compared to normal tissues due to

clonal selection and genetic instability. Given the increased interest

in expression profiling and identification of marker genes in cancer

for personalized medicine, there is a clear need for optimal

normalization of gene expression data by identifying control genes

with the least possible variation.

Previous studies have been done in attempt to determine better

endogenous control genes based on publically available micro-

array data [7,8]. In such studies, microarray data from multiple

tissues and conditions were analyzed in order to determine the

genes whose expression varied the least, revealing mainly

ribosomal protein coding genes. Next Generation Sequencing

(NGS) technology has now replaced microarrays as the gold

standard in global gene expression analysis. The analysis of gene

expression by NGS has many advantages over microarrays,

including a higher dynamic range and less susceptibility to

technical variation [9–13]. Expression values typically used for

RNA-seq are normalized for gene length and the total number of

reads for each sample (Reads Per Kilobase of transcript per

Million mapped reads: RPKM) [9], allowing for easy comparison

between data sets. RNA-seq data mining therefore provides an

ideal method to identify the most consistent genes for use as

endogenous controls.

Here we exploit RNA-seq data from a panel of 55 Leukemia

patient samples as well as 8 publically available RNA-seq data sets

from The Cancer Genome Atlas (TCGA), (http://cancergenome.

nih.gov/) to identify better endogenous control genes. We first

demonstrate the variability of standard control genes as well as

candidates suggested by microarray data analysis. We identify new

control genes with lower variation across multiple cancer and

normal tissue types, revealing primarily genes involved in RNA

splicing and protein degradation processes. We then demonstrate

the effectiveness of a selection of these genes in qRT-PCR. This
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new panel of highly consistent control genes will be of great use in

future cancer research and disease monitoring.

Materials and Methods

Patient samples
Leukemia samples used in the Leucégène data set were collected

by the Québec Leukemia Cell Bank with an informed written

consent and approval of the project by the Research Ethics Board

of the Maisonneuve-Rosemont Hospital and Université de

Montréal as described [14]. Human cord blood samples were

collected from healthy volunteers by Héma-Québec with an

informed written consent and approval of the project by the

Research Ethics Board of Ste. Justine Hospital and Université de

Montréal.

RNA-seq
RNA-seq was performed as described [14]. The data discussed

in this publication have been deposited in NCBI’s Gene

Expression Omnibus [15] and are accessible through GEO Series

accession number GSE48173 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE48173).

qRT-PCR
Total RNA was isolated from leukemic and CD34+ cord blood

cells using Trizol solution, according to the manufacturer’s

protocol (Invitrogen/Life Technologies, Burlington, ON, Cana-

da). Human CD34+ cord blood cells were isolated from total cord

blood using the RosetteSep Cord Blood CD34 Pre-enrichment kit,

followed by the EasySep Human Cord Blood CD34+ Selection kit,

according to manufacturer’s guidelines (STEMCELL Technolo-

gies, Vancouver, BC, Canada), yielding 70–86% CD34+. CD34+
cord blood samples from five different individuals were immedi-

ately used for reverse transcription. Moreover, CD34+ cord blood

samples from twelve additional individuals were sorted using

FACS Aria cell sorter (Becton-Dickinson, San Jose, CA, USA) to

keep only CD34_APC+/CD45RA_PE2 cells (Antibodies: Bec-

ton-Dickinson, San Jose, CA, USA) before proceeding with reverse

transcription. Reverse transcription of total RNA was performed

using MMLV reverse transcriptase and random hexamers

according to manufacturer’s guidelines (Invitrogen/Life Technol-

ogies, Burlington, ON, Canada). Expression assays were per-

formed to measure gene expression levels using 26 Fast Master

Mix (Applied Biosystems/Life Technologies, Burlington, ON,

Canada), standard primers (Invitrogen/Life Technologies, Bur-

lington, ON, Canada) and a specific probe from the Universal

Probe Library (Roche Diagnostics, Laval, QC, Canada). qRT-

PCR reactions were done on the ABI 7900HT Fast Real-Time

PCR System (Applied Biosystems/Life Technologies, Burlington,

ON, Canada). For RQ (relative quantification) calculations, from

a given test sample, the Ct (threshold cycle) values for each gene

were normalized to the control gene (dCt = Ct Target – Ct Control)

