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Abstract

We describe a novel bioinformatic and translational pathology approach, gene Signature Finder Algorithm (gSFA) to
identify biomarkers associated with Colorectal Cancer (CRC) survival. Here a robust set of CRC markers is selected
by an ensemble method. By using a dataset of 232 gene expression profiles, gSFA discovers 16 highly significant
small gene signatures. Analysis of dichotomies generated by the signatures results in a set of 133 samples stably
classified in good prognosis group and 56 samples in poor prognosis group, whereas 43 remain unreliably classified.
AKAP12, DCBLD2, NT5E and SPON1 are particularly represented in the signatures and selected for validation in
vivo on two independent patients cohorts comprising 140 tumor tissues and 60 matched normal tissues. Their
expression and regulatory programs are investigated in vitro. We show that the coupled expression of NT5E and
DCBLD2 robustly stratifies our patients in two groups (one of which with 100% survival at five years). We show that
NT5E is a target of the TNF-α signaling in vitro; the tumor suppressor PPARγ acts as a novel NT5E antagonist that
positively and concomitantly regulates DCBLD2 in a cancer cell context-dependent manner.

Citation: Pagnotta SM, Laudanna C, Pancione M, Sabatino L, Votino C, et al. (2013) Ensemble of Gene Signatures Identifies Novel Biomarkers in
Colorectal Cancer Activated through PPARγ and TNFα Signaling. PLoS ONE 8(8): e72638. doi:10.1371/journal.pone.0072638

Editor: Anthony W.I. Lo, The Chinese University of Hong Kong, Hong Kong

Received April 18, 2013; Accepted July 11, 2013; Published August 19, 2013

Copyright: © 2013 Pagnotta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Ministero dell’Università e della Ricerca under grant (PRIN2008-20085CH22F) and by Associazione italiana per la
lotta ai linfomi e leucemie. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: michele.ceccarelli@unisannio.it (MC); vittorio.colantuoni@unisannio.it (VC)

☯ These authors contributed equally to this work.

Introduction

Colorectal Cancer (CRC) is one of the most common
malignancies worldwide and a prevalent cause of morbidity and
mortality. CRC survival is closely related to the clinical and
pathological stage of the disease at diagnosis; over one third of
CRC patients die within five years from the initial diagnosis and
most of fatal outcomes result from liver metastases [1].

Despite the recent introduction of more effective therapeutic
agents, there are only few validated prognostic biomarkers to
assess the aggressiveness of the disease and the likelihood of
recurrence or death after surgery. Recent studies propose
small gene signatures as hallmarks of tumor stage [1,2]. Up to
date integrative studies discovered amplifications of ERBB2
and IGF2 and genes significantly mutated in CRC such as
APC, TP53, SMAD4, PIK3CA and KRAS as potential
therapeutic targets [3]. Thus, the identification of accurate

predictive and prognostic markers combined with the growing
arsenal of therapeutic agents will provide more effective
treatments related to the patient’s molecular profile minimizing
life-threatening toxicities [4].

We developed a novel computational approach, gene
Signature Finder Algorithm (gSFA) to generate several small
gene sets which stratify the patients in terms of survival. Our
strategy makes use of the availability of large-scale gene
expression datasets to select candidates that can be then
validated in independent libraries of tissues. We approached
the problem of extracting suitable features from global gene
expression that best correlate with the clinical information to
create prognostic signatures. Most of the current procedures
are based on expert knowledge to select, among thousands of
genes, molecular markers that can be associated with
prognosis [5]. Recently, novel methods, grounded on the data
mining, machine learning [6] and statistical regression [7] for
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“Signature learning'' have been proposed. This is an interesting
topic in Computational Biology and can be modeled as a
problem of optimal feature selection [8]. Here, we adopted as
optimality criterion the significance of the log-rank test between
the survival curves of the groups induced by the selected
features and used a novel procedure that integrates several
signatures generated by a basic greedy algorithm. Signature
genes are then ranked on the basis of some score metrics that
measure the contribution of the gene to the signatures it
belongs.

Starting from a public dataset of two hundred and thirty-two
CRC gene expression profiles, our algorithm selected, among
others, survival-related biomarkers such as AKAP12, DCBLD2,
NT5E, and novel CRC-specific markers such as SPON1. We
screened the candidate genes on two independent cohorts of
140 patients with primary sporadic CRC by using
immunohistochemistry on Tissue MicroArrays (TMAs). The
variations in gene expression were subsequently tested in an in
vitro cell system that confirmed the in vivo data. Collectively,
our data provide a new method to identify novel and robust
biomarkers as a valuable step towards a better prognostic
stratification and management of patients.

