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Abstract

The full repertoire of human microRNAs (miRNAs) that could distinguish common (benign) nevi from cutaneous (malignant)
melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied
Illumina next-generation sequencing (NGS) platform to carry out an in-depth analysis of miRNA transcriptome in biopsies of
nevi, thick primary (.4.0 mm) and metastatic melanomas with matched normal skin in parallel to melanocytes and
melanoma cell lines (both primary and metastatic) (n = 28). From this data representing 698 known miRNAs, we defined a
set of top-40 list, which properly classified normal from cancer; also confirming 23 (58%) previously discovered miRNAs
while introducing an additional 17 (42%) known and top-15 putative novel candidate miRNAs deregulated during
melanoma progression. Surprisingly, the miRNA signature distinguishing specimens of melanoma from nevus was
significantly different than that of melanoma cell lines from melanocytes. Among the top list, miR-203, miR-204-5p, miR-205-
5p, miR-211-5p, miR-23b-3p, miR-26a-5p and miR-26b-5p were decreased in melanomas vs. nevi. In a validation cohort
(n = 101), we verified the NGS results by qRT-PCR and showed that receiver-operating characteristic curves for miR-211-5p
expression accurately discriminated invasive melanoma (AUC = 0.933), melanoma in situ (AUC = 0.933) and dysplastic
(atypical) nevi (AUC = 0.951) from common nevi. Target prediction analysis of co-transcribed miRNAs showed a cooperative
regulation of key elements in the MAPK signaling pathway. Furthermore, we found extensive sequence variations (isomiRs)
and other non-coding small RNAs revealing a complex melanoma transcriptome. Deep-sequencing small RNAs directly from
clinically defined specimens provides a robust strategy to improve melanoma diagnostics.
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Introduction

The incidence and mortality of melanoma have continually

increased over the past decades in the US. It is estimated that

76,250 individuals (44,250 men and 32,000 women) will be

diagnosed with and 9,180 men and women will die of melanoma

of the skin in 2012 [1]. Increasing incidence is coupled by

diagnostic discrepancies [2] whereby a considerable number of

clinically suspicious pigmented tumors may show ambiguous

histopathology making the classification between benign (common

nevus) and malignant (melanoma) melanocytic tumors difficult and

the clinical behavior unpredictable [3]. Notwithstanding the

distinct sets of genetic alterations demonstrated in melanoma

[4], the epigenetic changes remains poorly understood. micro-

RNAs (miRNAs) are endogenous ,22 nucleotide non-coding

small RNAs, which can regulate gene expression in animals and

plants by complementary base-pairing to the mRNAs of target

genes to specify mRNA cleavage or translation repression [5].

Growing evidence has shown that particular miRNAs function

predominately as tumor suppressors, e.g. let-7 family [6,7] and

miR-15a and miR-16 [8]; and some as oncogenes, e.g. miR-

17,92 cluster [9,10].

The emerging understanding of deregulated expression pattern

of miRNAs in many human malignancies has prompted major

interest in their discovery and characterization. In fact, a growing

number of studies have shown select miRNAs deregulated in

melanoma using mostly cell lines [11,12,13,14,15,16,17] and a few

using specimens of melanoma metastases [18] or primary tumors

[19,20,21,22] based on microarray hybridization or real-time

quantitative RT-PCR (qRT-PCR). Although these methods

feature reliable clustering of melanomas by similar miRNA

expression profiles, they are limited to the detection of known

miRNA sequences previously identified by sequencing or homol-

ogy searches [23]. Alternative Sanger sequencing for miRNA

profiling in archived melanoma and nodal specimens [24], while
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useful in detecting known and novel sequences, were initially

complex and expensive due to laborious cloning techniques [25],

have now become practical due to the development of next-

generation sequencing (NGS).

NGS has proven to be an invaluable tool for the discovery of

thousands of miRNA genes because it 1) identifies rare or

abundant sequences of known and novel miRNAs; 2) demon-

strates extensive sequence variations (isomiRs) [26]; and 3)

combines discovery with quantitative expression analysis allowing

for digital gene expression profiling [27]. To date, there is no

characterization of melanoma miRNA transcriptome based on

NGS using a complete set of biopsies representing the steps in

melanomagenesis. The current melanoma progression model

hypothesizes that through genetic and epigenetic events common

nevus (CN) transforms to dysplastic nevus (DN) to melanoma in

situ (MIS, non-invasive melanoma, where the melanoma cells are

confined to the epidermis) or may become invasive to follow radial

and vertical growth phases, culminating in metastatic melanoma

[28].

In an effort to gain further insights into the role of miRNAs in

melanoma, we have applied the Illumina NGS platform to carry

out an in-depth, quantitative comparative analysis of miRNA

expression in a discovery cohort fully representing the stages of

melanoma progression, i.e. normal skin (NS), CN, thick invasive

(T4, AJCC stage [29]) primary cutaneous melanoma (PCM) and

metastatic melanomas to lymph node (MMLN, local disease) and

to skin (MMS, distant disease). Our results provide a comprehen-

sive view of the miRNA transcriptome in well-defined clinical

specimens according to the melanoma progression model showing

a repertoire of previously discovered miRNAs while introducing

additional known and putative novel candidates exhibiting

isomiRs. Furthermore, we reduce the complexity of miRNA

transcriptome by defining a set of top-40 miRNAs, which properly

classified normal from cancer, validated in a larger independent

cohort using qRT-PCR. Finally, we present novel miRNAs,

isomiRs and other small RNAs differentially expressed in

melanoma that are not yet described.

Materials and Methods

Study population and clinical samples
For NGS discovery, the specimens consisted of biopsies or

excisions of invasive PCM (n = 5), acrolentiginous melanoma

(ALM, n = 1), NS (n = 4), CN (n = 2), MMLN (n = 3), normal

lymph node (n = 1) and MMS (n = 3) of patients undergoing

curative treatment at Stanford University Medical Center (SUMC)

from 1997 onward (Table 1). Some of these specimens, with

available clinical follow-up, were matched with the corresponding

normal tissues. For qRT-PCR validation, the study cohorts

consisted of patients with NS (n = 19), CN (n = 16), DN (n = 19),

MIS (n = 17) and PCM (n = 30) undergoing curative treatment at

the Dermatology department at University of Connecticut Health

Center (UCHC) from 2003 onward (Table S2 in file S1). Two

board certified pathologists/deramtopathologists confirmed all

rendered diagnoses. For all cohorts, we collected detailed

clinicopathologic data on melanomas such as histologic subtype,

depth of invasion, ulceration, mitotic index, anatomic level of

invasion, tumor infiltrating lymphocytes and regression as

described previously [30].

