
Replication-Independent Endogenous DNA Double-
Strand Breaks in Saccharomyces cerevisiae Model
Jirapan Thongsroy1, Oranart Matangkasombut2*, Araya Thongnak3, Prakasit Rattanatanyong3,4,

Siwanon Jirawatnotai5,6, Apiwat Mutirangura3,4*

1 Inter-Department Program of BioMedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand, 2 Department of Microbiology and

Developing Research Unit on Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand, 3 Department of Anatomy, Faculty of Medicine,

Chulalongkorn University, Bangkok, Thailand, 4 Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, Thailand,

5 Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America,

6 Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

Abstract

Without exposure to any DNA-damaging agents, non-dividing eukaryotic cells carry endogenous DNA double-strand breaks
(EDSBs), or Replication-Independent (RIND)-EDSBs. In human cells, RIND-EDSBs are enriched in the methylated
heterochromatic areas of the genome and are repaired by an ATM-dependent non-homologous end-joining pathway
(NHEJ). Here, we showed that Saccharomyces cerevisiae similarly possess RIND-EDSBs. Various levels of EDSBs were detected
during different phases of the cell cycle, including G0. Using a collection of mutant yeast strains, we investigated various
DNA metabolic and DNA repair pathways that might be involved in the maintenance of RIND-EDSB levels. We found that
the RIND-EDSB levels increased significantly in yeast strains lacking proteins involved in NHEJ DNA repair and in suppression
of heterochromatin formation. RIND-EDSB levels were also upregulated when genes encoding histone deacetylase,
endonucleases, topoisomerase, and DNA repair regulators were deleted. In contrast, RIND-EDSB levels were downregulated
in the mutants that lack chromatin-condensing proteins, such as the high-mobility group box proteins, and Sir2. Likewise,
RIND-EDSB levels were also decreased in human cells lacking HMGB1. Therefore, we conclude that the genomic levels of
RIND-EDSBs are evolutionally conserved, dynamically regulated, and may be influenced by genome topology, chromatin
structure, and the efficiency of DNA repair systems.
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Introduction

Endogenous DNA double strand breaks (EDSBs) can occur

spontaneously without any exogenous insults [1]. EDSBs are

generally believed to result from a variety of events, such as DNA

replication through single stranded lesions and mechanical stress

[2]. Previous studies in human cells lacking genes involved in DSB

repair showed that EDSBs could arise as often as 50 times per cell

cycle, but most are rapidly repaired in normal cells [1]. Although

the majority of spontaneous DSBs are efficiently repaired,

inaccurate repair of EDSBs could be a cause of carcinogenic

mutations [1]. Therefore, in normal cells, there should exist

mechanisms to avoid error-prone repair of EDSBs that could

protect the genome from potentially hazardous mutations or

rearrangements [3,4].

Recently, we developed a new technique to detect EDSBs based

on Interspersed Repetitive Sequence Ligation-Mediated PCR

(IRS-LMPCR) [3]. Linker oligonucleotides were ligated to existing

DNA ends in the genome, and the EDSBs were measured by PCR

using primers specific to the linker and the IRSs that widely

distribute throughout the genome. This method is more sensitive

than the comet assay [5] and does not rely on H2AX

phosphorylation [6]. Using this technique, we detected EDSBs

in proximity to IRSs in several human cell lines in the absence of

any DNA damage inducer [3].

Intriguingly, we found that during the G0 phase, human cells

possess a significant number of IRS-EDSBs. Because these breaks

are specific to the non-replicative stage of the cells, we termed

them ‘‘Replication-INDependent EDSBs’’ (RIND-EDSBs) [4].

Under normal physiological conditions, RIND-EDSBs are hyper-

methylated, localized within facultative heterochromatin, devoid

of cH2AX, and repaired by the ATM-dependent non-homologous

end-joining pathway (NHEJ) [4]. We further showed a rapid

increase in cH2AX and a reduction of RIND-EDSBs after the

inhibition of histone deacetylation. Nevertheless, an immediate

increase in the levels of RIND-EDSBs was observed when both

histone deacetylation and DSB repair were inhibited [4]. These

results suggested that RIND-EDSBs are retained and regulated by

specific mechanisms that rely on the genome topology and

chromatin structures [4].

To search for mechanisms involved in these processes, here we

employed the budding yeast Saccharomyces cerevisiae as a model
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system. Because the highly conserved mechanisms that regulate

the chromatin structure and DNA repair are well studied in yeast

[2,7], this model organism is advantageous for investigating the

roles of various genes in relations to EDSBs. Hence, we modified

our assay to measure EDSBs in yeast cells and showed here that

yeast genomes similarly possess RIND-EDSBs. To explore the

molecular mechanisms regulating RIND-EDSBs, we examined

the levels of RIND-EDSBs in a collection of yeast mutants lacking

genes in various cellular pathways, including regulators of

chromatin structure, endonucleases, and DNA repair. We

hypothesized that the level of RIND-EDSBs would be decreased

in yeast strains lacking genes involved in RIND-EDSB production

or retention, and increased in strains which lack RIND-EDSB

repair pathways.

Materials and Methods

Yeast strains, media and growth conditions
Yeast strains used in this study are listed in Table 1.