and compared to the mean dCT from the CD34+ cord blood

sample (calibrator) using the ddCt method (ddCT = dCT Sample –

dCt Calibrator; RQ = 2‘2ddCt). qRT-PCR cycling conditions

were as follows: 2 minutes at 50uC and 10 minutes at 95uC,

followed by 40 cycles of 15 seconds at 95uC and 1 minute at 59uC.

Results

Variability of commonly used control genes in RNA-seq
data

For these studies, we made use of RNA-seq data obtained in our

Leucégène project, which was acquired from a panel of 55

Leukemia patient samples (43 AML, 12 ALL) from The Québec

Leukemia Cell Bank (BCLQ). We further analyzed RNA-seq data

from various cancers and associated normal tissues, including

AML, breast, lung, colon and kidney, all publically available from

The Cancer Genome Atlas (TCGA). The combined TCGA data

set represents data from a total of 1933 patients (207 normal tissue

and 1726 cancer tissue samples) (Table S1).

To assess gene expression consistency, we examined the

variability in RPKM values between different patient samples

across a given RNA-seq data set. This was achieved by calculating

the coefficient of variation (CV) and the maximum fold change

(MFC) for each gene across multiple samples within each data set;

where CV represents the standard deviation divided by the mean

RPKM, and MFC represents the maximum RPKM divided by

the minimum RPKM value.

We first analyzed the expression consistency of 19 commonly

used control genes in the Leucégène and the combined TCGA

data sets. Standard control genes were ranked from lowest to

highest CV (Table 1). Using this approach, we found that the

most consistent commonly used control gene, in both data sets,

was TATA Binding Protein (TBP), yielding a CV equal to 22.8 or

44.9% and a MFC equal to 2.5 or 12.2, in Leucégène or combined

TCGA data sets, respectively. Ableson (ABL1), a control gene

commonly used for leukemia samples, yielded a slightly lower CV

in the combined TCGA data set (39.8%), but had a high MFC

(26.9). The majority of commonly used control genes exhibited

variability, with CV values ranging from 27.2 to 69.1% in

Leucégène (median CV = 42.6%), and 47.0 to 116.2% in the

combined TCGA data (median CV = 61.4%). Not unexpectedly,

we noted that the variability of the genes was higher in the

combined TCGA data, which represents a more diverse collection

of samples from five different cancer types and three different

normal tissue types. This higher degree of variation in the

combined TCGA data was more obvious in the MFC values,

which are more greatly affected by extreme differences of

expression in individual samples. MFC values ranged from 2.5

to 31.7 fold in Leucégène (median = 8.3), and 12.2 to 639.5 fold in

the combined TCGA data (median = 84.0).

We further examined the expression consistency of 12 candidate

control genes identified by de Jonge et al. [7] as being the most

consistently expressed genes in a collection of microarray

experiments. This gene list consists of 10 ribosomal protein coding

genes, as well as SRP14 and OAZ1 (Table 2). Using the above

approach, we found that the candidates identified from microarray

data showed variability similar to those of the standard house-

keeping genes, with a median CV equal to 48.5 or 51.6% and a

median MFC equal to 8.3 or 44.5, in Leucégène or combined

TCGA data sets, respectively. The most consistent gene from this

list was Signal Recognition Particle 14 kDa (SRP14). Of note,

while these genes presented similar variability in the Leucégène

data set as compared to the commonly used control genes, they did

prove to be slightly less variable in the combined TCGA data set.

However, there was still significant variability within the TCGA

data, which showed %CV values up to 82.0 for RPS16, and MFC

values up to 1208.3 for RPL9.