Tumor and adjacent normal tissue were collected by surgical

resection or biopsy. The great majority of the tissues used for NGS

and all those used for qRT-PCR were prepared from depar-

affinized FFPE specimens; five tissues were snap-frozen in liquid

nitrogen within minutes of collection (Table S1 in file S1). The

histology of frozen tissue was examined by the attending

pathologist (SSD) for the presence of tumor before RNA

extraction. NS was defined as histologically unremarkable skin,

2 cm away from melanoma in excision specimens. The institu-

tional review boards of the Stanford University Medical Center

and the University of Connecticut Health Center approved this

protocol.

Sequencing
Total RNA was purified from xylene-extracted FFPE tissue

sections with TRIzol (Invitrogen, Carlsbad, CA). Using a

nucleotide-specific barcode design [31], we captured the small

RNAs by adapter ligation bearing barcode sequence, where

multiplex sequencing allowed loading 8 libraries in one lane

(Table S1 in file S1). To decrease the chance of sequencing

unwanted ribosomal RNAs, ‘poison primers’ were added to the

ligated products [24]. After reverse transcription, a cDNA library

of mixed barcodes was generated for Illumina genome analyzer

(IGA) sequencing. Small RNA libraries were constructed from

total RNA as previously described [24] with the following

modifications (Figure S1A in file S1): 4 nt barcode tags (Table S1

in file S1) were included in the 59 adapter oligonucleotide and the

libraries were briefly amplified with Illumina specific primers to

enable multiplexed sequencing on an Illumina Genome Analyzer

(IGA) II. The doubly ligated, purified RNA was reverse-

transcribed using 150 U of Superscript II (Invitrogen, Carlsbad,

CA) and RT primer, (59-ATTGATGGTGCCTAC AG-39). To

block the synthesis of contaminating ribosomal RNA, another

oligo, 59-/Bio/GGTG GTATGGCCGTAGAC/InvdT/- 39(poi-

son primer), was added simultaneously to interfere with the

synthesis of the most abundant ribosomal RNA degradation

fragment (rGrTrCrTrArCrGrGr CrCrArTrArCrCrArCrC). The

resultant cDNA pool was amplified by PCR with the following

primers: (forward) 59-GAT ACG GCG ACC ACC GAG ATC

TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC

T-39; and (reverse) 59- CAA GCA GAA GAC GGC ATA CGA

GCT CTT CCG ATC TAT TGA TGG TGC CTA CAG-39.

The ,125 bp PCR products were purified on a 4% agarose gel

followed by gel extraction using a QuiaQuick column (Qiagen,

Valencia, CA). To verify the insert-containing libraries prior to

NGS, some libraries were cloned for Sanger sequencing into the

pCR4-TOPO Cloning vector (Invitrogen, Carlsbad, CA). Follow-

ing the standard Illumina cluster generation protocol, four

uniquely indexed small RNA libraries were pooled, denatured,

and loaded on to a single lane of a flow cell for cluster

amplification. In the Cluster Station, repeated rounds of

polymerase amplification and subsequent denaturation generate

clusters of unique sequences on the surface of the flow cell that are

then transferred to the Genome Analyzer for sequencing by

synthesis. Four fluorescently labeled, reversible terminating

nucleotides are successively incorporated then imaged with a

high-resolution laser using TIRF (total internal reflection fluores-

cence) optics to eliminate background and reduce the signal-to-

noise ratio. All specimens and cells were multiplexed in 4 separate

lanes on the same flow cell; every lane contained a technical

replicate, CMELM.

miRDeep 2.0 analysis
RNA sequencing data in FASTQ form was input into the

microRNA-characterization software miRDeep 2.0 on a Linux

platform. The software used Bowtie to map the reads to the UCSC

reference genome GRCh37 (browser hg19), allowing for only one

mismatch and compiling stretches of hairpin sequences up to

140 nt as microRNA precursors. The precursors are then folded
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into two-dimensional structures using RNAfold from Vienna RNA

Package 1.8.5. miRDeep 2.0 evaluated structure and identified

miRNAs based on: minimal free energy, length of the 39 overhang,

existing homologues, distribution of passenger (star), guide

(mature), loop sequences, and frequency of the predominant read

within the sequencing data. A suite of binary scores was applied to

each candidate based on experimental nematode and planarian

data. The experimental data was used as a basis for generation of

Bayesian statistics on each of the relevant features, in short, the

natural log of the probability of a known microRNA in nematode

and planarian models having a given feature divided by the

probability of any background hairpin having that feature. For

each particular feature, a candidate in our data then acquired one

of two scores, the probability of being a microRNA based on

testing positive for the feature, or the probability of being a

microRNA based on testing negative for this feature. miRDeep 2.0

incorporates a file of known microRNAs from a curated library at

miRBase and bundles corresponding isomirs together, and it

generates a ranked list of novel microRNA candidates for follow-

on investigation. We checked our final miRNA list against the

latest miRBase (v19, released 08/2012) update leading to

adaptation of the new nomenclature (3p and 5P) and removal of

entities previously recognized as miRNAs and now as others. For

example, miR-1274a, miR-1274b, miR-1308, miR-886 and miR-

1280, now mostly recognized as tRNAs.

To determine the fold difference for a specific miRNA, we

normalized the miRNA sequence count by calculating its

percentage per the total sequence count for a given sample. The

normalized counts for samples in the same disease were averaged

and divided by the average normalized counts for CN or

CMELM, melanocytic controls.

Nearest shrunken centroids (NSC)
To classify diagnostic groups using miRNAs as classifiers, we

applied NSC statistical method [32]. miRNA sequence counts

determined by miRDeep 2.0 were listed by sample and

represented in a tab delimited file as input for an R script

(Prediction Analysis for Microarrays or the ‘PAMR’ module). This

statistical module analyzed the data based on significance of

miRNA expression in any single group. The sequence counts for

known miRNAs were normalized using the root-mean-square or

the ‘scale’ function in R 2.14.1. The results clustered diagnostic

categories and assigned a Z-score statistic that was designed

precisely for biomarker detection. The statistics involved the

standard error for a particular miRNA added to the standard error

for all miRNAs, a ‘positive constant,’ that stabilized the statistics

and ensured that miRNAs are not highly ranked simply due to low

counts (and thus their low standard error). Instead of settinga-

threshold (P = 0.05) a priori, we used machine learning to establish

’soft-threshold’ based on a posteriori information learned through

Table 1. Clinicopathologic characteristics for discovery cohort.

