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Abstract

Purpose: To determine if plasma metabolic profiles can detect differences between patients with neovascular age-related
macular degeneration (NVAMD) and similarly-aged controls.

Methods: Metabolomic analysis using liquid chromatography with Fourier-transform mass spectrometry (LC-FTMS) was
performed on plasma samples from 26 NVAMD patients and 19 controls. Data were collected from mass/charge ratio (m/z)
85 to 850 on a Thermo LTQ-FT mass spectrometer, and metabolic features were extracted using an adaptive processing
software package. Both non-transformed and log2 transformed data were corrected using Benjamini and Hochberg False
Discovery Rate (FDR) to account for multiple testing. Orthogonal Partial Least Squares-Discriminant Analysis was performed
to determine metabolic features that distinguished NVAMD patients from controls. Individual m/z features were matched to
the Kyoto Encyclopedia of Genes and Genomes database and the Metlin metabolomics database, and metabolic pathways
associated with NVAMD were identified using MetScape.

Results: Of the 1680 total m/z features detected by LC-FTMS, 94 unique m/z features were significantly different between
NVAMD patients and controls using FDR (q = 0.05). A comparison of these features to those found with log2 transformed
data (n = 132, q = 0.2) revealed 40 features in common, reaffirming the involvement of certain metabolites. Such metabolites
included di- and tripeptides, covalently modified amino acids, bile acids, and vitamin D-related metabolites. Correlation
analysis revealed associations among certain significant features, and pathway analysis demonstrated broader changes in
tyrosine metabolism, sulfur amino acid metabolism, and amino acids related to urea metabolism.

Conclusions: These data suggest that metabolomic analysis can identify a panel of individual metabolites that differ
between NVAMD cases and controls. Pathway analysis can assess the involvement of certain metabolic pathways, such as
tyrosine and urea metabolism, and can provide further insight into the pathophysiology of AMD.

Citation: Osborn MP, Park Y, Parks MB, Burgess LG, Uppal K, et al. (2013) Metabolome-Wide Association Study of Neovascular Age-Related Macular
Degeneration. PLoS ONE 8(8): e72737. doi:10.1371/journal.pone.0072737

Editor: Anand Swaroop, National Eye Institute, United States of America

Received February 13, 2013; Accepted July 11, 2013; Published August 27, 2013

Copyright: � 2013 Osborn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding Sources: National Institutes of Health Grant ES016731 (DPJ), NIH Grant AG038746 (DPJ), Jahnigen Career Development Award from the
American Geriatrics Society (MAB), Carl M. & Mildred A. Reeves Foundation (MAB), Core Grant P30 EY08126 to Vanderbilt University, and an unrestricted
departmental grant to Vanderbilt University from Research to Prevent Blindness. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: milam.brantley@vanderbilt.edu

Introduction

Age-related macular degeneration (AMD) remains a leading

cause of irreversible vision loss in older individuals in developed

countries. Approximately 1.75 million people in the United States

over the age of forty suffer from advanced stages of the disease,

and this number is projected to approach 3 million by 2020 [1].

Neovascular AMD (NVAMD), in which blood or serous fluid leaks

from abnormal choroidal or retinal vessels, is responsible for the

majority of AMD-related vision loss [2].

Risk of developing this complex disease is influenced by genetic,

demographic, and environmental factors. Genetic variants in the

complement factor H gene (CFH) and the age-related maculop-

athy susceptibility 2/HtrA serine peptidase 1 (ARMS2/HTRA1)

locus have been strongly and consistently associated with AMD.

Polymorphisms in the genes coding for complement components 2

and 3 (C2, C3) and complement factors B and I (CFB, CI) have also

been linked to AMD [3].

In addition to genetic factors, demographic and environmental

variables such as older age, smoking, and light exposure influence

risk of developing AMD [4]. Single biomarkers, such as

homocysteine and carboxyethylpyrrole, have been used to

approximate the biochemical microenvironment characterizing

AMD with varying success [5,6]. The limitations of such single

biomarker studies could reflect heterogeneity of disease among

patients or complexity of metabolite interactions among multiple

pathways.

High-resolution metabolic profiling with liquid chromatogra-

phy-mass spectrometry (LC-MS) can be used to comprehensively

evaluate up to 7000 metabolites in plasma and has the potential to
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identify specific collections of metabolites that are altered in AMD

[7,8]. Metabolomic analysis of serum and plasma has revealed

panels of metabolites that distinguish patients with cardiovascular

disease [9], breast cancer [10,11], Parkinson’s disease [12], and

diabetes [13]. Importantly, this technique is able to differentiate

between individuals despite intra-individual variation due to

factors such as dietary intake [14]. As evidence supports the

systemic nature of AMD [15], plasma metabolic profiling could

reveal clinically-relevant biomarkers that are indicative of AMD

development or progression prior to clinical manifestation.