Asynchronous yeast cultures were grown in YPD (Sigma, USA)

to log phase (OD600 0.4–0.6). For the cell cycle experiments, yeast

cells were arrested at G0, G1, S, and M phase by culturing in YP

medium containing 2% raffinose (Sigma, USA) for 48 hours, YPD

in the presence of 5 mM a-factor (Sigma, USA), of 0.2 M

hydroxyurea (Sigma, USA), and of 15 mg/ml nocodazole (Sigma,

USA) for 180 minutes at 30uC, respectively. Cell cycle phases were

confirmed by phase-contrast microscopy. For the G0 phase, most

cells were small and without buds. Cells arrested in the G1 phase

had enlarged schmoo morphology. In the early stages of the S

phase, cells had large buds and short mitotic spindles. Finally, cells

had large buds but no mitotic spindles in the M phase [8].

Apoptosis was induced by the addition of 175 mM acetic acid

(pH 3.0) to the YPD for 200 minutes at 30uC [9]. Nine

independent preparations of G0 cells from each mutant strain

were used in all subsequent experiments to determine the RIND-

EDSB levels. In most strains, over 80% of the cells were

unbudded. (Proportions of unbudded, small budded and large

budded cells of all strains are shown in Table S1). To inhibit the

activity of histone deacetylases (HDACs), triplicates of stationary

cultures were treated with 10 mM of trichostatin A (TSA; Sigma,

USA) for 4 hours [4,10].

High-Molecular weight (HMW) DNA preparation for yeast
and Ty1-EDSB-LMPCR

To prepare HMW DNA, yeast cells were treated with 1 mg/ml

lyticase (70 U/mg) (Sigma, USA) for 2 hours and embedded in

1% low melting point agarose at a concentration of 26108 cells

per plug. Embedded cells were digested in 400 ml of digestion

buffer (1 mg/ml proteinase K, 50 mM Tris, pH 8.0, 20 mM

EDTA, 1% sodium lauryl sarcosine) at 37uC overnight. The plugs

were rinsed 6 times in TE buffer for 40 minutes. EDSBs with

cohesive ends were polished by incubating with T4 DNA

polymerase (New England Biolabs, Beverly, MA, USA) and

dNTPs for 1 hour. The enzyme was inactivated by adding EDTA

at a final concentration of 20 mM, for 5 minutes, and rinsed 6

times in TE buffer for 40 minutes. The modified LMPCR linkers

were prepared from oligonucleotides: 59-AGGTAACGAGTCA-

GAC CACCGATCGCTCGGAAGCTTACCTCGTGGACGT-

39 and 59-ACGTCCACGAG-39 (Sigma, Singapore) [3]. The

linkers (50 pmol) were ligated to the polished EDSB ends in the

HMW DNA preparations using T4 DNA ligase (New England

Biolabs) at 25uC overnight. Linker-ligated DNA was then

extracted from the agarose plugs using a QIAquick gel extraction

kit (Qiagen, Basel, Switzerland) [3]. The quantity of EDSBs was

measured by real-time PCR using an ABI PRISMH 7500 system

(Applied Biosystems, Carlsbad, CA, USA) with Ty1 primer 59-

AATGGAATCCCAACAATTATCTCAA-39 (Biodesign, Thai-

land), the linker primer and the Taqman probe homologous to

the 39 linker sequence (6-fam) ACGTCCACGAGG-

TAAGCTTCCGAGCGA (tamra, phosphate) [Sigma, Singapore]

[3]. DNA amplification was performed with 0.2 mM of each

primer, 0.3 mM Taqman probe, 0.025 U of HotStarTaq,

16TaqManH Universal PCR Master Mix (Applied Biosystems)

and 10 ng of ligated DNA. Initial denaturation was at 95uC for 15

minutes, followed by denaturation at 95uC for 5 seconds,

annealing at 58uC for 5 seconds, and extension for 2 minutes at

69uC for up to 60 cycles, with quantification after each extension

step [3]. To normalize potential differences in the amount of Ty1

per genome, genomic DNA of each mutant was used as its own

control DNA. Control DNA was digested with AluI and ligated to

the LMPCR linkers. The numbers of EDSBs were compared with

the AluI-digested ligated control DNA and reported in arbitrary

units of Ty1-EDSB–LMPCR templates per genome. The Ty1-

EDSB-LMPCR units were estimated from the number of AluI sites

in yeast genome, and converted to the number of EDSBs.

Yeast nuclei isolation and intranuclear linker ligation
To isolate the nuclei, yeast cells were treated with 1 mg/ml

lyticase (70 U/mg) (Sigma, USA) for 2 hours and digested in SPC

digestion buffer (1 M sorbitol, 20 mM 1,4-piperazinediethanesul-

fonic acid (Pipes), pH 6.3, 0.1 mM CaCl2), and the nuclei were

collected in SPC buffer with 9% ficoll, as previously described

[11]. LMPCR linkers were ligated in situ with the nuclei

preparations and Ty1-EDSB-LMPCR were performed as de-

scribed for HMW DNA [3].

HMGB1si cells and RT-PCR of HMGB1
The commercially available oligonucleotides HSS142453,

HSS142454, and HSS142455 from the Stealth RNAi system

(Invitrogen) were used for the specific knockdown of HMGB1

gene in HeLa cells. Transfection was carried out with the

Lipofectamine2000 transfection reagent (Invitrogen). A negative

control siRNA (Invitrogen) was transfected in parallel. After

72 hours, an aliquot of transfected cells was collected to determine

the level of HMGB1 mRNA. RNA extraction was performed and

5 mg of RNA was reverse transcribed with RevertAidTM First

Strand cDNA Synthesis Kit (Fermentas). The total cDNA of each

sample was analyzed in triplicate by a quantitative - comparative

CT (DDCT) study in an ABI PRISMH 7500 instrument (Applied

Biosystems, Carlsbad, CA, USA) with the HMGB1 forward

primer 59ATATGGCAAAAGCGGACAAG-39 and the HMGB1

reverse primer 59GCAACATCACCAATGGACAG-39 [Sigma,

Singapore] [12]. The relative expression of HMGB1 was

normalized to GAPDH expression.