Sample
Age at diagnosis
(years) Gender Anatomic site

Breslow’s depth,
Clark’s level

Histological
subtype TNM Staging

Primary melanoma

ALM 61 Male Sole 3.0 mm, IV ALM T3bN1aMx

PCM1* 94 Female Scalp 11.5 mm, V NM T4bNxMx

PCM2# 52 Male Scalp 4.0 mm, IV SSM T3aN1Mx

PCM3 76 Male Back 2.8 mm, IV SSM T3aN0Mx

PCM4 63 Male Scalp 2.5 mm, IV SSM T3aN0Mx

PCM5 33 Male Back 2.0 mm, IV SSM T2aN1Mx

Normal skin

NS1* 94 Female Scalp

NS2# 52 Male Scalp

NS3
ˆ

76 Female Arm

NS4 40 Male Knee

CN1 10 Female Ear

CN2 19 Female Face

Metastatic melanoma to lymph node

MMLN1 24 Female Inguinal (PCM) 1.1 mm, III T1aN3Mx

MMLN2 NA NA NA NA TxN1Mx

MMLN3# 52 Male Lateral neck (PCM) 4.0 mm, IV T3aN1Mx

Normal lymph node

SLN1# 52 Male Lateral neck

Metastatic melanoma to skin

MMS1 85 Male Back (PCM) 9.5 mm, V T4aN3M1a

MMS2 NA NA NA NA TxNxM1a

MMS3
ˆ

76 Female Arm NA TxN0M1a

*, #,ˆdenote samples matched with normal control tissues. The abbreviations are: PCM, primary cutaneous melanoma (invasive); ALM, acrolentiginous melanoma; NM,
nodular melanoma; SSM, superficial spreading melanoma; NS, normal skin; CN, common nevus; PCM, primary cutaneous melanoma; MMLN, metastatic melanoma to
lymph node; MMS, metastatic melanoma to skin; SLN, sentinel lymph node; NA, not available.
doi:10.1371/journal.pone.0072699.t001
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Figure 1. Bioinformatics pipeline, heat map-clustering analysis on top-40 miRNAs differentially expressed in melanoma specimens
and cell lines. The flowchart describes the programs and steps used to process the raw small RNA-sequence data to miRNA signature and target
gene prediction (A). Clustering analysis of the top-40 miRNAs identified by NGS appropriately segregated primary cutaneous melanoma (PCM),
normal skin (NS), common nevus (CN), metastatic melanoma to lymph node (MMLN) and metastatic melanoma to skin (MMS); and cultured primary

Defining the Melanoma miRNA Transcriptome
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the data to best classify specimens based on the smallest number of

miRNAs.

The machine-learning method selected parts of the data

assigning it to a random ‘test’ bin. Random data were fit to

expression values in one of our actual clinically defined diagnostic

groups or ‘training sets’. In general, misclassification decreased as

more miRNAs were added to the classification process. Based on

what was learned through the data, we set an absolute value

threshold of 1.85 to our Z-scores. All scores below this absolute

value were rounded to 0 and discounted; thereby, we eliminated

noisiness and displayed only the most pertinent miRNAs

classifying diagnostic groups. A false discovery rate (FDR) was

determined by randomly permuting class assignment 100 times,

thereby controlling for multiple hypothesis testing. Clustering for

all samples was carried out through use of 2*(1-cc) where cc equals

a correlation between the cubed root of a value, and the cubed

root of a second value or the average of cube-rooted values

clustered in a branch by that time point.

Heat map and hierarchical clustering (Euclidian distance, single

linkage) were performed with Gene Cluster 3.0 and visualized with

Java Treeview. The highest possible correlation between samples

was 1 and the lowest is 0, resulting in a dendrogram that presented

the clustered samples on a scale of 0 to 2. Higher correlations

resulted in shorter distances or heights between samples when

branching events occur and tighter groupings.

Determining RNA biotypes
Sequences from UCSC annotation files wgRNA.txt (snoRNA)

and tRNAs.txt (tRNA) and Biomart [33] annotation files on

snoRNA, tRNAs, Mt-tRNA, rRNA, snRNA, scRNA, miRNA and

lincRNA were compiled into bowtie indexes. These indexes

provided us with a library of known RNA molecules and their sites

in reference genome GRCh37. Bowtie was used to align

sequencing data to the indexes with a norc (no reverse

compliment) parameter. Aligned reads that matched to the library

were deposited into bins based on RNA type. The quantity of each

bin was divided by the total count of aligned sequencing reads to

determine the percentage of each RNA type. Z-tests were applied

to lincRNA transcripts using SAM-Seq function of the Signifi-

cance Analysis of Microarrays (SAM) 4.0 software package [34].

Unlike the PAMR module, SAM was more sensitive to low

expression values, thus making it the software package of choice

for lincRNAs characterized by lower expression.

Cell lines
Dr. Stanley N. Cohen, Stanford school of medicine, CA, kindly

provided established cell lines A2058, A375P, C32, and A375SM,

as gifts [35]. We purchased WM983A (Coriell), WM278 (Coriell),

WM35 and WM1552C (Wistar institute, Philadelphia, PA). These

cells were cultured as previously described [35]. Three types of

primary epidermal melanocytesisolated from 3 individuals with

light, medium and dark skinwere purchased from ScienCell

(Carlsbad, CA) and cultured in melanocyte medium as specified by

ScienCell. Cells were incubated at 37uC in a 5% CO2 completely

humidified incubator.

RNA quantification and size
The yield and quality (260/280 O.D. ratios) of RNA were

measured by a spectrophotometer (Nanophotometer, Implen,

Germany). Small RNA size was measured using Agilent Small

RNA Kit with an Agilent 2100 Bioanalyzer (Agilent Technologies,

Waldbronn, Germany). The calculated range of captured small

RNAs for our library preparation was 144–150 bp; only libraries

passing the size criterion were sequenced.