Selection of improved control genes from Leucégène
RNA-seq data

In order to identify improved control genes with the most

consistent expression, we established cut-offs for %CV and MFC

that were lower than the values obtained for the majority of

commonly used control genes. Within the Leucégène data set, we

analyzed the entire transcriptome of 21,892 genes and selected

those which had a %CV less than 25 and a MFC less than 5, for

Identification of Best Control Genes for qRT-PCR
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two different ranges of expression: mean RPKM greater than or

less than 100 (but greater than 25). These genes were then ranked

from lowest to highest %CV (Table 3). Using these criteria, we

identified 20 candidate control genes with mean RPKM levels

greater than 100, and 99 candidate control genes with mean

RPKM levels less than 100 (Table 3 contains the best 20 genes;

the full list is available in Table S2). The full list of 119 genes with

their descriptions is available in Table S4. Of these, we selected

15 genes for validation based on their high ranking in the

Leucégène data, as well as having relatively consistent expression

Table 1. Variability of most commonly used control genes in Leucégène and combined TCGA RNA-seq data sets.

Leucégène TCGA Combined

rank gene mean CV (%) MFC mean CV (%) MFC

1 TBP 8,1 22,8 2,5 6,7 44,9 12,2

2 YWHAZ 144,6 27,2 3,2 284,9 70,0 55,1

3 PGK1 189,9 28,4 3,4 212,6 62,0 31,0

4 LDHA 144,7 34,2 10,2 401,7 66,6 42,4

5 ALDOA 244,0 35,5 3,6 736,7 60,3 105,0

6 HPRT1 30,7 40,0 6,7 23,1 56,5 304,5

7 ABL1 17,0 40,1 5,7 13,9 39,8 26,9

8 SDHA 31,1 40,7 12,2 52,9 61,8 74,2

9 UBC 499,1 41,3 5,2 1260,8 47,0 102,0

10 GAPDH 2206,7 42,6 8,3 1954,8 70,7 60,7

11 ACTB 1617,9 48,7 5,4 2069,5 47,4 45,2

12 G6PD 43,5 52,6 6,9 23,9 106,7 639,5

13 VIM 1700,4 53,4 17,0 824,2 90,0 192,0

14 TUBA1A 251,0 53,8 8,4 148,7 55,6 64,6

15 PFKP 56,4 55,3 13,3 52,9 116,2 521,0

16 B2M 1798,6 55,5 13,9 2506,3 61,4 91,9

17 GUSB 45,6 55,9 10,6 44,7 61,2 84,0

18 PGAM1 12,9 65,5 14,4 125,4 60,1 95,4

19 HMBS 18,2 69,1 31,7 11,4 80,5 202,8

Mean relates to RPKM values within each data set. CV indicates the coefficient of variation and equals the standard deviation divided by the mean RPKM, expressed as a
percentage. MFC, mean fold change, represents the maximum divided by minimum RPKM value of the data set. Rank is based on lowest to highest CV.
doi:10.1371/journal.pone.0072884.t001

Table 2. Variability of genes identified as stable in microarray experiments, in Leucégène and combined TCGA RNA-seq data sets.

Leucégène TCGA

rank gene mean CV (%) MFC mean CV (%) MFC

1 SRP14 132,2 24,9 3,2 145,6 31,8 10,9

2 RPL4 1276,1 40,4 5,6 734,0 44,3 51,0

3 RPL6 324,0 43,1 6,5 565,4 48,9 78,6

4 OAZ1 421,9 44,4 4,5 273,7 42,5 18,5

5 RPL22 156,6 45,4 9,0 192,4 39,2 25,8

6 RPL24 798,9 48,1 7,5 778,6 54,3 36,5

7 RPL27 1292,6 48,8 10,5 682,5 60,4 38,1

8 RPS13 935,8 55,0 8,8 662,8 47,7 29,3

9 RPS20 636,3 55,1 8,0 667,0 58,6 52,9

10 RPS29 559,0 56,2 8,7 490,9 65,8 100,3

11 RPS16 1104,4 61,6 9,2 794,2 82,0 192,1

12 RPL9 99,7 124,3 72,6 1007,0 66,3 1208,3

Genes identified by deJonge et al. [7] Mean relates to RPKM values within each data set. CV indicates the coefficient of variation and equals the standard deviation
divided by the mean RPKM, expressed as a percentage. MFC (mean fold change) represents the maximum divided by minimum RPKM value of the data set. Rank is
based on lowest to highest CV.
doi:10.1371/journal.pone.0072884.t002