The purpose of this study was twofold: first, to produce

quantitative data evaluating environmental markers associated

with NVAMD; second, to determine whether plasma metabolic

profiling can detect metabolic differences between NVAMD

patients and controls in a discovery cohort. The results of this

work may lead to a better understanding of AMD pathophysiology

and to biomarker discovery.

Methods

Ethics Statement
This case-control study was approved by the Vanderbilt

University Human Research Protection Program. Research

adhered to the tenets of the Declaration of Helsinki and was

conducted in accordance with Health Insurance Portability and

Accountability Act regulations. Written informed consent was

obtained from all participants prior to study enrollment.

Study Participants
Individuals over the age of 60 were recruited from the Retina

Division at the Vanderbilt Eye Institute. Cases were diagnosed

with NVAMD in one or both eyes, and controls had no clinical

signs of AMD. Exclusion criteria included active uveitis or ocular

infection, the presence of any retinopathy other than AMD, and

any ocular surgery within the 60 days prior to enrollment. Patients

with diabetes mellitus were excluded due to the effects of

hyperglycemia on metabolic function [16]. Disease status was

confirmed by high-resolution fundus photography. Fifty-degree

fundus images were examined by a masked retina specialist for the

presence of the following AMD-related findings: neurosensory

retinal detachment, pigment epithelial detachment, sub- and/or

intra-retinal exudation (hemorrhage and/or lipid), choroidal

neovascularization, and fibrovascular tissue. Smoking history and

dietary supplement history were obtained from all participants.

Sample Collection
At the time of study enrollment, blood was drawn from study

participants using a 23-gauge butterfly needle. Approximately

8 mL blood was immediately transferred to two 4 mL blood

collection tubes containing 7.2 mg K2 EDTA each. These tubes

were centrifuged at 4uC to remove blood cells, and 2 mL

supernatant from each tube was transferred to one of two

15 mL conical tubes. Plasma was immediately frozen at 280uC
and not thawed prior to analysis.

Metabolomic Analysis
Frozen plasma samples from 45 individuals (26 NVAMD

patients and 19 controls) were thawed and analyzed by liquid

chromatography with Fourier-transform mass spectrometry (LC-

FTMS) at Emory University as previously described [14]. Briefly,

100 mL plasma sample aliquots were treated with acetonitrile,

spiked with internal standard mix, and centrifuged at 13,0006g

for 2 minutes to remove protein prior to being loaded onto a

Shimadzu autosampler. Anion exchange columns were equilibrat-

ed to the initial condition for 2 minutes prior to the next sample

injection. Samples were fractionated with a formate gradient,

ionized with electrospray ionization in the positive mode, and

detected with an LTQ-FT spectrometer (Thermo, San Jose, CA)

from mass/charge ratio (m/z) 85 to 850 over 10 minutes. Peak

extraction and quantification of ion intensities were performed by

an adaptive processing software package (apLCMS) [17], which

provided tables containing m/z values, retention time, and

integrated ion intensity for each m/z feature.

Data Analysis
Descriptive statistics for all demographic and clinical variables

were calculated. Comparisons between cases and controls were

made using the two-tailed t-test for continuous data (e.g., age) and

the two-tailed Fisher exact test for categorical data (e.g., gender,

race, smoking, and presence of comorbid conditions). Differences

in m/z features between cases and controls were determined using

Benjamini and Hochberg False Discovery Rate (FDR) with

q = 0.05 to account for multiple testing. Bioinformatic analyses

included principal component analysis (PCA) and orthogonal

partial least squares-discriminatory analysis (OPLS-DA), using

Pirouette version 4.0 (InfoMetrix) as complementary approaches

to identify metabolic features that distinguish AMD patients from

controls. Pearson correlations were determined for m/z features

and were evaluated on a targeted basis for discriminatory features.

Support Vector Machine (SVM) analysis was performed using the

svm() function in the R package e1071, which provides an

interface to the libSVM library, [18] http://www.csie.ntu.edu.tw/

c̃jlin/libsvm. Default settings were used to train and test the

models based on classification with the linear, polynomial, and

Gaussian kernels. The performance of the models was evaluated

using the 10-fold and leave-one-out cross-validation methods.

Metabolite Annotation and Pathway Analysis
Discriminatory m/z features were annotated on a targeted basis

using Metlin (http://metlin.scripps.edu/) and Kyoto Encyclopedia

of Genes and Genomes (KEGG; http://www.genome.jp/kegg/)