HMW DNA preparation for HMGB1si cells and LINE-1-
EDSB-LMPCR

HMW DNA was prepared as previously described [3].

Approximately 56105 cells were embedded in 1% low melting

point agarose, lysed and digested in 400 ml of digestion buffer

(1 mg/ml proteinase K, 50 mM Tris, pH 8.0, 20 mM EDTA, 1%

sodium lauryl sarcosine) at 37uC overnight. EDSB end polishing

and linker ligation were carried out as described for yeast HMW

DNA.

For human cells, Long INterspersed Element1 (LINE-1 or L1)

sequences were used instead of Ty1 for LMPCR. The number of

L1-EDSBs was measured by real-time PCR as previously

Endogenous DNA Double-Strand Breaks in Yeast
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described [3]. Control HeLa DNA was digested with EcoRV/AluI

and ligated to the LMPCR linkers. The amounts of EDSBs were

compared with the EcoRV/AluI-digested ligated control DNA and

the arbitrary units of L1-EDSB–LMPCR templates per genome

were converted to EDSB numbers.

COmbined Bisulfite Restriction Analysis (COBRA)-LINE-1
and COBRA-LINE-1-EDSB

Nested COBRA-LINE-1 LMPCR was used to measure the

methylation of LINE-1 sequences proximal to EDSBs [13]. In the

first round, we performed a PCR with 5 ml (approximately 250 ng)

of bisulfite-treated DNA, 0.3 mM of AMETLINKP primer (59-

GTTTGGAAGTTTATTTTGTGGAT-39) and 0.3 mM of

LINEMSPCR 270 & 280 reverse primer (59 RTAAAACCCTC-

CRAACCAAATA TAAA39). The PCR conditions were 95uC for

15 minutes, followed by 30 cycles at 95uC for 1 minute, 48uC for 1

minute, and 72uC for 2 minutes and 1 final cycle at 72uC for 7

minutes. In the second round, we performed PCR with 2 ml of

PCR amplicons from the first PCR step and 0.3 mM of the L1

primers, the FCOBRALINE-I forward primer (59 CGTA-

AGGGGTTAGGGAG TTTTT 39) and the LINEMSPCR 270

& 280 reverse primers. The PCR conditions were 95uC for 15

minutes, followed by 40 cycles at 95uC for 1 minute, 50uC for 1

minute, and 72uC for 1 minute and 1 final cycle at 72uC for 7

minutes. The restriction analysis was performed by digesting 8 ml

of the PCR products with 2 U of TaqI and 2 U of TasI at 65uC
overnight; the digested products were then electrophoresed in an

8% non-denaturing polyacrylamide gel and stained with SYBR

green. DNA methylation levels were determined as previously

described [14]. Briefly, the intensities of 4 out of 5 COBRA LINE-

1 fragments (the 160, 98, 80 and 62 bp fragments but not the

18 bp fragments) in the polyacrylamide gel were quantified using a

phosphoimager and ImageQuant Software (Molecular Dynamics,

GE Healthcare, Slough, UK). The intensity of each band was

divided by its double-stranded DNA length to normalize the

intensity to fragment sizes as follows: 160 bp/160 (A), 98 bp/94

(B), 80 bp/78 (C) and 62 bp/62 (D). The LINE-1 methylation

level was calculated by the following formula: (C+A)/

(C+A+A+B+D)6100. DNA from HeLa cells was used as a control

to normalize the inter-assay methylation variation for all of the

experiments.

Table 1. Yeast strains used in this study.

Yeast strains Genotype Source

BY4741 MATa his3D1 leu2D0 met15D0 ura3D0 G.R. Fink

ybr136wD (mec1D) MATa his3D1 leu2D0 met15D0 ura3D0 mec1D sml1D M.C. Keogh [21]

ybl088cD (tel1D) MATa his3D1 leu2D0 met15D0 ura3D0 tel1D::KanMX Open biosystems

ymr224cD (mre11D) MATa his3D1 leu2D0 met15D0 ura3D0 mre11D::KanMX Open biosystems

ymr284wD (yku70D) MATa his3D1 leu2D0 met15D0 ura3D0 yku70D::KanMX Open biosystems

ymr106cD (yku80D) MATa his3D1 leu2D0 met15D0 ura3D0 yku80D::KanMX Open biosystems

ylr265cD (nej1D) MATa his3D1 leu2D0 met15D0 ura3D0 nej1D::KanMX Open biosystems

yer095wD (rad51D) MATa his3D1 leu2D0 met15D0 ura3D0 rad51D::KanMX Open biosystems

ypr052cD (nhp6aD) MATa his3D1 leu2D0 met15D0 ura3D0 nhp6aD::KanMX Open biosystems

ybr089c-aD (nhp6bD) MATa his3D1 leu2D0 met15D0 ura3D0 nhp6bD::KanMX Open biosystems

ydl002cD (nhp10D) MATa his3D1 leu2D0 met15D0 ura3D0 nhp10D::KanMX Open biosystems