TaqMan miRNA assay
The expression profile of mature miRNAs for let-7a, let-7b, let-

7c, let-7e, let-7f, let-7g and let-7i, miR-211, miR-27b, miR-26b,

miR-126, miR-30d, miR-365, miR-150, miR451a and miR451a.1

(custom ordered based on the sequence data) was measured in NS,

CN, PCM, MMS, MMLN, and low-passage number cell lines

using stem-loop primers for reverse transcription followed by

qRT-PCR (TaqMan MicroRNA Assays; Applied Biosystems,

Foster City, CA) in a 7500 fast Sequence Detection System

(Applied Biosystems). Cycle threshold (Ct) values for each miRNA

were normalized vs. small RNA RNU6 (DCt) and represented as

RQ = 22DCt. The expression levels of miRNAs were normalized

against U6 non-coding small nuclear RNA. If the U6 were not

amplified in a sample, the sample would get flagged and would be

excluded from the study. For each sample, 5 ng of total RNA were

used for reverse transcription and 1.33 ml of 15 ml reverse

transcription product was used for each qRT-PCR. All experi-

ments were carried out in triplicates with appropriate negative

control. To determine the fold RQ difference for a specific

miRNA among different disease groups, we averaged the RQs

from the same disease group divided by average RQ for CN or

CMELM.

Statistical methods
The qRT-PCR data were plotted and analyzed using statistical

analysis software SAS version 9.2. To compare miRNA abun-

dance between clinic groups, the data were first logarithmically

transformed to achieve normal distribution, which was verified by

parallel-notched box-plots. The parallel-notched box-plots not

only displayed the basic characteristics of data distribution,

including mean, median, IQR (Inter-Quartile Region) and outliers

etc., but also allowed for graphic comparisons of miRNA levels

between clinical groups. The notches, representing 95% confi-

dence intervals, did not overlap between two groups, which would

have significantly different miRNA levels. Statistical significance

was tested by comparing logarithmically transformed data among

clinic groups using one-way analysis of variance (ANOVA). When

the overall test of no group differences from the ANOVA was

statistically significant (a= 0.05), post hoc pairwise comparisons with

Tukey’s adjustment were performed to identify group pairs that

differed significantly in miRNA abundance (family level of

significance a= 0.05). Alternatively, without logarithmic transfor-

mation, Kruskal-Wallis test was performed for overall comparisons

among clinic groups (a= 0.05). Bonferroni procedure, based on

the ranks of the observations, was then used for multiple pairwise

comparisons (family level of significance a= 0.10). These methods

gave very consistent results. The diagnostic accuracy of each

miRNA’s abundance was assessed using ROC curves produced in

logistic regression models. The sensitivity and (1-Specificity) values

melanoma (CPM), cultured metastatic melanoma (CMM) and cultured melanocytes (CMEL) (B). The miRNA signature for melanoma specimens is
dramatically dissimilar to cell lines. A clustering analysis using 698 distinct mature known miRNAs appropriately segregated PCM from MMLN from
MMS (C) and correctly segregated two melanoma patients with biopsy-proven microscopic metastasis to sentinel lymph node (SLN) from two
melanoma patients without metastatic disease (D).
doi:10.1371/journal.pone.0072699.g001
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were plotted as ROC curves and AUC were calculated using SAS

macro codes %ROCPLOT (http://support.sas.com/kb/25/018.

html) with minor modification.

Common Pathway Analysis
We applied a combination of TargetScan, DNA intelligent

analysis (DIANA), Kyoto Encyclopedia of Genes and Genomes

(KEGG) and miRBase to identify gene targets of our top-40

miRNAs. These miRNAs were statistically significant with a,10%

FDR, and were differentially expressed within core diagnostic

groups i.e. CN, PCM, MMLN and MMS. Using DIANA mirPath

software [36], gene targets were interrogated for miR-144-3p,

miR-181b-5p, miR-320a, miR-320c, miR-320d and miR-451a

down-regulated in PCM vs. NS libraries; and for miR-203, miR-

204-5p (and its homologue, miR-211-5p), miR-205-5p, miR-23b-

3p, miR-26a-5p and miR-26b-5p down-regulated in PCM vs. CN

libraries. The results consisted of selective KEGG pathways,

number of genes, issuing statistical significances assigned to

selected pathways based on negative natural logged P-values.

Setting the threshold at ,0.00095 resulted in combined theoret-

ical gene targets, 514 for PCM vs. NS and 657 for PCM vs. CN

interrogation (Table S4 in file S1). Focused on a specific pathway

ID, individual KEGG pathway was accessed to pinpoint a putative

gene target.

Results

Sequencing and annotation of miRNAs
We used two sets of independent cohorts: one for miRNA

discovery by NGS and, the other for validation by qRT-PCR. For,

discovery, we size-selected (18–30 nt), captured, amplified and

sequenced 32 small RNA libraries using an Illumina (Solexa)

platform (Figure S1A in file S1). Clinical follow-up and melanoma

staging were documented according to the American Joint

Committee on Cancer (AJCC) (Table 1). The libraries were

prepared from 19 mostly formalin-fixed paraffin-embedded

(FFPE) specimens consisting of PCM (mean tumor thickness

= 4.6 mm), matched NS, CN, MMLN and MMS; 9 samples from

low-passage number cultured primary melanocytes (CMEL),

cultured primary melanoma cell lines (CPM) and cultured

metastatic melanoma cell lines (CMM); and 4 technical control

replicates of cultured melanocytes of medium skin color (CMELM)

in each flow-cell lane (Table S1 in file S1). An unsupervised

clustering showed that the miRNA expression levels were nearly

identical between the four controls (Figure S1B in file S1),

demonstrating reproducibility between lanes. We obtained a total

of 4,506,808 small RNA sequences (.17 nt.) with 4,178,297

(86%) sequences mapping to the human genome (hg19) with

perfect matches. The average library coverage was 167,467

sequences (range: 25,344–605,910) for individual libraries. The

sequenced population averaged 1,351,417 (27.8%) miRNA

sequences representing 698 distinct mature known miRNAs.

Sequence data is available on gene expression omnibus (GEO,

accession number GSE36236).