databases. As indicated by instrument specifications and docu-

mented mass resolutions and accuracies, the mass accuracy used

should be within 5 ppm, which is sufficient to predict the

elemental composition for many low molecular weight metabo-

lites. Parameter settings optimized for moderately high-throughput

analysis of plasma on the LTQ-FT resulted in observed D ppm for

measured versus absolute m/z of up to 8 ppm for known standards

[14]; consequently, database searches were done with 10 ppm

tolerance. Previous comparisons showed that searches with

10 ppm increased the number of matches by ,10% compared

to a 5 ppm tolerance [19], indicating that use of this search

parameter to avoid missing correct matches does not substantially

increase the number of incorrect matches. For many m/z, multiple

matches were present. In some cases, such multiple matches were

easy to address because they included multiple database entries for

the same chemical or a range of non-physiologic isomers of a

common metabolite. In previous studies using coelution with

authentic standards and in ion dissociation (MS/MS) studies, we

have found matches to known metabolic intermediates to be

correct 60–80% of the time [7,14,19,20,21]. Analysis of a set of

randomly generated high-resolution m/z values showed that 14%

matched metabolites in Metlin. Correlation analyses described

below were used to address this limitation. In some cases, large

numbers of phytochemicals or large numbers of bile acids share

elemental compositions. For these, we would simply summarize as

‘‘phytochemicals’’ or ‘‘bile acids.’’ Confirmed identifications are

given when available. Characterization of unidentified metabolites

Metabolomics of Age-Related Macular Degeneration
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remains a challenge due to the large number of features, relatively

low abundances, and the lack of commercial sources for authentic

standards, but the accurate mass and retention times obtained

should enable identification of these metabolites in the future.

We used correlation analyses to improve confidence in

interpretation. The correlation analyses were summarized in a

spreadsheet of Pearson correlation coefficients for every m/z

feature with every other m/z feature across all samples. This table

allowed selection of the m/z features in rank order of Pearson

correlation with each m/z of interest. Groups of m/z features

highly correlated with the feature of interest were then searched as

a batch in Metlin. These searches provided matches for multiple

related chemicals, such as different tripeptides containing similar

amino acids, while corresponding searches of randomly selected

m/z features provided few matches. Formal testing was not

attempted because over half of the m/z detected do not match

metabolites in the databases, indicating that the currently defined

metabolic pathways are incomplete. Additional pathway analyses

with Metscape were used to provide complementary information

on possible metabolic differences between NVAMD and controls.

Data Access
Data files relevant to this publication will be made available for

non-profit use by researchers upon request.

Results

Subject Characteristics
The study population consisted of 45 subjects, including 26

patients with NVAMD in one or both eyes and 19 controls

without signs of AMD. The mean age of NVAMD patients

(76.065.7 years) did not differ from that of controls (76.464.8

years; p = 0.79). The percentages of males and females did not

significantly differ between the groups (p = 0.07), and all partic-

ipants were Caucasian.

Surveyed environmental factors did not differ between

NVAMD and control groups. Each group had two cigarette

smokers (p = 1.0). Twenty-three (88.5%) of the NVAMD patients

took vitamin supplements, compared to 63.2% of the control

patients (p = 0.07). Of the 23 NVAMD patients taking oral vitamin

supplements, 15 were taking eye vitamins. Twelve of the 26

NVAMD patients (46.1%) had active choroidal neovascularization

at the time of the blood draw, and 9 (34.6%) patients had received

an intravitreal injection of anti-vascular endothelial growth factor

(VEGF) within the preceding two months.

Comorbid conditions are common in this age group, and an

imbalance in comorbidities between the NVAMD and control

groups could confound the results of the study. Specifically,

coronary artery disease and associated conditions have been linked

to AMD [22]. Therefore, we examined the presence of

comorbidities in the study population. There was no significant

difference in the percentage of patients in each group with the

following: coronary artery disease (NVAMD 27%, control 16%,

p = 0.481), hypertension (NVAMD 65%, control 58%, p = 0.757),

hyperlipidemia (NVAMD 35%, control 32%, p = 1.00), diabetes

(NVAMD 0%, control 0%, p = 1.00), or history of cancer

(NVAMD 12%, control 3%, p = 0.627).

High-resolution Mass Spectral Data
Extraction of mass spectral data for the anion exchange

chromatography with apLCMS yielded 1680 m/z features defined

by high-resolution m/z, retention time, and ion intensity. Features

present in less than 50% of analyses were excluded, leaving 1168

features. In a metabolome-wide association study (MWAS) of the

45 subjects, 94 unique metabolic features significantly differed

between the two groups using FDR (q = 0.05) (Table S1A).

Figure 1 depicts a Manhattan plot of –logp for each metabolite

expressed as a function of the m/z, with the 94 features appearing

above the broken line indicating significance level. Box-and-

whisker plots comparing the mean and standard error for

metabolite levels of NVAMD patients and controls were examined

for each of the 94 features. Examples of six of these plots are

shown in Figure 2. The plots for different features suggested that

log transformations might improve analyses of individual metab-

olites. FDR of log2 transformed data resulted in 132 features at

q = 0.2, 74 features at q = 0.1, and 39 features at q = 0.05 (Table
S1B–D). Of the 132 features obtained with log2-transformed data

at q = 0.2, 40 intersected the list of 94 features obtained without

transformation (Table S2). The discriminatory characteristics of

the set of the features obtained using the non-transformed data

and transformed data were evaluated using 10-fold and leave-one-

out cross-validation approaches and a Support Vector Machine

(SVM) classifier [23]. Features selected using the non-transformed

data at q = 0.05 gave similar classification accuracies to analysis

with log2 transformation (Table S3). These results show no clear

advantage to transformation prior to analysis, but the 40 features

intersecting the non-transformed and transformed data were

analyzed in order to ensure significance. Many features were

found to discriminate NVAMD patients from similarly-aged

controls both before and after statistical correction, but the set of

94 features, along with the group of 40 intersecting features,

became the focus of further analysis.