ypr065wD (rox1D) MATa his3D1 leu2D0 met15D0 ura3D0 rox1D::KanMX Open biosystems

ykl032cD (ixr1D) MATa his3D1 leu2D0 met15D0 ura3D0 ixr1D::KanMX Open biosystems

ydr174wD (hmo1D) MATa his3D1 leu2D0 met15D0 ura3D0 hmo1D::KanMX Open biosystems

ymr072wD (abf2D) MATa his3D1 leu2D0 met15D0 ura3D0 abf2D::KanMX Open biosystems

ycr077cD (pat1D) MATa his3D1 leu2D0 met15D0 ura3D0 pat1D::KanMX Open biosystems

yol006cD (top1D) MATa his3D1 leu2D0 met15D0 ura3D0 top1D::KanMX Open biosystems

ylr234wD (top3D) MATa his3D1 leu2D0 met15D0 ura3D0 top3D::KanMX Open biosystems

ygl175cD (sae2D) MATa his3D1 leu2D0 met15D0 ura3D0 sae2D::KanMX Open biosystems

ykl113cD (rad27D) MATa his3D1 leu2D0 met15D0 ura3D0 rad27D::KanMX Open biosystems

ykl114cD (apn1D) MATa his3D1 leu2D0 met15D0 ura3D0 apn1D::KanMX Open biosystems

yhl022cD (spo11D) MATa his3D1 leu2D0 met15D0 ura3D0 spo11D::KanMX Open biosystems

ykr101wD (sir1D) MATa his3D1 leu2D0 met15D0 ura3D0 sir1D::KanMX Open biosystems

ydl042cD (sir2D) MATa his3D1 leu2D0 met15D0 ura3D0 sir2D::KanMX Open biosystems

ylr442cD (sir3D) MATa his3D1 leu2D0 met15D0 ura3D0 sir3D::KanMX Open biosystems

ydr227wD (sir4D) MATa his3D1 leu2D0 met15D0 ura3D0 sir4D::KanMX Open biosystems

ynl330cD (rpd3D) MATa his3D1 leu2D0 met15D0 ura3D0 rpd3D::KanMX Open biosystems

ynl021wD (hda1D) MATa his3D1 leu2D0 met15D0 ura3D0 hda1D::KanMX Open biosystems

ydr334wD (swr1D) MATa his3D1 leu2D0 met15D0 ura3DD0 swr1D::KanMX Open biosystems

yol012cD (htz1D) MATa his3D1 leu2D0 met15D0 ura3D0 htz1D::KanMX Open biosystems

doi:10.1371/journal.pone.0072706.t001
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Statistical analyses
Statistical analyses were performed using Student’s t-test for

data with normal distribution or a Mann-Whitney test for data

that do not have normal distribution, as specified.

Results

Establishment of Ty1-EDSB-LMPCR assay
We previously established a method to detect EDSBs that occur

rather rarely in the human genome. In this assay, genomic DNA

was extracted from human cells by the high molecular weight

DNA (HMW) preparation protocol [3]. Existing DNA breaks

preserved in the genome were first ligated to linker oligonucleo-

tides. They were then detected by PCR using a pair of primers

complementary to the linker sequence and the LINE-1 repetitive

sequences in human genome. Because this method can detect low

numbers of EDSBs occurring in proximity to the LINE-1

sequences, it is called ‘‘L1-EDSB-LMPCR’’ [3]. Here, we

modified this method to measure EDSBs in the yeast genome by

taking advantage of the Ty1 sequences (as opposed to the LINE-1

sequence in human cells), and called this assay ‘‘Ty1-EDSB-

LMPCR’’. Ty1 sequences are abundant repetitive sequences that

intersperse throughout the yeast genome. The presence of EDSBs

was quantitatively analyzed by real-time PCR using primers

complementary to both the linker and the Ty1 sequences and a

Taqman probe complementary to the linker oligonucleotides

(Figure 1A). Thus, this assay favourably detected EDSBs located

near Ty1 (Ty1-EDSBs). To be efficiently amplified by real-time

PCR, EDSBs should locate approximately within 300 bp from

IRS sequences, as described for LINE1-EDSBs in human cells [4].

Analyses of varying amounts of control AluI digested DNA showed

that our assay quantitatively detected DSB ends and did not detect

any Ty1-EDSB-LMPCR product without linker ligation

(Figure 1B).

Detection of EDSBs in yeast
We used the Ty1-EDSB-LMPCR assay to estimate the levels of

EDSBs during the G0, G1, S and M phases of the cell cycle

(Figure 2A). Here, we estimated the total amount of EDSBs under

an assumption that the AluI restriction endonuclease generates

DSBs every 256 bp on average, and that EDSBs are distributed

equally throughout the genome. The results were similar to the

findings in human cells; the level of EDSBs was highest in S phase,

but still detectable at a lower level in G0 phase (Figure 2A). Next,

we tried to verify, if the fragmented DNA from apoptotic cells

could interfere with the detection of the genuine EDSBs.

Therefore, we tested whether Ty1-EDSB-LMPCR could detect

fragmented DNA generated by apoptosis. Yeast cells undergo

apoptotic cell death, with characteristic DNA fragmentation, upon

treatment with acetic acid [9]. We found that Ty1-EDSB-LMPCR

did not detect fragmented apoptotic DNA, prepared by the HMW

DNA extraction protocol (Figure 2B). This is likely due to the

nature of the DSB ends of apoptotic DNA fragments which was

reported to be staggered, not efficiently blunted by Klenow

treatment, and thus are not ligated to the linkers [9]. Ty1-EDSB-

LMPCR specifically detected only EDSBs from the genomic

DNA, which was added to the sample to normalize the total

amount of DNA, and did not detect any signal from the sample

containing 100% fragmented DNA from apoptotic cells (Figure 2B,

at 100% Apoptotic DNA). This indicated that apoptotic DNA did

not interfere with the Ty1-EDSB-LMPCR measurement of

EDSBs. Therefore, the Ty1-EDSB-LMPCR is an accurate and

sensitive method to study EDSBs and RIND-EDSBs in the yeast

genome.