Identification of Best Control Genes for qRT-PCR
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in the various TCGA data sets (Table S3). The newly identified

candidate control genes are: HNRNPK, PCBP2, SLC25A3, GNB1,

HNRNPL, SRP14 (RPKM.100); and PSMD6, PSMA1, PSMF1,

VPS4A, SF3B2, EIF4H, ZNF207, UBE2I (RPKM,100). EIF4H

had slightly higher expression in the various TCGA data sets, and

was therefore included in the panel of genes with higher expression

for subsequent analyses.

Functional clustering of candidate control genes
We evaluated the functional classification of our entire list of

119 genes identified from the Leucégène data set using the

DAVID algorithm [16,17] (Table S5). Interestingly, a significant

portion of these highly consistent genes fell into two main

functional categories: RNA splicing/processing, with an enrich-

ment score of 5.92 (ex. SF3B2); and proteasome/ubiquitin ligase

activity, with an enrichment score of 5.76 (ex. PSMA1).

Validation of new control genes in other RNA-seq cancer
data sets

The expression consistency of the 15 candidate control genes

was further examined in 8 different data sets from TCGA,

representing 6 different cancer types and normal tissue samples, as

well as in normal cord blood data obtained by Leucégène (Table
S1). The 15 candidate control genes proved to be very consistently

expressed in all 4 data sets of normal tissues, each yielding a CV

less than or equal to 25%, and a MFC less than or equal to 10

(Table S3). Of note, the candidate genes showed highest

consistency in the 17 CD34+ cord blood samples (enriched

normal stem and progenitor cells), which each yielded CVs less

than or equal to 15%, and MFCs less than 2. Within the tumor

data sets, we observed more variability, with the highest CV being

42% for SLC25A3 in kidney cancer, and the highest MFC being 24

for SF3B2 in breast cancer. However, the majority of the

candidate genes exhibited lower variability in all data sets as

compared to the standard housekeeping genes. We determined a

score for each candidate gene based on the number of data sets

analyzed (10 total) in which the CV and MFC values complied

with our initial selection criteria (CV,25%, MFC,5). The genes

were then ranked according to this scoring system. We also

calculated the expression variability of the candidate control genes

using the combined TCGA data set (Figure 1 and Table 4). As

with the standard control genes, we did observe more variability

compared to the individual data sets, reflecting the diversity of

tissue types included. Nonetheless, all 15 of the candidate genes

displayed consistency that was greater than the majority of the

commonly used control genes. The CV values were all lower than

that of TBP, however, UBE2I and SF3B2 yielded CV values

slightly higher than ABL1. Only SF3B2 gave a MFC higher than

that of ABL1 (Table 4). The majority of the candidate genes had

CV values in the lowest 5th quantile and the remainder fell below

the 25th quantile, in contrast to the standard control genes, of

which HPRT1 and GAPDH were actually more variable than half

the genes present at similar expression levels (Figure 1).

Table 3. Selection of candidate control genes based on Leucégène RNA-seq data.