Associations among the Metabolic Features
Correlation analysis is helpful in identifying metabolites that are

linked by common metabolic enzymes or transporters. Correlation

may occur as a result of biological variability, systematic

differences in subject selection or sample collection, or generation

of multiple ions from the same chemical during electrospray

ionization-mass spectrometry. Correlation analysis of the 94

Figure 1. Metabolome-wide association study of NVAMD. This
Manhattan plot depicts FDR analysis of 1168 m/z features comparing 26
NVAMD patients and 19 controls. The negative logp value is plotted
against the m/z features. The x-axis represents the m/z of the features,
ordered in increasing value from left (85) to right (850). The coloring of
the symbols is arbitrary. A total of 94 features significantly differed
between NVAMD and controls at an FDR of q = 0.05 (above horizontal
dashed line). Two of the features shared the same m/z value but had
different retention times, so the 95 features shown in this figure were
collapsed to 94 in the search of m/z in the databases.
doi:10.1371/journal.pone.0072737.g001
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discriminatory features showed that many of the significant

features were associated with each other, but few were strongly

associated (Figure S1). For more detailed examination, we

selected the 40 features that significantly differed between

NVAMD and controls both without transformation and following

log2 transformation (Table S2). Based upon empirical evidence

that m/z features derived from the same unique chemical entity

often correlate with r.0.81 (Y. Park, K. Lee, D.P. Jones,

unpublished observation), we also examined any of the total

1168 features having r.0.81 for correlation with these 40 features.

A group of 21 features was shown to have one or more correlation;

further association within the group was demonstrated by

seventeen of these features, which formed four clusters (Table 1).

Thus, the features that discriminate NVAMD from controls

include at least three types of metabolites: ones that do not strongly

associate with other features, ones that are likely to be different

forms of the same chemical, and ones that are likely to have a

biological basis for association.

Orthogonal Partial Least Squares-discriminant Analysis
We used OPLS-DA to identify features that contribute in a

group-wise manner to separation of NVAMD and controls. After

removal of the 1st orthogonal component (19.6% of variation), the

1st and 2nd predictive components (38.9% and 34.1% of variation,

respectively) largely separated NVAMD from controls (Figure 3).

We used Principal Component Loading Statistics (PCLS) to

identify the top 5% of features that account for 95% separation of

NVAMD and controls by OPLS-DA (Figure 4). Of these

features, 52 gave .99.1% correct classification by linear

discriminant analysis (Figure 5). These 52 features included

43% of the 94 original non-transformed discriminatory features

and 50% of the 40 features intersecting the analysis of the non-

transformed and log2 transformed data. Ten features of the 52

were associated with one of the four clusters of features described

in Table 1. Together, the results show that the metabolic profiles

of NVAMD patients and controls differed in contents of features

that varied independently and also in content of features that

varied with group-wise character.

Mapping Features to Metabolites and Metabolic
Pathways using KEGG Database

High-resolution metabolomics as applied in the current study

includes ions formed by electrospray ionization in the positive

mode and, therefore, is a selective sampling of the pan-

metabolome. The pan-metabolome includes metabolites of the

nutritional metabolome derived from products of the human

genome acting upon dietary nutrients, food-derived chemicals,

products of the microbiome, products of dietary supplements and

pharmaceuticals, products derived from commercial products,

along with environmental agents and their metabolites [24].

Previous studies show that over half of the ions detected do not

match known chemicals in metabolomics databases, and the large

number of features detected in the current analyses precludes

systematic structural identification. Consequently, we used data-

base searches to help identify possible chemical and metabolic

associations with NVAMD. Based upon operational criteria

previously discussed [14], we searched for matches within 9 ppm

for H+, Na+, K+, H+(-H2O), H+(2H2O); a search of the 94 features

that distinguished NVAMD from controls by FDR showed that

matches were present for 86 metabolites in numerous KEGG

human metabolic pathways (Figure S2). Identities of amino acids

(e.g., phenylalanine, tyrosine, glutamine, aspartate) were con-

firmed using criteria of coelution with authentic standards and ion

dissociation (MS/MS) spectra [7,14,20,21]. Other matches for

sulfur amino acid metabolites, several nucleotides, sugars, lipids,

and steroid metabolites were present but tend to have multiple

isomers that are not distinguished and/or do not have available

standards. Matches to several vitamins and coenzymes were also

present. From these data, we conclude that the plasma metabolic

features that differ between NVAMD and controls include a

diverse set of identified and non-identified metabolites.