We also determined if the signals we observed by Ty1-EDSB-

LMPCR were due to our DNA preparation protocol. Similarly to

the experiments performed in human cells [3], we compared the

levels of EDSBs of genomic DNA prepared with different

protocols, including an in-gel (HMW-DNA), a liquid DNA, and

a combined preparation protocols (Figure 3). Only a minimal

difference was derived when we subtracted the DSBs levels of

DNA prepared with the liquid DNA protocol (cellRliquid) from

that of DNA prepared with the combined in-gel followed by liquid

DNA protocol (cellRgelRliquid) (Figure 3B). This suggests that

adding an in-gel preparation step did not increase the number of

DSBs significantly. Thus, our method for in-gel preparation of

genomic DNA produced an insignificant number of breaks, as

measured by Ty1-EDSB-LMPCR.

To further confirm that Ty-EDSBs are not artifacts from HMW

DNA preparation, we isolated the yeast nuclei and performed

linker ligation in situ. Using this intranuclear ligation method, the

DNA was protected in the nuclear membrane. We compared the

levels of Ty-EDSBs of various mutant yeast strains that harbor

different levels of Ty-EDSBs (see below) using the HMW DNA

preparation and the intranuclear ligation protocols (Figure 4A and

B, respectively). The results demonstrated that the assay could

detect DNA breaks within the nuclei. Importantly, we observed

the same pattern of differences in the levels of EDSBs among

Figure 1. Ty1-EDSB-LMPCR assay. (A) A schematic representation
of the Ty1-EDSB-LMPCR assay shows EDSBs in HMW DNA ligated with
linker oligonucleotides. EDSBs located close to the Ty1 sequence are
measured by real-time PCR using the Ty1 primer (dash arrow), linker
primer (solid arrow), and the Taqman probe complementary to the
linker sequence (white bar). (B) A representative real-time PCR result
shows the level of Ty1-EDSB–LMPCR products in the HMW-DNA of a
wild-type yeast strain (WT, dashed line) relative to control DSBs
generated by Alu1 digested restriction enzymes (equivalent to 2, 10, 50,
250 and 1250 cells/ml; dark green, purple, brown, yellow, and light
green lines, respectively). Note that no Ty1-EDSB–LMPCR product could
be detected in HMW without linker ligation (magenta line) and in water
control (dH2O, blue line).
doi:10.1371/journal.pone.0072706.g001
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Figure 2. EDSBs in various phases of the cell cycle. (A) EDSBs were measured in asynchronous culture and in yeast cells arrested in G0, G1, S,
and M phases. The levels of EDSBs from 9 independent experiments are shown as box plots, with the boxes representing the interquartile ranges
(25th to 75th percentile) and the median lines representing the 50th percentile. The whiskers represent the minimum and the maximum values. There
was a significant decrease in EDSBs in G0 cells compared to asynchronous culture, such that **P,0.001 (Mann-Whitney test). (B) HMW DNA was
isolated from apoptotic yeast cells, mixed with control DNA at varying percentages, and analyzed by Ty1-EDSB-LMPCR. The graph represents the
mean levels of EDSBs with error bars representing standard deviations. The Ty1-EDSB-LMPCR assay could not detect DNA fragments from apoptotic
cells (at 100% apoptotic DNA). Furthermore, apoptotic DNA fragments did not interfere with quantitative measurement of EDSBs.
doi:10.1371/journal.pone.0072706.g002

Figure 3. EDSBs were detected in different DNA preparations including HMW DNA (cellRgel), liquid DNA (cellRliquid), and liquid
DNA extracted from in-gel HMW DNA (cellRgelRliquid). (A) The levels of EDSBs from different DNA preparation methods. (B) Subtracted
DSBs levels between liquid DNA and other methods. When comparing cellRgelRliquid with cellRliquid, adding in gel preparation step did not
increase the number of DSBs significantly. The average levels of EDSBs from 9 independent experiments are shown as histograms with error bars
representing SEM.
doi:10.1371/journal.pone.0072706.g003
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different yeast mutant strains using the 2 techniques, suggesting

that the HMW-DNA-based assay could reflect the situations in the

nuclei. Although the levels of EDSB detected with intranuclear

ligation were lower than those detected with the HMW DNA

preparations, this could be expected from the lower efficiency of

the ligation reaction in the complex nuclear architecture. It is also

unlikely that the mutations in various genes would lead to the same

effect in these 2 different protocols if they affect artificially induced

DNA breaks. Therefore, we believe that the assay provide a

sensitive means to measure the low level of randomly occurring

EDSBs that reflect the levels in vivo.

In our previous study in human cells, when we treated the cells

with a histone deacetylase inhibitor trichostatin A (TSA), histones

became hyperacetylated and the retained RIND-EDSBs were

repaired [4]. However, the levels of RIND-EDSBs increased when

cells were treated simultaneously with TSA and inhibitors of

DNA-PKcs and ATM [4]. Intriguingly, similar results were

observed in yeast cells suggesting that RIND-EDSBs were also

similarly regulated by chromatin structure in yeast (Figure 4C).

The levels of RIND-EDSBs were decreased in TSA treated cells

and increased in TSA-treated mec1D cells lacking the ATR

checkpoint kinase homolog. In this experiment, we demonstrated

again that both HMW DNA preparation and intranuclear ligation

protocols yielded the same results (Figure 4C and 4D).