Expression .100 RPKM Expression ,100 RPKM

rank gene mean CV (%) MFC rank gene mean CV (%) MFC

1 HNRNPK 220,4 16,5 2,0 1 MORF4L1 85,5 16,4 3,0

2 PCBP2 188,3 19,4 3,1 2 PSMD7 52,4 18,2 2,3

3 SLC25A3 149,1 19,8 2,5 3 PSMD6 45,8 18,4 2,2

4 GNB1 130,1 19,8 3,3 4 PSMA1 53,7 18,8 2,6

5 CCNI 176,2 20,9 2,9 5 SEC31A 36,0 18,8 2,5

6 HNRNPU 100,2 21,3 3,4 6 SRPR 50,7 18,9 2,6

7 HNRNPL 145,7 21,3 2,9 7 VCP 78,8 19,0 2,6

8 HNRNPD 124,4 22,4 3,1 8 PSMF1 27,1 19,2 3,4

9 CSDE1 137,1 22,5 3,6 9 MRFAP1 90,3 19,4 2,2

10 SRSF5 282,4 23,2 2,9 10 KHDRBS1 80,9 19,4 2,5

11 ATP5B 307,6 23,2 2,5 11 USP4 27,0 19,4 2,8

12 SSR2 136,7 23,7 3,4 12 DLST 34,9 19,6 2,6

13 MYL12B 137,9 23,8 3,5 13 VPS4A 35,1 19,8 2,7

14 HNRNPA2B1 238,2 23,9 3,6 14 SUPT6H 28,8 19,9 3,4

15 HNRNPC 125,2 24,3 3,3 15 SF3B2 82,9 19,9 2,3

16 ARF1 166,7 24,6 2,6 16 C1orf144 44,7 19,9 3,8

17 RHOA 307,0 24,6 2,9 17 NOL7 38,6 19,9 2,3

18 PSME1 147,7 24,7 3,7 18 EIF4H 95,8 20,0 3,3

19 DDX5 302,4 24,8 3,3 43 ZNF207 95,5 22,1 2,9

20 SRP14 132,2 24,9 3,2 78 UBE2I 56,1 24,2 4,1

Mean relates to RPKM values within each data set. CV indicates the coefficient of variation and equals the standard deviation divided by the mean RPKM, expressed as a
percentage. MFC (mean fold change) represents the maximum divided by minimum RPKM value of the data set. Rank is based on lowest to highest CV. Criteria for gene
selection were CV,25%, MFC,5 in Leucégène AML_ALL data. All genes fitting criteria for expression .100 RPKM shown; expression ,100 RPKM table contains the 18
genes with the lowest CV in Leucégène AML_ALL data, as well two other selected candidates (full list of 99 genes available in Table S2). Genes listed in bold were
selected for validation studies.
doi:10.1371/journal.pone.0072884.t003
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Overall, the 15 newly selected control genes display a greater

degree of consistency in gene expression compared to the

commonly used control genes, as determined by RNA-seq. The

highest ranking genes, as determined by having low coefficient of

variation (CV) and maximum fold change (MFC) values in the

most data sets analyzed are: HNRNPL and ZNF207, with high

and medium expression ranges, respectively.

QPCR validation of new control genes
In order to assess the effectiveness of the newly identified control

genes for quantitative RT-PCR (qRT-PCR) analysis, we devel-

oped assays for the candidates using the Universal Probe Library

(Roche) (Table S6). New assays were designed to span intron

boundaries, and tested for optimal efficiency by standard curve

analysis. SRP14 was excluded due to the inability to design an

intron spanning assay. qRT-PCR was performed for each of the

14 new genes, as well as for 5 standard control genes (GAPDH,

ACTB, TBP, HPRT1, ABL1), on cDNA from a panel of 14

leukemia samples (10 AML, 4 ALL) plus one CD34+ cord blood

sample (using equal amounts of RNA). The average expression

consistency (M) of each gene was calculated using the GeNorm

algorithm [18] (Figure 2). By qRT-PCR, all 14 of the newly

identified control genes had lower M values than the standard

control genes, confirming that they were more consistently

expressed in the leukemia samples, in agreement with the RNA-

seq data, with EIF4H and PSMA1 being the most consistent in this

experimental condition.