Tumor classification and metastatic prediction based on
miRNA profiling

To address the quality and stability of cloned small RNAs, we

applied strict size criterion using bioanalyzer results. To ensure

that the library contained small RNA inserts, only those with single

sharp peak (144–150 bp) were sequenced (Figure S2A in file S1);

the libraries measuring ,130 bp, failing the size criterion were

excluded and not sequenced. We compared the quality of small

RNA libraries prepared from 4 FFPE primary melanomas to 2

low-passage number primary melanoma cell lines (WM35 and

WM278). Both specimen types showed a single sharp peak in the

appropriate size range, indicating intact captured small RNAs.

Moreover, comparing the small RNA classes for fresh frozen

(PCM1) and FFPE (PCM3) melanomas, showed a highly

comparable miRNA content, indicating intact miRNAs in FFPE

libraries.

Using a series of tools, we processed the raw data showing

known miRNAs, predicted novel miRNAs and small RNA classes

(Figure 1A). The two main tools were miRDeep 2.0 [37] for

assigning miRNA identity; and nearest shrunken centroids (NSC)

[32] for statistical analysis. miRDeep 2.0 assigned raw sequences

to known miRNAs from miRBase, known miRNAs recognized by

miRBase not detected by miRDeep 2.0 and predicted novel

miRNAs, providing 1) lists and counts of miRNAs mapping to the

mature, the passenger and the loop sequences; 2) possible

secondary structures with predicted energy stability; and 3)

mapped positions and read counts showing isomiRs. The NSC

method classified specimens and cell lines by computing an

average miRNA expression vector for each class. These averages

were then shrunken towards the overall miRNA expression mean

(centroid) across the classes to avoid over-fitting the rank-ordered

classifiers that were made up of only a subset of the miRNAs.

After determining miRNA identity, we subjected sequence

counts from all libraries to the NSC method and cross-validation

(CV), which is a well-established method that repeatedly split

samples into training and test sets selecting the optimal number of

miRNAs as classifiers in other human cancers [38]. To assess the

accuracy of CV, we estimated the false discovery rate (FDR) based

on the number of classifiers (Figure S1C in file S1). Choosing the

top-40 miRNAs resulted in ,10% FDR providing a rank order for

miRNAs differentially expressed in all samples (Table 2). To

classify benign from malignant lesions, we performed an unsuper-

vised clustering on all the samples showing four major subgroups

with an almost-perfect separation between normal and cancer: 1)

PCM, CN and NS, 2) MMS and MMLN, 3) CPM and CMM and

4) CMEL (Figure S1D in file S1). For the most part, cases of PCM

clustered together separating them from those of NS and CN with

the exception of grouping NS1 with CN2, PCM3 with MMLN1-2

and PCM1 with MMLN3. Primary melanoma cell lines (WM35

and C32) were clustered together separate from metastatic cell

lines (A375P and A375SM) and melanocytes. Cultured melano-

cytes of light (CMELL), medium (CMELM) and dark (CMELD)

skin pigmentation were segregated from melanoma cell lines and

further segregated from each other according to the melanin

pigmentation (Figure S1D in file S1). All 4 technical controls

tightly clustered together.

To verify these results, we assigned miRNA libraries to specific

disease groups of NS, CN, PCM, MMLN, MMS, CMEL, CMM

and CPM and subjected them to another clustering analysis based

on the top-40 list (Table 2). These results classified the disease

groups appropriately and segregated PCM from CN, NS, MMS

and MMLN (Figure 1B). Similarly, melanoma cell lines – primary

melanoma and metastatic – were appropriately separated from

melanocytes. Surprisingly, the miRNA signature for melanoma

specimens was drastically different from that for melanoma cell

lines. In fact, only miR-211 expression was decreased in

melanoma specimens (compared to nevi) and cells (compared to

melanocytes). Comparing the top-40 list to the published literature

on melanoma miRNAs confirmed 23 (58%) previously reported by

platforms other than sequencing while introducing an additional

17 (42%) miRNAs (Table 2). Our previous Sanger sequencing

identified 7 of the current top-10 miRNAs: miR-205, miR-211,

miR-15b, miR-26a, miR-451a, miR-203 and miR-23b [24]. To
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examine miRNAs associated with metastatic behavior, we

subjected PCM, MMLN and MMS to a clustering analysis using

698 distinct mature known miRNAs revealing an almost-perfect

separation between primary and melanoma metastases to lymph

node and skin (Figure 1C). Using a similar approach with cases of

PCM with known sentinel lymph node status, clustering perfectly

segregated node-positive patients, those with biopsy-proven

microscopic nodal metastasis, from node-negative patients

(Figure 1D). Overall, our results showed that the top-40 known

miRNAs was sufficient to fairly classify benign from malignant

samples.

Comparison of miRNA profiling by NGS and qRT-PCR
We compared the two platforms, by using qRT-PCR to

measure the levels of miR-211, miR451a and miR451a.1 (most

abundant isomiR of miR451a), let-7i, miR-203 and miR-205 in

two independent cohorts: 1) the very same samples that were

sequenced (discovery) and 2) additional, independent specimens

(validation, n = 101) (Table S2 in file S1). In the discovery cohort,

we compared fold differences between NGS and qRT-PCR for

miR-211, let-7i and miR451a sample-by-sample (Figure S3 in file

S1). Both platforms showed a significant reduction of miR-211 in

melanomas compared to nevi, with NGS showing a higher

detection (Figure S2A in file S1). As expected from the heat map

results (Figure 1B), no significant changes were detected for let-7i

levels among the disease groups by either platform; however, NGS

levels of detection were higher than qRT-PCR (Figure S2B in file

S1). Both platforms showed a marked reduction of miR-451a

(Figure S2C in file S1) and miR-451a.1 (results not shown) levels

in PCM compared to NS. Although the overall trends for

expression levels were similar between the two platforms, NGS

showed a higher detection.

In the validation cohort, we expressed the qRT-PCR results as

box plots and analyzed them for statistical significance by Tukey

and non-parametric methods (Table S3 in file S1). Both methods

showed significantly lower miR-211 levels in DN, MIS and PCM

compared to CN; however, no significant difference in miR-211

levels was detected between MIS and PCM (Figure 2A). As

previously seen in the discovery cohort, let-7i levels were

comparable between NS, CN and PCM; however, let-7i levels

were significantly lower in DN compared to CN. The levels for

both miR-451a and miR-451a.1 were significantly lower in CN,

DN, MIS and PCM than in NS. Although miR-451a levels were

lower in MIS compared to CN, it did not reach a statistical

significance. The levels for miR-203 and miR-205 were lower in

PCM compared to CN, but it did not reach a statistical

significance (Table S3 in file S1). Given that the levels of miR-

211 were significantly lower in DN, MIS and PCM compared to

CN according to disease progression model, we sought if this

differential expression could reliably segregate nevi from primary

melanomas. Receiver operating characteristic (ROC) curve for

miR-211accurately discriminated PCM from CN (Figure 2B,

AUC = 0.933) and MIS from CN (AUC = 0.982). Moreover,

ROC curve for miR-211 accurately discriminated DN from CN

(Figure 2C, AUC = 0.951). The qRT-PCR findings showed 1)

overall similar miRNA levels tested in discovery and validation

cohorts; and 2) measuring miR-211 levels accurately classified

benign and malignant lesions.