Repair of RIND-EDSBs
The sensitivity of our PCR-based DSB detection method

allowed us to quantitatively analyze low levels of EDSBs in non-

replicative (G0) cells. To explore the roles of DNA repair pathways

in RIND-EDSB repair, we examined the levels of RIND-EDSBs

in several yeast strains with deletions of genes encoding

components of the DNA damage response (Figure 5). The levels

of RIND-EDSBs in G0 yeast cells were significantly increased in

the mec1D, tel1D, and mre11D strains, which lack key DNA damage

sensor genes. We then examined the levels of RIND-EDSBs in

strains lacking genes important for NHEJ repair (yku70D, yku80D,

and nej1D). The levels of RIND-EDSBs were significantly

increased in strains yku70D and yku80D. However, when NEJ1

was deleted, there was no change in the RIND-EDSB level.

During G0 phase of haploid yeast cells, we did not expect that the

Figure 4. RIND-EDSBs levels using HMW DNA preparation and intranuclear ligation protocols. (A, B) The levels of RIND-EDSBs were
measured in G0 cells of WT, mec1D, yku70D, nhp6aD strains using HMW DNA (A) and intranuclear ligation (B) protocols. (C, D) The levels of RIND-
EDSBs in controls and TSA-treated WT and mec1D strains using HMW DNA (C) and intranuclear ligation (D) protocols. Bar graphs represent average
values and error bars represent standard deviation of triplicate experiments.
doi:10.1371/journal.pone.0072706.g004
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RIND-EDSBs would be repaired by homologous-recombination

(HR). However, we observed a large increase in RIND-EDSBs in

a yeast strain lacking Rad51, a key protein in the HR pathway.

Regulations of RIND-EDSBs by chromosomal stress, and
endonucleases

Whether there is any cellular process that influences RIND-

EDSB levels is still not known. Without DNA replication, the

RIND-EDSBs could be a result of chromosomal stress or an

endonuclease. We focused on 3 groups of genes whose functions

promote DNA breaks, including topoisomerases, endonucleases

and High-Mobility Group B (HMGB). We hypothesized that

RIND-EDSBs would be lower in yeast strains lacking any genes

involved in the production or the retention of RIND-EDSBs.

First, we examined the role of genes encoding proteins with

HMGB domains. We measured the levels of RIND-EDSBs in

yeast strains with deletions of each of the seven genes in the

HMGB family, i.e., NHP6A, NHP6B, NHP10, ROX1, IXR1,

HMO1, and ABF2 [15]. The levels of RIND-EDSBs were reduced

in all of the mutant strains tested, but significantly decreased in the

nhp6aD, rox1D, ixr1D, and hmo1D strains (Figure 6). This finding led

us to investigate the role of HMGB1, the human homolog of

budding yeast HMO1, in human cells. Indeed, siRNA depletion of

HMGB1 in human cervical carcinoma HeLa cells also resulted in

a decrease in the level of RIND-EDSBs (Figure 7B).

Our previous study showed that RIND-EDSBs are preferen-

tially retained in methylated DNA [3]. We therefore examined the

methylation of genomic LINE1 (Figure 7C) and of LINE1 located

close to EDSBs in HeLa cells (Figure 7D). Intriguingly, the

depletion of HMGB1 significantly decreased the methylation level

of L1-EDSBs (Figure 7D). This result indicates that HMGB1 is

involved in the production or retention of hypermethylated

RIND-EDSBs in HeLa cells.

Next, we examined a potential role of topoisomerases, their

partners, and endonucleases in the generation of EDSBs. We

found that, while the levels of RIND-EDSBs did not change in the

top1D, apn1D, and spo11D strains, they significantly increased in the

pat1D, top3D, sae2D, and rad27D strains (Figure 8).

Heterochromatin and RIND-EDSBs levels
Our previous study demonstrated a relationship between

RIND-EDSBs and chromatin acetylation [4]. To determine if

these hold true in yeast, we examined the levels of RIND-EDSBs

in yeast strains lacking genes important for heterochromatin

formation, including the two histone deacetylases SIR2 and HDA1.

We observed a significantly lower level of RIND-EDSBs in sir2D,

as predicted, but not in the hda1D (Figure 9A). We also examined

the level of RIND-EDSBs in a mutant strain lacking RPD3, a

distinct group of histone deacetylase. Unlike sir2D, we found a

significant increase of RIND-EDSB levels in the rpd3D strain

(Figure 9A).

The fact that we detected a lower level of RIND-EDSBs in the

sir2D strain, together with the well-described role of Sir2 in

heterochromatin formation, led us to propose that the levels of

RIND-EDSBs could be indirectly controlled by Sir2 via its role in

heterochromatin formation. Of note, we did not see any significant

decrease in the levels of RIND-EDSBs in yeast strains lacking Sir1,

Sir3, and Sir4, proteins that are related to Sir2 [16], suggesting

that Sir2 may hold a specific role in the regulation of RIND-

EDSBs (Figure 9B). On the other hand, when genes that suppress

heterochromatin spreading, such as HTZ1 and SWR1 [17], were

deleted, the levels of RIND-EDSBs increased significantly (htz1D
and swr1D, Figure 9C).

Discussion

In this study, we established an assay for the measurement of

RIND-EDSBs in budding yeast, and investigated the roles of

various genes involved in the regulation of chromatin and DNA

repair on the levels of RIND-EDSBs.