Although it is widely presumed that RNA-seq data correlates

well with qRT-PCR data, there is little evidence available to

address this topic. We therefore assessed the expression of CD33

and FLT3 (data not shown) in the same 15 leukemia and cord

blood samples in order to demonstrate correlation between the

RPKM and delta Ct (dCt) values for this gene. These two genes

were selected due to their known variability of expression in

leukemia. The delta Ct values for each sample were calculated

using either a standard control gene (GAPDH), or a newly

identified control gene (HNRNPL, EIF4H, PSMA1, or SF3B2).

Spearman correlation analysis of CD33 expression data demon-

strated high correlation between RPKM and dCt (r= 20.9714 to

20.9893 for EIF4H), except when GAPDH was used as the control

Figure 1. Distribution of coefficient of variation of control genes in relation to all genes in combined TCGA RNA-seq data. Mean
expression represents the average of all RPKM values for a given gene across the combined TCGA data set (1933 samples). Coefficient of variation
equals the standard deviation divided by the mean RPKM. Each dot represents a single gene: small grey dots represent entire transcriptome; dark and
light green boxes represent new control genes with expression greater than or less than 100 RPKM, respectively; red boxes represent the indicated
standard control genes. Curved blue lines represent the 5th, 25th, 50th and 75th quantiles of coefficient of variation for a given expression level (from
darkest to lightest) computed over windows of 2000 ranked genes centered about a given mean RPKM value.
doi:10.1371/journal.pone.0072884.g001
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gene (r= 20.775) (Figure 3). Analysis with FLT3 showed similar

correlation. The lower degree of correlation between RPKM and

dCt when using GAPDH as a control gene demonstrates the

importance of proper control gene selection in qRT-PCR

experiments.

To further address the importance of proper control gene

selection in qRT-PCR analysis, we calculated the relative quanti-

fication (RQ) values for a consistently expressed gene (EIF4H), using

either GAPDH or HNRNPL for normalization (Figure 4). As

expected, the RQ of EIF4H varied very little between leukemia

samples when HNRNPL was used as the control gene (CV = 14%;

MFC = 1.6). However, RQ values of the same samples calculated

using GAPDH varied as much as 10.7 fold, with RQ values ranging

from 0.22 to 2.29 (CV = 88%). Normalization with GAPDH resulted

in up to a 5.3 fold difference in EIF4H expression within individual

samples, as compared to HNRNPL normalization. These findings

highlight the importance of using more consistent control genes as

identified in this study in qRT-PCR analysis, and further validate

our newly identified control genes.

Discussion

Evaluation of gene expression by quantitative RT-PCR (qRT-

PCR) relies on normalization with an endogenous control gene,

resulting in relative quantification of the gene of interest. Most

researchers use only a single control gene, the selection of which is

often based solely on convention [3,6]. The control genes most

commonly used were originally selected due to their high

expression levels in all tissues rather than their low variability

among tissues [6]. However, numerous studies have shown that

these genes can vary considerably [1–5], thus casting doubt on the

accuracy of relative quantification values.

While many studies have been done in attempts to determine

better methods for normalization of gene expression [6,18–20],

most researchers still choose to use the ddCt method with one or

two control genes, without proper validation of those controls.

There have been relatively few studies that aimed to identify new

control genes whose expression levels are more consistent than

those in common use, such as is presented here. A couple of studies

which have been done with this shared goal relied on microarray

data meta-analysis [7,8], while our study uses next generation

Figure 2. Average expression consistency of control genes in qRT-PCR. Average expression consistency (M) was calculated with the GeNorm
algorithm [18] based on qRT-PCR for the indicated control gene on a panel of 14 leukemia samples and one cord blood sample. Lower M values relate
to genes which proved to have more consistent expression levels across the samples used.
doi:10.1371/journal.pone.0072884.g002