Common pathway analysis
To predict the biologic function of our sequence results, we

chose to predict targets for co-transcribed miRNAs as seen by

clustering together on the y-axis of heat map (Figure 1B). miR-

144-3p, miR-181b-5p, miR-320a, miR-320c, miR-320d and miR-

451a were down-regulated in PCM vs. NS; and miR-203, miR-

211-5p (and its homologue miR-204-5p), miR-205-5p, miR-23b-

3p, miR-26a-5p and miR-26b-5p were down-regulated in PCM

vs. CN. We interrogated these two series of miRNAs for their gene

targets using a combination of TargetScan, DNA intelligent

analysis (DIANA), Kyoto Encyclopedia of Genes and Genomes

(KEGG) and miRBase. These analyses resulted in a rank-ordered

list of KEGG pathways, issuing statistical significance based on

Table 2. miRNAs discovered in melanoma by NGS compared
to other profiling studies.

Rank miRNA Other studies

1 hsa-miR-205-5p [21,48]

2 hsa-miR-211-5p [15,16,21,49]

3 hsa-miR-15b-5p [50]

4 hsa-miR-26a-5p [51]

5 hsa-miR-451a

6 hsa-miR-203 [21,52]

7 hsa-miR-23b-3p

8 hsa-miR-26b-5p [11]

9 hsa-miR-877-5p [43]

10 hsa-let-7i-5p [50]

11 hsa-miR-142-3p [17]

12 hsa-miR-30a-3p [53]

13 hsa-miR-320a [43]

14 hsa-miR-100-5p [50]

15 hsa-miR-126-5p [18]

16 hsa-miR-708

17 hsa-miR-584-5p

18 hsa-miR-21-5p [43,54,55]

19 hsa-miR-29b-3p [51]

20 hsa-miR-1268a

21 hsa-miR-99a-5p

22 hsa-miR-150-5p [18]

23 hsa-miR-146a-5p [19,56]

24 hsa-miR-222-3p [57,58]

25 hsa-miR-130b-3p

26 hsa-miR-126-3p [18]

27 hsa-miR-204-5p [15,53]

28 hsa-miR-320c

29 hsa-miR-200c-3p [21,59,60]

30 hsa-miR-320d

31 hsa-miR-144-3p

32 hsa-miR-335-5p

33 hsa-miR-29a-3p

34 hsa-miR-127-3p

35 hsa-miR-181b-5p

36 hsa-miR-185-5p [13,43]

37 hsa-miR-3180-3p

38 hsa-miR-195-5p [61]

39 hsa-miR-142-5p

40 hsa-miR-425-3p

doi:10.1371/journal.pone.0072699.t002
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negative natural logged P-values (Table S4 in file S1). Plotting the

predicted KEGG pathways according to down-regulated miRNAs

in melanoma vs. normal skin and melanoma vs. nevus showed

perturbation in remarkably similar gene pathways (Figure 3A and

B). Examining a specific KEGG pathway by down-regulation of

miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p,

miR-26a-5p and miR-26b-5p in melanoma highlighted the

mitogen-activated protein kinase (MAPK) signaling pathway.

Within this pathway, often more than one miRNA is predicted

to target FGF18, PDGFRA, PIK3R3, PTEN, AKT2 and

MAPK1, where the same gene could be potentially targeted by

several co-transcribed miRNAs (Figure 3C). For example, miR-

205, miR-23b, miR-26a and miR-26b converge on PDGFRA or

miR-211 and miR-204 converge on MAPK1, demonstrating a

combinatorial effect of miRNAs on the same target.

Novel miRNAs and isomiRs in Melanoma
Using miRDeep 2.0, we identified 429 unique sequences as

putative novel miRNAs in specimens based on the following

criteria: 1) lowest minimal free energy (MFE), 2) RNA fold forming

secondary structures and 3) no similar sequence matches found in

miRBase. Using the NSC statistical method and having met

Randfold criterion of existing within 5% of the lowest MFE values,

we ranked the top-15 putative novel miRNAs out of the 429

sequences. Precursor miRNA sequences with hairpin (50–80 nt)

were predicted based on the miRNA-sequence fragments aligning

to the 59 arm, the 39 arm and the loop sequences (Table S5 in file

S1). A BLAT search of hairpin sequences for the top-15 novel

miRNAs at the UCSC genome showed chromosomal loci and

predicted gene targets (Table S6 in file S1). Of these 15 novel

miRNAs, candidates 6, 7 and 10 showed dramatic differences in

fold expression when normalized to total miRNA count and

compared between disease groups with candidates 6 and 7

showing statistical significance (Figure 4A). Ensemble genome

browser revealed that candidate 6 was expressed as a part of

SETDB1 transcript. Both candidates 6 and 7 are antisense,

suggesting that they are not likely to be degraded fragments of

mRNAs. The mapped positions for candidate 6 sequences

demonstrated variations in the 59 (isomiR1) and 39 (isomiR3)

termini and nucleotide substitutions along the miRNA length

(isomiRs 1–3) (Figure 4B). To elucidate the extent of isomeric

differences in melanoma miRNAs, we examined the read counts

of isomiRs for miR-205, miR-211, miR-15b, miR-26a, miR-203,

let-7i, miR-142, miR-150, miR-146a and miR-451a (Table S7 in

file S1). Surprisingly, this analysis revealed that 6 of 10 most

abundant isomiRs were not recognized by miRBase (v18).