Figure 5. Levels of RIND-EDSBs in yeast strains with mutations
in DSB repair pathways. The levels of RIND-EDSBs were significantly
increased in G0 cells of mec1D, tel1D, mre11D, yku70D, yku80D, and
rad51D but not in nej1D strains. The levels of EDSBs from 9 independent
experiments are shown as box plots, with the boxes representing the
interquartile ranges (25th to 75th percentile) and the median lines
representing the 50th percentile. The whiskers represent the minimum
and the maximum values. **P,0.001 (Mann-Whitney test).
doi:10.1371/journal.pone.0072706.g005

Figure 6. Levels of RIND-EDSBs in yeast strains with deletions
of genes encoding proteins with the High-Mobility Group B
(HMGB) domain. The levels of EDSBs were significantly decreased in
G0 cells of yeast strains lacking NHP6A, IXR1, ROX1, and HMO1,
suggesting that they play an important role in the production or
retention of RIND-EDSBs. Nevertheless, the levels of RIND-EDSBs in
nhp6bD, nhp10D, and abf2D strains were unchanged. The levels of
EDSBs from 9 independent experiments are shown as box plots, with
the boxes representing the interquartile ranges (25th to 75th percentile)
and the median lines representing the 50th percentile. The whiskers
represent the minimum and the maximum values. **P,0.001 (Mann-
Whitney test).
doi:10.1371/journal.pone.0072706.g006
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RIND-EDSBs are evolutionarily conserved
Similar to what previously observed in human cells [3], we

found that EDSBs were present in the yeast genome during all

phases of the cell cycle (Figure 2A). The detection of Ty1-EDSBs

during the G0 phase indicates that the non-dividing yeast cells

harbored RIND-EDSBs. These RIND-EDSBs may be produced

in non-replicating cells or possibly during prior cell cycle

transition. Additionally, the detection of high levels of S-phase

EDSB was consistent with the hypothesis that DNA replication

converts single-strand lesions to replication-dependent EDSBs [1].

The similarities between EDSB patterns observed in the mam-

malian and yeast genomes imply that an existence of EDSBs, and

perhaps RIND-EDSBs, are evolutionarily conserved and may be

required for cell homeostasis.

We have shown here and previously that, in both human and

yeast cells, the levels of RIND-EDSB are actively regulated.

Though evolutionarily distant, both species retain mechanisms,

more specifically genes, which regulate the baseline levels of the

RIND-EDSBs. HMGB domain proteins are abundant proteins

that bind DNA in a sequence-independent manner [18]. They are

intricately involved in the regulation of chromatin structure and

affect many DNA metabolic processes. HMGB proteins bind to

certain DNA lesions and either inhibit or facilitate their removal

[15]. Interestingly, the levels of RIND-EDSBs were reduced in

cells lacking HMGB proteins (Figure 6 and 7). Therefore, the

HMGB proteins may have a positive role in retaining high levels of

RIND-EDSBs in the yeast genome. The HMGB genes are known

to possess diverse functions in the maintenance of chromatin

structures. The variation in the degrees of RIND-EDSB reduction

in different deletion strains may be a result of functional

redundancies within the HMGB family. Nhp6A and Nhp6B are

homolog proteins that are functionally redundant. In budding

yeast, NHP6A is expressed much more robustly than NHP6B.

Therefore, the deletion of NHP6A resulted in a more pronounced

phenotype [15].

Figure 7. Levels of RIND-EDSBs in HeLa cells transfected with HMGB1 siRNA. (A) The level of expression of HMGB1 mRNA was significantly
downregulated in HMGB1 siRNA HeLa cells compared to control siRNA. **P,0.001 (Paired t-test). (B) Downregulation of HMGB1 by HMGB1 siRNA in
HeLa cells resulted in a decreased level of RIND-EDSBs when compared to the control. (C) Levels of L1 methylation as measured by COBRA-L1 assay
were not changed in HMGB1 siRNA transfected cells. (D) L1–EDSB methylation levels were significantly lower in HMGB1 siRNA cells than in the
control. The mean values from 9 independent experiments are shown as histograms with error bars representing SEM. *P,0.05, **P,0.001 (t-test).
doi:10.1371/journal.pone.0072706.g007
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We observed here that yeast strains lacking specific genes

involving in the generation of DNA breaks, topoisomerases and

endonucleases, increased RIND-EDSB levels (Figure 8). These

results appear contradictory to our initial hypothesis and suggest

that these genes are not involved in the production or retention of

RIND-EDSBs. The increase in RIND-EDSB levels when the

genes encoding certain topoisomerases or endonucleases were

deleted may provide a hint for a potentially essential role of

RIND-EDSBs. Both topoisomerases and endonucleases generate

DNA breaks to mediate their biological roles, which is to release

genome’s physical stress. Thus, an increase of RIND-EDSBs upon

the deletions of these genes may represent a crucial compensatory

mechanism for the loss of function of certain topoisomerases or

endonucleases. The conserved existence of RIND-EDSBs over

long evolutionary time implies that they may provide an

advantage for the organisms such that this feature survives

through natural selection.

Levels of RIND-EDSB and the repair of the breaks are
regulated

In human cells, compact heterochromatin-associated RIND-

EDSBs are repaired by an ATM-dependent pathway. However,

Ku-mediated NHEJ can repair euchromatin-associated EDSBs

[4]. Here we found that the levels of RIND-EDSBs were

significantly increased in yeast strains with deletions of genes

encoding components of the DNA damage response (Figure 5).

This result suggested that the levels of RIND-EDSBs are

constantly monitored and controlled by these DNA damage

sensors. Thus, deletion of the DNA damage sensors abolished that

control mechanism.