Figure 3. Correlation between RPKM and delta Ct of CD33
calculated with different control genes. dCt represents the
difference between the Ct value of CD33 and that of the indicated
control gene, for a given leukemic sample, measured by qRT-PCR. RPKM
is plotted on a log-2 scale and represents the Reads Per Kilobase of
transcript per Million mapped reads obtained for each leukemic sample
by RNA-seq. r represents the Spearman correlation coefficient between
the RPKM and the dCt obtained with the indicated control gene.
doi:10.1371/journal.pone.0072884.g003
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sequencing data. Both of these studies identified mainly ribosomal

protein (RP) coding genes, whereas our analysis did not reveal any

genes from this family. In fact, we show here that the specific RP

genes outlined by de Jonge et al. [7] are similar to that of the

standard control genes with respect to their variability in gene

expression, as determined by RNA-seq. RP genes represent the most

highly expressed group of genes (approximately 50% of the top 100

most highly expressed genes in RNA-seq data analyzed, data not

shown). Therefore, one possible explanation for the discrepancy

between analyses performed on microarray vs. RNA-seq data could

be that saturation of the fluorescence signal in microarrays has lead

to a false impression of consistency. While the RPKM calculation of

short genes (such as RP genes) may be prone to higher technical

variability than long genes, at high expression levels this effect is

small, and the CV is dominated by biological variation. In fact, CV

values for RP genes in the combined TCGA dataset showed a fair

spread at all expression levels (data not shown), implying that there

is no bias for RP genes in the RNA-seq data.

RNA-seq analysis has many advantages over microarrays for

the analysis of global gene expression. Most notably, because RNA-

seq reads are digital rather than analog, there is very low background

signal, and virtually no upper limit for detection, resulting in a much

larger dynamic range [9–13,21]. Studies have revealed a higher

degree of technical reproducibility with RNA-seq over microarrays

[9,10], and that RNA-seq expression levels correlate better with

qRT-PCR data, regardless of the sequencing platform used [21].

Microarray data is susceptible to errors resulting from hybridization

artifacts, saturation of fluorescent signal, and requires complicated

normalization [10–12]. RNA-seq circumvents these issues; however,

other potential sources for errors exist, such as gene length bias, bias

in sequencing of GC rich regions, technical issues in library

preparation, or errors in read mapping [10,12]. RNA-seq is also not

limited by prior knowledge of the transcriptome being studied,

allowing for the identification of novel transcripts and SNPs.

Here we identify a total of 119 genes whose expression is more

consistent than the commonly used control genes across a panel of

55 leukemia samples, as determined by RNA-seq. Functional

classification of these by DAVID revealed two main enrichment

clusters: genes involved in the proteasome/ubiquitin degradation

pathways (ex. PSMA1, PSMF1, UBE2I), and genes involved in

RNA splicing and processing (ex. SF3B2, SRSF9). In addition to

these functional clusters, we found 12 genes involved in

transcription and 7 involved in translation (ex. EIF4H). A

prominent group of genes identified (n = 8) are the heterogeneous

nuclear ribonucleoproteins (ex. HNRNPL, HNRNPK), some of

which are also involved in the above cellular processes. Of note,

the study by Popovici et al. [8] also identified two HNRNP genes,

one proteasome subunit gene, Ubiquitin B and C, and EIF4H as

having highly consistent expression across ten breast cancer

microarray data sets. In concordance with the studies from de

Jonge and Popovici, we also identified SRP14 as a good control

gene. Although SRP14 was a strong candidate, we were unable to

design an intron-spanning qRT-PCR assay for it, and it was

therefore not included in our validation experiments.

Of the 119 genes selected from the leukemia RNA-seq data, 14

were selected based on their consistency in other RNA-seq data

sets (TCGA) for validation by qRT-PCR. This was essential to

account for potential biases inherent to the RNA-seq procedure,

such as the selection of poly-A+ RNA, cDNA fragmentation and

library preparation, as well as potential biases introduced

bioinformatically [12]. Nonetheless, we confirmed that all 14

genes tested proved to be more consistent by qRT-PCR in a

selection of 14 leukemia samples than the standard control genes.