Frequency and classes of small RNAs in melanoma
We subjected libraries to a series of alignment searches to obtain

the frequency of non-coding small RNA classes using specific

databases for miRNA, large unspliced and spliced intergenic non-

coding RNA (lincRNA), miscellaneous RNA (processed, uncate-

gorized transcript), mitochondrial (Mt)-ribosomal RNA, Mt-

transfer RNA, ribosomal RNA, small cytoplasmic RNA, small

nucleolar RNA, small nuclear RNA and transfer RNA (Figure 5).

The three largest classes were derived from miRNA (18–70%),

ribosomal RNA (10–59%) and unspliced lincRNA (15–45%)

(Figure 5A). Comparing unspliced to spliced lincRNA demon-

strated an increase in the miRNA and decrease in the lincRNA

(Figure 5B), suggesting that some miRNAs might be spliced

products of lincRNAs. Given that lincRNAs can be thousands of

bases long, it is surprising that our small RNA sequences (18–

30 nt) mapped to lincRNA files. To further investigate this

unexpected finding, we compared lincRNAs in PCM to CN

libraries looking for statistically significantly altered sequences.

One such sequence (exons at chr17: 46,694,460–46,696,607 and

17: 46,699,848–46,699,890) was reduced 87% in PCM compared

to CN libraries. Ensembl genome browser localized this sequence

to the (-) strand of a 2630 bp non-coding RNA gene (RP11-

35H14.16), now a recognized lincRNA (UCSC genome browser

ID AK025239), which corresponded to HOXB8-B9 gene, this

locus includes the coding sequence for miR-196a, targeting HOX-

C8 mRNA, also down-regulated in melanoma compared to

human melanocytes [39]. Another sequence (chr1: 209,605,549–

209,605,890) was reduced 73% in PCM libraries compared to CN

libraries. This locus (RP11-372M18.2) corresponded to a now

recognized lincRNA (UCSC genome browser AK091113) con-

taining miR-205, corroborating with our top ranking miRNA

(Table 2).

Discussion

The two most difficult challenges in managing melanoma

patients are lack of practical, robust molecular classification

schema and predicting an accurate clinical outcome. Our NGS

results show that using miRNAs as classifiers directly from

archived biopsies could differentiate benign from malignant, as

demonstrated by classifying diverse specimens and cell lines into

proper diagnostic groups. Down-regulation of miR-144-3p, miR-

181b-5p, miR-320a, miR-320c, miR-320d and miR-451a sepa-

rated melanoma from normal skin; and down-regulation of miR-

203, miR-205, miR-211 (and its homologue, miR-204), miR-23b,

miR-26a and miR-26 distinguished melanoma from nevus. The

ROC curves for miR-211 discriminated common nevus from

melanoma and common nevus from dysplastic nevus in large

validation cohort with high specificity and sensitivity, showing the

diagnostic utility of this miRNA. Rediscovering miR-211 in our

current results served as an important positive control for our NGS

results given its anti-invasive role in melanoma cell lines [16] and

its intronic location within [15] a known melanoma tumor

suppressor gene, melastatin-1 [40]. Moreover, specific miRNA

signature distinguished primary melanomas from metastatic

lesions. For example, higher levels of miR-103/107 cluster in

primary melanomas were associated with the clinical history of

early occult metastasis to sentinel lymph node; similar to a study in

breast cancer demonstrating that high level of this miRNA cluster

was associated with metastasis and poor outcome [41]. In addition,

we found that miR-205 was significantly decreased in primary

melanomas and metastases to lymph node compared to nevi. A

recent large study of primary melanomas (n = 206) confirmed this

Figure 2. Verification of miRNA expression in validation cohort by qRT-PCR. Relative expression levels of miR-211, let-7i, miR-451a, miR-
451a.1, miR-203 and miR-205 (not shown), identified by NGS, were compared between independent patient specimens of normal skin (NS), common
nevus (CN), melanoma in situ (MIS) and primary cutaneous melanoma (PCM) (A). Receiver operating characteristic (ROC) curve for miR-211accurately
discriminated between diagnostic disease groups, i.e. PCM from CN (AUC = 0.933) (B). The insets show representative PCM and CN used in the study.
ROC curve for miR-211accurately discriminated between dysplastic nevus (DN) and CN (AUC = 0.951) (C). The qRT-PCR results were expressed as RQ
and shown as log values in boxplots: box starts from 1st quartile and ends at 3rd quartile; cross represents mean; line represents median; notch shows
median confidence interval; the ends of whiskers represent the minimum and maximum of the data that are not outliers; and black dots are outliers.
doi:10.1371/journal.pone.0072699.g002
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down-regulation and showed that it was significantly associated

with worse clinical outcome [42].

Although array-based profiling experiments have identified 23

miRNAs deregulated in melanoma thus far, they lack vigor in

comprehensively defining the miRNA transcriptome. To date,

only one study has deep-sequenced melanoma cell lines [43] and

no published study on melanoma biopsies exits. Using melanoma

cell lines and clinically defined archived specimens, current study

provides an in-depth view of miRNA transcriptome where the

previously discovered 23 miRNAs are confirmed while another 17

known sequences are introduced. By combining discovery with

digital expression profiling, NGS identified a novel miRNA

Figure 3. Pathway analysis on deregulated miRNAs in melanoma showed possible combinatorial effects on predicted gene
pathways. Interrogating the gene targets for down-regulated miRNAs in PCM vs. NS (A) and in PCM vs. CN (B) showed remarkable similarities in the
pathways perturbed. The cutoff P-value was set at ,0.00095. Common KEGG pathways shared between the two analyses are shown in the same
color. Mitogen-activated protein kinase (MAPK) signaling pathway showed that several down-regulated miRNAs could converge on the same
putative gene targets (C). The predicted miRNA targets are highlighted in yellow.
doi:10.1371/journal.pone.0072699.g003
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(candidate 6), which is expressed as a part of SETDB1 transcript, a

histone methyltransferase, amplified in melanoma [44] and a

candidate gene for melanoma susceptibility [45]. Our NGS results

provide a unique look into the isomeric variations of miRNAs

deregulated in melanoma specimens and their potential clinical

consequence. These so-called isomiRs represent variations of

sequences in the 59 and 39 termini and nucleotide substitutions

along the miRNA length. Microarray-based screening strategies

neglect the isomeric differences broadly found in miRNA

sequences. For example, we noted that the most abundant read

counts of isomiRs for miR-205, miR-211, miR-15b, miR-26a,

miR-203, let-7i, miR-142, miR-150, miR-146a and miR-451a, 6/

10 top miRNAs deregulated in the specimens, were not

represented as the abundant forms in miRBase (v18). Given that

most microarrays and commercially available qRT-PCR assays

rely on miRBase sequence data, lacking isomeric information

could negatively impact discovery of the correct isomiR. This

finding may explain the discrepancies between NGS and qRT-

PCR platforms in quantitative measurement of a given miRNA

levels.