Two major pathways that repair double stranded breaks are

non-homologous recombination (NHEJ) and homologous-mediat-

ed recombination (HR) [2]. In this study, we focused on a set of

genes that operate in the NHEJ pathway. During the non-

replicating phase, the haploid budding yeasts contain only one

copy of the genome. Thus, it is generally presumed that the

conventional HR-mediated DNA repair, which requires another

copy of the genome as a template for repair, does not operate

during this stage. The levels of RIND-EDSBs were significantly

increased in yku70D and yku80D strains. Therefore, the NHEJ

pathway regulated, at least partly, the levels of RIND-EDSBs in

non-replicating yeast. These data are in accordance with our

previous finding that RIND-EDSBs could be repaired by the

NHEJ pathways in human cells [4]. Interestingly, nej1 deletion did

not change the RIND-EDSB level. There may be other factors

that compensate for the loss of NEJ1 in yeast. Although it is

generally believed that in the non-replicative stage, haploid yeasts

are not able to repair DNA breaks by the conventional HR-

Figure 8. RIND-EDSBs in strains with mutations in genes
encoding topoisomerases, their partners, and endonucleases.
Deletions of genes encoding topoisomerases, their partners, and
endonucleases did not reduce the levels of RIND-EDSBs in G0 cells.
On the contrary, the levels of RIND-EDSBs were increased in G0 cells of
top3D, rad27D, and sae2D strains. The values from 9 independent
experiments are shown as box plots, with the boxes representing the
interquartile ranges (25th to 75th percentile) and the median lines
representing the 50th percentile. The whiskers represent the minimum
and the maximum values. *P,0.05, **P,0.001(Mann-Whitney test).
doi:10.1371/journal.pone.0072706.g008

Figure 9. RIND-EDSBs and chromatin regulators. (A) The levels of RIND-EDSBs were measured in G0 cells of yeast strains lacking histone
deacetylase genes, SIR2, RPD3, and HDA1. The level was decreased in the sir2D strain, while it was increased in rpd3D strain. (B) No significant change
in the level of RIND-EDSBs was observed in yeast strains lacking the silent information regulator genes, SIR1, SIR3, or SIR4. (C) In contrast, deletions of
HTZ1 and SWR1, genes required for the prevention of heterochromatin spreading, led to significantly increased levels of RIND EDSBs. The values from
9 independent experiments are shown as box plots, with the boxes representing the interquartile ranges (25th to 75th percentile) and the median
lines representing the 50th percentile. The whiskers represent the minimum and the maximum values. **P,0.001 (Mann-Whitney test).
doi:10.1371/journal.pone.0072706.g009
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mediated pathway, we observed a significant increase in RIND-

EDSBs in a yeast strain lacking Rad51, a key protein in the HR

pathway. This result suggests that there might be an alternative

Rad51-mediated pathway to repair RIND-EDSBs in non-replica-

tive yeast.

RIND-EDSBs and heterochromatin
We previously demonstrated, in human cells, that areas

containing RIND-EDSBs are hypermethylated and are within

the facultative heterochromatin [4]. We also found that the

RIND-EDSBs were devoid of cH2AX, and that trichostatin A

(TSA) treatment increased histone acetylation, produced sponta-

neous DNA breakages, triggered H2AX phosphorylation and

allowed RIND-EDSB repair [4]. Therefore, we hypothesized that

RIND-EDSB levels and break repair are at least partly regulated

by specific pathways and are influenced by the genome topology

and chromatin structures.

Studies in yeast indicated that the level of RIND-EDSBs is

connected to the level of heterochromatin and may be controlled

indirectly by the proteins that regulate the spreading of

heterochromatin (Figure 9). Our findings were also consistent

with our prior report, which suggested that RIND-EDSBs are

likely retained in heterochromatin. Low levels of RIND-EDSBs

were found in yeast strain lacking the histone deacetylase Sir2.

Moreover, htz1D and swr1D strains, lacking genes that suppress

heterochromatin spreading [17], possessed high levels of RIND-

EDSBs. Nevertheless, a significant increase in RIND-EDSB levels

in the rpd3D strain was observed. Rpd3 is a histone deacetylase

that has a controversial role in heterochromatin formation.

Traditionally, Rpd3 has been associated with telomere stability

[19]. However, recent evidence suggests that it may antagonize

Sir2-dependent heterochromatin spreading [20]. This result

supports the anti-Sir2 role of Rpd3.

Conclusion

In this study, we devised a novel assay, Ty1-EDSB-LMPCR,

and showed that Saccharomyces cerevisiae, like human cells, possesses

RIND-EDSBs. We measured the levels of RIND-EDSBs in yeast

and explored the roles of many genes in the regulation of RIND-

EDSBs. By studying yeast strains lacking several genes involved in

DNA repair, we found that RIND-EDSBs are repaired by the

NHEJ and Rad51-dependent pathways. Furthermore, our results

showed that a role of certain genes involving in heterochromatin

dynamics or DNA metabolisms is to maintain a level of RIND-

EDSBs in the cell. We showed that at least some mechanisms that

regulate RIND-EDSB levels are evolutionarily conserved between

yeast and human. Interestingly, the lack of proteins that maintain

genomic integrity by generating temporary DSBs, such as

topoisomerases, increased RIND-EDSBs. This provides a clue to

a potential role of RIND-EDSBs in an important physiological

function. It is thus interesting to further investigate if there is an

advantage for cells to maintain a certain level of RIND-EDSBs.
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