Furthermore, we have shown that RPKM values obtained by

RNA-seq correlate well with dCt values obtained by qRT-PCR,

and that this correlation is dependent on the control gene used for

dCt calculation. We also clearly demonstrate the impact of proper

control gene selection in qRT-PCR experiments, since the

calculation of relative quantification values (RQ) of EIF4H (a

highly consistent gene by RNA-seq) varied significantly when

GAPDH was used as opposed to our new control, HNRNPL.

Quantitative RT-PCR is increasingly used for diagnostic and

disease monitoring purposes, such as the evaluation of minimal

residual disease (MRD) in leukemia. Given the highly sensitive nature

of these assays, it is of utmost importance to use the best possible

control gene for normalization. Ableson (ABL1) has previously been

shown to be the most consistent control gene tested for MRD

detection [22]. However, the control genes identified here all proved

to be more consistent than ABL1 both by RNA-seq and qRT-PCR of

leukemia samples, making them ideal candidates for use in MRD.

Figure 4. Comparison of EIF4H gene expression values calculated with GAPDH or HNRNPL. RQ represents relative quantification of EIF4H
determined by qRT-PCR, calculated using the ddCt method with either GAPDH or HNRNPL as the control gene, relative to the CD34+ cord blood (CB)
sample. The X axis indicates the leukemic sample ID. CV (expressed as a percentage) indicates the coefficient of variation and equals the standard
deviation divided by the mean RQ of CD33 calculated using the indicated control gene. MFC (mean fold change) represents the maximum divided by
minimum RQ value.
doi:10.1371/journal.pone.0072884.g004
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Although the control genes presented here were initially selected

due to their consistency in leukemia samples, we have selected

those which were also relatively consistent in other cancer types as

well as associated normal samples, thus potentially extending their

utility as general control genes for most human tissues. Based on

our validation studies, we expect that our new controls will

outperform the standard control genes in a wide variety of sample

types. However, for other cancer types, better control genes may

exist, which could be determined using the same approach used

here. It will be important for researchers to validate these new

controls before their use with more diverse tissue types.

It would be interesting to further assess the consistency of our

new control genes in mouse or other model organisms. To date,

there is less publically available RNA-seq data available for non-

human cell types. Although groups such as The Encyclopedia of

DNA Elements (ENCODE) Consortium provide easy access to a

wealth of NGS data with many mouse cell types represented [23],

most RNA-seq experiments have only 2–3 replicates, in contrast to

the large number of human samples used in The Cancer Genome

Atlas (TCGA) data sets. As NGS technology becomes more widely

available, it may soon be feasible to assess the consistency of these

control genes in other organisms.

In conclusion, we have made use of RNA-seq data to identify 14

new control genes with consistent expression in various cancer

types. These genes, including HNRNPL, EIF4H and PSMA1, were

validated by qRT-PCR for use as control genes in leukemia.

Supporting Information

Table S1 The RNA-seq data sets analyzed in this study.

Leucégène, RNA-seq data generated in collaboration between

the Leukemia Cell Bank of Quebec and The Genomic Core

Facility at Institute for Research in Immunology and Cancer

(IRIC); TCGA, The Cancer Genome Atlas Data Portal (http://

cancergenome.nih.gov/).

(XLSX)

Table S2 Candidate control genes identified in the Leucégène

data sets. Only genes for which the abundance of transcript levels

exceeded 100 RPKM (Reads Per Kilobase of transcript per

Million mapped reads) were included.

(XLSX)

Table S3 Variability of the selected candidate endogenous

control genes in normal hematopoietic cells and in TCGA data

sets. CV, coefficient of variation; MFC, maximum –fold change.

(XLSX)

Table S4 Description of candidate endogenous control gene

function. Known function(s) of genes were retrieved from www.

uniprot.org.

(XLSX)

Table S5 Functional classification of candidate genes. Enrich-

ments in various annotation clusters in the Leucégène data set

were determined using the DAVID functional annotation tool

(http://david.abcc.ncifcrf.gov).

(XLSX)

Table S6 Primers and probes used for Q-PCR assays.

(XLSX)
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