Our previous and current findings demonstrate that miRNAs

are stable in FFPE melanoma biopsies and amenable to digital

profiling by sequencing, based on the following: 1) the bioanalyzer

results showed the same single peak for FFPE melanomas and

melanoma lines, the freshest source of total RNA; 2) the miRNA

content of frozen melanoma was nearly identical to that of FFPE

melanoma; 3) low abundant miRNAs, i.e. 2 copies of miR-203

could be detected by sequencing; 4) the levels of U6 snRNA and

miR-211, miR-451a, let-7i, miR-203 and miR-205 were readily

amplified and measured using qRT-PCR in 101 archived

specimens and 5) having obtained 1,351,417 sequences represent-

ing 698 distinct mature known miRNAs. These findings in

conjunction with other recent studies [46,47] establish that

miRNA deep sequencing on FFPE cancer tissues is feasible and

RNA degradation to the degree observed dose not affect miRNA

profiling.

The finding of significant divergence in miRNA-signature

between melanoma specimens and low-passage number cell lines

further highlight the inherent epigenetic (and genetic) differences

between human malignancies and their cultured counterparts,

underscoring the use of tumor biopsies directly as the starting

material for miRNA discovery in cancer. While cell lines are

invaluable for characterizing the cell function of a miRNA or

identification of its target(s), they are not ideal starting material for

profiling experiments. Generally, most studies have profiled

miRNAs from established melanoma cell lines compared to

Figure 4. Predicted structures of novel miRNAs, fold differences and isomiR distribution. The putative structures of 3 novel miRNA
candidates and their fold differences were compared between disease groups: normal skin (NS), common nevus (CN), primary cutaneous melanoma
(PCM), and metastatic melanoma to lymph node (MMLN) and to skin (MMS) (A). The fold difference expression of candidate-6 was significantly higher
in MMS compared to PCM (B). Isomeric differences in candidate-6 sequence were compared between PCM and specimens (C).
doi:10.1371/journal.pone.0072699.g004
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cultured melanocytes by microarray platforms. Using cell models,

instead of tumor biopsies, may represent altered cellular and

molecular properties as a result of propagation and growth on

plastic, making the miRNA results clinically irrelevant. Moreover,

a cell line is typically isolated from a metastatic (or primary) lesion

in a single patient, not allowing for high throughput profiling of

hundreds of tumor biopsies. NGS-based miRNA profiling directly

from tumor biopsies is not only disease-specific but also highly

informative as microarray platforms are limited to only a few,

abundant miRNAs spotted on the array characterized in other

Figure 5. Frequency of small RNA classes in melanoma specimens and cell lines. The stacked bar charts represent an overview of the small
RNA abundance (shown in percentages) in all libraries. miRNA, ribosomal RNA and unspliced lincRNA subclasses represented the largest subclasses
among the small RNAs. The overall percentage of miRNAs showed an increase when comparing unspliced (A) to spliced lincRNA (B) bar charts.
doi:10.1371/journal.pone.0072699.g005
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cancers. The retained stability of miRNAs in clinical material

coupled with NGS platforms could provide a significant advantage

to define biomarkers to improve melanoma diagnostics and

prognostication.

Accession number
The IGA sequence data are available in gene expression

omnibus (GEO) database (www. Ncbi.nlm.nig.gov/geo/) with

accession number GSE36236.

Supporting Information

File S1 Contains: Figure S1. Flow chart for small RNA library

construction, sequencing controls, false discovery rate (FDR) and

clustering of melanoma specimens and cell lines. Flow chart shows

small RNA capturing, amplification and multiplex sequencing (A).

Unsupervised clustering of four technical replicates – cultured

primary melanocytes from an individual with medium skin color

(CMELM) demonstrated a nearly identical miRNA expression

pattern between each control (B). Choosing the top-40 miRNAs as

classifiers resulted in ,10% FDR (C). Unsupervised clustering

segregated the primary cutaneous melanoma (PCM) from normal

skin (NS), common nevus (CN) and metastatic melanoma to skin

(MMS) and lymph node (MMLN) hierarchical clustering of the

samples using complete linkage and correlation-based distance (D).

Moreover, cultured primary melanoma cell lines (WM35 and C32)

clustered together and separated from metastatic cell lines (A375p

and A375SM) andmelanocytes. Cultured melanocytes of light

(CMELL), medium (CMELM) and dark (CMELD) skin color were

segregated according to the melanin content. Figure S2. Com-

parison of the quality of small RNA library between FFPE primary

cutaneous melanomas and primary melanoma cell lines. Both the

electrophoresis summary and peak analysis show small RNA

library constructed using archived FFPE melanomas (A), s130–

s133, and using cell lines (B), WM 35 (EF 35) and WM278 (EF

278). Both FFPE specimens and cell lines showed a single sharp

peak in the excepted range 144–150 bp, indicating intact captured

small RNAs. Figure S3. Comparison of miRNA expression

between NGS and qRT-PCR in discovery cohort. The expression

levels of miR-211 (A), let-7i (B) and miR451a (C) were compared

between disease groups: normal skin (NS), common nevus (CN),

primary cutaneous melanoma (PCM), and metastatic melanoma

to lymph node (MMLN) and to skin (MMS). The fold difference

by NGS for every miRNA in a given sample was normalized per

total miRNA sequence counts for that sample. The fold difference

by qRT-PCR was expressed as RQ values for every specimen.

Table S1. Illumina (Solexa) flow-cell sample description and

barcode sequence used in NGS. Table S2. Clinicopathologic

characteristics for validation cohort. Table S3. Pairwise statistical

comparisons of miRNA levels to diagnostic groups by Tukey and

non-parametric methods. Table S4. Predicted gene pathways and

gene targets perturbed by deregulated miRNAs in melanoma.

Table S5. Novel miRNA predicted folding, processed and

compiled hairpin sequences. Table S6. Novel miRNA chromo-

somal loci and putative target genes. Table S7. Examples of

differences in isomeric read counts of deregulated miRNAs in all

specimens combined.
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