Analysis of 40 Features Discriminating NVAMD and
Controls using the Metlin Metabolomics Database

The correlations within the group of 40 intersecting features

formed four clusters (Table 1). Each cluster, along with the

features with which each cluster correlated, were searched for

Figure 2. Box-and-whisker plots of selected features comparing the mean and standard error for cases and controls. Plots were
examined for each of the 94 features.
doi:10.1371/journal.pone.0072737.g002
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matches in the Metlin database corresponding to M+H+, M+Na+,

M+H+(-H2O), M+H+(2H2O) forms. The results (Table 2)

exposed a diverse group of metabolites that distinguished

NVAMD from controls by presenting as either increased or

decreased in the NVAMD population. The metabolites increased

in NVAMD were all features of Cluster 1 and included matches to

di- and tripeptides, modified amino acids, and natural products.

Correlated features matched to modified amino acids, di- and

tripeptides, pentachlorocyclohexanol, and pentachlorodibenzo-

dioxin. Because Cluster 1 included features that were different

between NVAMD and controls by statistical criteria and were also

among the top 5% of metabolites accounting for 95% separation

by OPLS-DA, the data suggest that the metabolic phenotype of

NVAMD is a complex network of metabolites including peptides,

modified amino acids, natural products, and environmental

agents.

Table 1. Clusters of discriminating m/z features (n = 21*) and their respective correlated features at r.0.81.

Cluster m/z Correlated m/z Features

1 186.221 308.857, 376.844, 324.831, 392.818, 347.139, 289.945, 213.909, 243.037, 353.103, 344.184, 348.155, 341.192,
214.062

1 208.096 289.945, 353.103, 341.192, 328.192, 229.096

1 310.187 323.093, 243.037

1 328.192 289.945, 322.189

1 341.192 289.945, 229.096, 208.096, 310.187

1 341.192 213.909, 186.221

1 344.184 229.096, 186.221, 213.909

1 353.103 324.831, 376.844, 308.857, 213.909

2 448.303 449.306, 450.318

2 449.306 448.303, 450.318

2 450.318 451.322, 452.326, 472.300, 414.297, 433.311, 432.308, 473.303, 415.301, 448.303, 453.328, 449.306

2 472.300 451.322, 450.318, 452.326, 414.297, 473.303, 433.311, 415.301, 432.308, 453.328, 434.315

2 656.792 646.762, 147.977, 642.815, 590.801, 588.804, 640.818, 648.760, 658.788, 567.106, 708.806, 672.767, 557.148,
698.777, 551.166, 579.145, 306.048, 630.790, 632.786, 578.776

3 244.189 245.193, 453.366

3 245.193 244.189, 453.366

4 328.137 334.157

4 334.157 328.137

Independent 220.556 223.566, 171.552, 306.048, 551.166, 312.068, 174.562

Independent 293.586 293.084, 290.074, 386.626, 383.616, 386.126, 385.624, 383.114, 200.043, 203.053

Independent 322.189 232.051

Independent 416.211 476.262, 437.190, 432.236, 415.209, 237.116

*Selected from the 40 m/z features produced by the intersection of FDR analyses of non-transformed (q = 0.05) and log2 transformed data (q = 0.2).
doi:10.1371/journal.pone.0072737.t001

Figure 3. Separation of NVAMD from controls using OPLS-DA.
doi:10.1371/journal.pone.0072737.g003

Figure 4. The top 5% of features accounting for 95%
separation of NVAMD and controls by OPLS-DA. Green dots
represent features that show 95% separation between cases and
controls; the gold circles denote the top 5% that contribute to
differentiating NVAMD patients (right oval) from controls (left oval).
doi:10.1371/journal.pone.0072737.g004
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The second largest cluster of features, Cluster 2, included

features that were significantly different between NVAMD and

controls, but none were among the top 5% of features

discriminating the groups by OPLS-DA. Therefore, these features

may be important for some individuals but not for the overall

separation of the groups. These features matched primarily to bile

acids and were significantly lower in NVAMD. They correlated

with an additional 28 features with r.0.81, which included

matches for intermediary metabolites and natural products such as

glycodeoxycholic acid and vitamin D-related metabolites. Two

features matched ions derived from sphingofungin A, a natural

antifungal produced by Aspergillus species. Sixteen features did not

match any metabolite in the database.

Clusters 3 and 4 contained a smaller number of features and

had lower values in NVAMD. In Cluster 3, m/z feature 245.193

matched senecrassidiol while m/z 244.189 and m/z 453.366 did

not have matches in Metlin. The features in Cluster 4 matched

dipeptides (His, Arg; Trp, Phe) and a metabolite of a natural

product, didemethylsimmondsin.

The nineteen features showing no strong correlation with other

features were similarly searched for matches (H+, Na+, H+(-H2O),

H+(2H2O)) to metabolites in Metlin; eight were found to have no

matches. The other eleven were matched to tripeptides, metabolic

intermediates, food products, dietary supplement metabolites,

pharmaceutical metabolites, environmental agents, and thirteen

other metabolites, most of which were natural products. Features

that were increased in NVAMD included matches to a tripeptide

(292.152) and two environmental agents (222.112, 419.313) while

those decreased included three metabolic intermediates (144.101,

346.007, 368.070), a tripeptide (421.159), and three phytochem-

icals (365.086, 371.055, 421.159).

Interpretation of Metabolic differences between NVAMD
and Controls using MetScape

MetScape is a plug-in for Cytoscape, an open source software

platform for visualizing complex networks. MetScape analysis of

the 94 features identified multiple associated pathways, including

fructose and mannose metabolism, galactose metabolism, pentose

phosphate pathway and tyrosine metabolism (Table S4). In

Figure 5. 52 features gave .99.1% correct classification by
linear discriminant analysis.
doi:10.1371/journal.pone.0072737.g005

Table 2. Selected m/z features (n = 17) discriminating NVAMD and control patients with their respective matches from the Metlin
database.

Cluster m/z
Presence in AMD
Cohort Metlin Match Metlin Matches of Correlated Features

1 186.221 Higher No Match Pentachlorochyclohexanol;
pentachlorodibenzodioxin; tripeptides; modified
amino acids

1 208.096 Higher Acetylphenylalanine Acetyltryptophan; features from Cluster

1 310.187 Higher Dipeptide; Tripeptides Modified cysteine and alanine acids

1 328.192 Higher Sethoxydim (herbicide) Tripeptides

1 341.192 Higher Tripeptides Acetyltryptophan; features from Cluster

1 341.192 Higher Tripeptides No Matches

1 344.184 Higher Tripeptides Acetyltryptophan

1 353.103 Higher Flavones; halofenozide Pentachlorochyclohexanol,
pentachlorodibenzodioxin

2 448.303 Lower Glycocholic acid Features from Cluster 2

2 449.306 Lower Vitamin D-related metabolites; phytochemicals Features from Cluster 2

2 450.318 Lower Glycodeoxycholic acid+H+; Glycoursodeoxycholic
acid+H+

Vitamin D-related metabolites; ions derived from
sphingofungin A; terpenoid; features from
Cluster

2 472.300 Lower Glycodeoxycholic acid+Na+; Glycoursodeoxycholic
acid+Na+

Vitamin D-related metabolites; ions derived from
sphingofungin A; terpenoid; features from
Cluster

2 656.792 Lower No Match Phytochemicals; glutamate metabolites

3 244.189 Lower No Match Feature from Cluster; one unmatched feature

3 245.193 Lower Senecrassidiol Feature from Cluster; one unmatched feature

4 328.137 Lower Didemethylsimmondsin Feature from Cluster

4 334.157 Lower Dipeptides Feature from Cluster

doi:10.1371/journal.pone.0072737.t002
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addition, Metscape identified bile acid biosynthesis, glycosphin-

golipids, thiamine metabolism, and two pathways previously

associated with AMD: the urea cycle, including metabolism of

arginine, proline, glutamate, aspartate and asparagine, as well as

CoA biosynthesis from pantothenate [25]. Analysis of the

compound-reaction-enzyme-gene network analysis for 132 dis-

criminatory features using log2 transformed data and FDR at

q = 0.2 confirmed the network associations for the tyrosine

(Figure 6) and urea metabolism (Figure S3) pathways, as well

as nicotinamide, pyrimidine, lysine and methionine plus cysteine

(not shown). These results indicate that the metabolites discrim-

inating NVAMD and controls map to carbohydrate, amino acid,

and coenzyme metabolites required for nitrogen balance and

energy metabolism.

Discussion

This metabolome-wide association study (MWAS) demonstrates

the ability of LC-FTMS to pinpoint both individual metabolites

and metabolic pathways that are likely to play an important role in

AMD pathophysiology. Our evaluation of 26 NVAMD patients

and 19 controls closely matched in age and general health

identified 94 unique metabolites that significantly differed between

the groups using FDR (q = 0.05). The subset of 40 metabolites that

intersected both non-transformed and log2 transformed data were

selected for detailed investigation. Correlation analysis of these 40

features showed that over half associated with other discriminating

metabolites. OPLS-DA was performed to uncover features that

contribute in a group-wise manner to the separation of cases and

controls. This analysis revealed a panel of 52 metabolites that

showed .99.1% separation of NVAMD from controls. These data

suggest that comprehensive metabolomics can expose both

individual metabolites and metabolic profiles that discern disease

status.

We used the Metlin and KEGG databases to identify specific

metabolites that distinguished NVAMD from controls. Discrim-

inating m/z features that highly correlated with other features fell

into four clusters containing a total of seventeen metabolites.

These seventeen features yielded consistent Metlin matches to di-

and tripeptides, covalently modified amino acids, bile acids, and

vitamin D-related metabolites. Since these clusters involve

metabolites that are likely to have a biological basis for association,

their matches may reveal more consistent and functional

information regarding AMD disease status than single metabolite

Figure 6. Map of tyrosine metabolism. Metabolites that matched m/z features of log2 transformed data at q = 0.2 are designated by orange
arrows. When compared to controls, NVAMD patients showed lower levels of m/z 148.0749 but higher levels of m/z 182.0803 and m/z 196.0596. Note
that the methods used do not discriminate between the two metabolites matching the m/z 196.0596 M+H adduct.
doi:10.1371/journal.pone.0072737.g006

Metabolomics of Age-Related Macular Degeneration

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e72737



markers. For example, the features in Cluster 1 matching to small

peptides and modified amino acids were among the top 5% of

metabolites accounting for 95% separation by OPLS-DA,

denoting their importance.

The m/z features matching tripeptides and dipeptides in Cluster

1 had higher levels in NVAMD patients than controls. Increased

levels of small peptides in the plasma could be the result of

excessive proteosomal activity, abnormalities in removal of

peptides by peptidases or altered function of peptide transporters.

For example, the peptide transporter PEPT2 is expressed in

peripheral tissues and the central nervous system, including the

Mller cells of the retina [26]. Studies of Pept2 knockout mice

demonstrated that aberrant Pept2 function can lead to significant

alterations in dipeptide disposition [27].

Additional m/z features in Cluster 1 matched to modified amino

acids such as acetylphenylalanine and acetyltryptophan. Acet-

ylphenylalanine is a hazardous metabolite of phenylalanine and is

elevated in phenylketonuria due to lack of phenylalanine

hydroxylase, the enzyme that converts phenylalanine to tyrosine

[28]. In a previous metabolomics study, acetylphenylalanine levels

were found to be elevated in patients with renal cell carcinoma

[28]. Acetylphenylalanine is typically bound to albumin in the

plasma and excreted into the urine via the organic ion transporter

[29]. Low serum albumin levels, which have been previously

associated with neovascular AMD [30], or abnormal renal ion

transporter function could account for the increased levels of the

modified amino acids in the NVAMD patients of this study.

Metabolomic analysis of urine in NVAMD and control patients

would help determine if the higher levels of modified amino acids

are due to abnormal production or reduced excretion.

The m/z features from Cluster 2, along with their correlated

features, matched multiple bile acids and were found to be

decreased in NVAMD patients compared to controls. Specifically,

one m/z feature in the cluster matched glycocholic acid while two

features matched glycodeoxycholic acid and glycoursodeoxycholic

acid. Through activation of multiple signaling pathways, bile acids

are critical to the regulation of triglyceride, cholesterol, glucose,

and energy homeostasis [31]. Low bile acid levels that lead to

disruption of any of these metabolic pathways may affect AMD

pathophysiolology. Additionally, glycoursodeoxycholic acid

(GUDCA) has been shown to act as an antioxidant by protecting

neurons against unconjugated bilirubin-induced oxidative stress

[32]. Interestingly, tauroursodeoxycholic acid (TUDCA) has been

shown to protect photoreceptors from cell death in murine models

of retinitis pigmentosa [33] and retinal detachment [34], as well as

to suppress choroidal neovascularization in a laser-treated rat

model [35]. Thus, bile acids might serve global anti-apoptotic or

anti-angiogenic roles that are critical to retinal function.

A single m/z feature from Cluster 2 with lower levels in

NVAMD patients compared to controls, along with multiple

correlated features, matched to vitamin D-related metabolites.

Vitamin D is thought to affect immune modulation and perhaps

even slow or prevent diseases with inflammatory etiologies [36].

Lower serum vitamin D levels were associated with AMD in an

evaluation of patients in the third National Health and Nutrition

Examination Survey (NHANES) [37], as well as in post-

menopausal women in the Carotenoids in Age-Related Eye

Disease Study (CAREDS) [38]. In other studies, vitamin D levels

were shown to be lower in patients with late AMD [39] and were

associated with poorer visual acuity in older adults [40]. The lower

levels of vitamin D-related metabolites seen in this study are

consistent with these findings and suggest that vitamin D may be

protective against AMD. Previous laboratory studies support a role

in the prevention of neovascularization, providing evidence that

1a,25-dihydroxyvitamin D inhibits abnormal angiogenesis in vitro

and in vivo [41].

Three m/z features from the four clusters and several of the

correlated features had no match in the Metlin database using the

predefined search criteria (Table 2). This suggests that some

environmental metabolites measured by high-resolution metabo-

lomics analysis have not yet been identified, showing that this

technique could prove advantageous over strictly targeted methods

in a comprehensive analysis of metabolic profiles.

In our pathway analyses, the Metscape database provided

results that complemented findings using the KEGG database.

KEGG matches for the 94 discriminatory features included amino

acids linked to tyrosine metabolism and the urea cycle, such as

phenylalanine, tyrosine, glutamine, and aspartate; Metscape

pathway analysis identified seventeen affected metabolic pathways,

including tyrosine and urea metabolism. Individual metabolites in

the tyrosine pathway that differed between NVAMD and controls

included tyrosine, phenylalanine, and dopaquinone. These path-

way results are consistent with the previously found match to the

Metlin database identifying the modified amino acid acetylphe-

nylalanine, an abnormal variation of a metabolite in the tyrosine

synthesis pathway.

This proof-of-principle study was limited by its sample size. The

relatively small number of patients and controls could have

allowed a random enrichment of metabolic characteristics in

either the NVAMD or control groups and will require extension to

larger populations to determine whether these findings represent

common metabolic characteristics of NVAMD patients. Multiple

steps were taken to increase the probability that the metabolites

found to discriminate between NVAMD and control in this study

represent true differences in disease status. First, the two

populations did not differ in age, gender, smoking status,

multivitamin supplement intake, or key comorbidities including

diabetes, coronary artery disease, hypertension, hyperlipidemia,

and history of cancer. This similarity greatly improves the

likelihood that discriminating metabolites are due to AMD and

not the result of confounding factors. Second, we focused our

correlation analysis on metabolites that distinguished NVAMD

from control using both non-transformed and log transformed

data, decreasing the chance of data outliers affecting significance.

Finally, the considerable overlap of results from analyses designed

to identify individual metabolites (FDR) and metabolites that

contribute in a group-wise fashion (OPLS-DA) suggests biologic

plausibility for these metabolites and pathways. The putative

metabolite identifications will need to be confirmed by MS/MS

and coelution with authentic standards, and their ability to

differentiate NVAMD patients from controls will need to be

validated with an independent replication cohort.

The metabolic changes linked with NVAMD in this study could

have preceded development of disease or could be a result of

disease or treatment status; causality cannot be inferred from this

association study. Furthermore, differential metabolite levels

between NVAMD patients and controls could be related to

metabolic changes at any stage of AMD disease progression. To

separate out metabolites specifically related to early AMD or

neovascularization, metabolic analyses of these two populations

will be required. Studies in which archived plasma samples can be

assayed along with longitudinal clinical data may provide

information on the chronology and predictive capacity of

metabolic changes. Xu et al. recently identified modest levels of

anti-VEGF agent ranibizumab in serum after intravitreal injection

[42]. While the present metabolomics methods are not suitable for

detection of ranibizumab, prospective studies could allow inves-

tigation of the effects of anti-VEGF treatment as well as AREDS-
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type oral supplements on plasma metabolites. Additionally,

identifying metabolites that are altered in association with known

genetic risk factors could allow a better understanding of how

genetic associations play a role in disease manifestation. Never-

theless, the results of this study provide a rich set of data with

which to move forward in mapping out critical AMD-related

metabolites.

The cross-validation analysis suggests that significant metabolic

heterogeneity exists within the NVAMD patients. Thus, NVAMD

patients who are clinically indistinguishable may actually have

very different metabolic characteristics and could potentially be

subclassified by metabolic phenotype. Such metabolic subclassifi-

cation could lead to improved prevention and treatment strategies.

In summary, these data reveal that NVAMD pathophysiology

may involve a map of diverse metabolic components that range

from peptides, bile acids, and vitamin D to broader pathways like

that of tyrosine metabolism. Our results suggest two advantages of

a high-resolution metabolomic approach: it can provide relative

quantification of a large number of metabolites to facilitate

comprehensive analysis of environmental impact on disease status,

and, secondly, it can discern metabolic profiles and pathways that

distinguish NVAMD cases from controls. Such plasma metabolic

phenotyping could improve current diagnostic methods for AMD

by substantiating evidence of disease or disease risk prior to clinical

manifestation.

Supporting Information

Figure S1 Metabolite-Metabolite pairwise correlation
heatmap of the 94 discriminatory metabolites between
NVAMD and control groups at q = 0.05. The colors

represent the Pearson correlation coefficient; dark red indicating

highly positive correlation and dark blue corresponding to highly

negative correlation.

(TIF)

Figure S2 KEGG metabolic pathway analysis with 94
matched features. The 94 m/z features that differed signifi-

cantly between NVAMD patients and controls using FDR at

q = 0.05 were compared to the KEGG Metabolic Pathway

Database, revealing 86 individual metabolites (black dots) in

multiple pathways that discriminate between NVAMD patients

and controls. Note that these are matches to the metabolites based

upon accurate mass m/z and do not represent confirmed

identifications. Approximately 90% of the metabolites in the

KEGG human metabolic pathways have unique elemental

compositions, and our previous studies [7,14,20,21] with MS/

MS and coelution of standards show that 60–80% of matches are

correct. However, certain ambiguities exist; for example, UDP-

glucose and UDP-galactose are identified as matches, but having

identical elemental compositions prevents them from being

separated by these methods.

(TIF)

Figure S3 Maps of urea cycle and relevant amino acid
metabolisms. Metabolites that matched m/z features are

designated with arrows.

(TIF)

Table S1

(DOCX)

Table S2

(DOCX)

Table S3

(DOCX)

Table S4

(DOCX)
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