Material and Methods

Microarray Datasets
We apply gSFA (described below) to public datasets to

identify a set of biomarkers. The data taken into account are
those from the collections reported in [9] and available as
GSE17536 and GSE17537 dataset in the Gene Expression
Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo). Both datasets
are gene expression profiling obtained by using the Affymetrix
GeneChip Human Genome U133 Plus 2.0 Array. GSE17536
counts 177 samples on 54613 gene-probes, while GSE17537
has 55 samples on the same probes. The 232 raw cell files
were downloaded from both collections, then background
correction, quantile normalization and summarization were
applied.

Tumor Samples
We analyzed CRC samples from two independent patients’

cohorts comprising a test series and a validation series (I and
II), respectively. Cohort I comprises ninety-eight CRC cases
and 60 paired apparently normal mucosa removed during the
same surgery. This dataset includes both paraffin embedded
and liquid nitrogen frozen specimens, as reported [10,11].
Cohort II consists of 42 cases of sporadic CRC collected at the
Department of Pathology and Oncology, Legnago Hospital
Verona, Italy during the period 2005-2007. Tumors were
classified and graded according to the criteria of the TNM and
tumor stages I-IV classification systems; the mean age of
patients was 71.2±18.21. None of the patients had a familial
history of intestinal dysfunction or CRC, had received
chemotherapy or radiation prior to resection nor had taken non-
steroidal anti-inflammatory drugs on a regular basis.
Conventional post-operative treatments were provided to all
patients, depending upon the severity of the disease. Overall
length of survival was calculated starting from the first surgery.

Patients were followed up for a median of 55 months or until
death.

Immunohistochemical analysis and evaluation of
staining

For immunohistochemical analysis, tissue sections were
deparaffinized, hydrated in graded alcohol, and microwave
treated for 20 min at 750 W. Heat-induced epitope retrieval was
performed by heating the TMA slides immersed in retrieval
buffer citrate (pH 6.0). The sections were incubated with 3%
hydrogen peroxide for 20 minutes at room temperature and
subsequently with the specific antibodies: AKAP12 (dilution
1:500; WH0009590M1, mouse monoclonal, Sigma-Aldrich, St.
Louis, MO), Spondin1 (dilution 1:250; AB40797; rabbit
polyclonal, Abcam, Cambridge, UK) ); NT5E (dilution 1:50;
AB115289; rabbit polyclonal, Abcam, Cambridge, UK); and
DCBLD2 (dilution 1:100; AB115451; rabbit polyclonal, Abcam,
Cambridge, UK) all antibodies were incubated overnight at 4°C.
Secondary antibodies, followed by streptavidin-horseradish
system were incubated for 30 minutes each, by using
streptavidin-biotin peroxidase staining kit (LSAB+System- HRP;
Dako Cytomation, Glostrup, Denmark). Immunoreactivity was
revealed by incubation in 3,3-diaminobenzidine (DAB)
substrate for 5 minutes. Subsequently, the sections were
counterstained with hematoxylin, de-hydrated, and cover-
slipped. Primary antibodies were omitted in negative controls.

A semiquantitative approach was used to evaluate
immunoreactivity taking into account the number of positive
cells and staining distribution of the staining in subcellular
compartment (cytosolic and/or membrane). For each sample,
the entire piece of micro tissue was examined through light
microscopy at 20x magnification. The percentage of cancer
cells, identified by immunoreactivity for each marker, was
estimated for all samples in the TMA. Representative areas (5
high power field) containing the highest proportion of cancer
cells were used for counting the tumor cells per section. The
fraction (percentage of immunoreactive tumor cells, in triplicate
samples) expressed as the number of Positive Cells for Fields
(PCFs), was then calculated.

Ethics Statement
This study was carried out according to the principles of the

Declaration of Helsinki and approved by the Institutional
Review Board of “FatebeneFratelli” Hospital in Benevento and
Legnago Hospital, Verona, Italy. All patients provided written
informed consent for the collection of samples and subsequent
analysis.

Statistical analysis: gene Signature Finder Algorithm
(gSFA)

Our gene selection procedure employs an efficient wrapper
method [8] based on unsupervised clustering, with a
perturbation scheme generating several gene-sets with
different initial conditions to start gene selection. The initial
conditions correspond to seed genes that exhibit some
properties such as being a good initial hypothesis. The
resulting algorithm is defined geneSignatureFinder (gSFA)
implemented in an R-package and available on CRAN (http://
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cran.r-project.org/web/packages/geneSignatureFinder/
index.html) in an open source for download. gSFA, that is a
generalization of the modified Steepest Descent proposed by
Boutros et al. [6], consists of four main steps (Figure 1):

• Step 1: Seeds Finder
The first step of our algorithm is aimed at selecting a set of

genes that can be a reliable starting seed to expand the
signature. We used a set of genes according to two main
conditions: (a) a bimodal distribution of the expression
levels, (b) ability to separate the dataset in two groups on
the basis of the survival analysis test. In particular, for each
gene i considers the sequence gi={xij, i=1…, M}, where xij is
the expression level of gene i in the sample j. The Bayesian
Information Criterion (BIC) [12] is then used to check the
bimodality hypothesis for the sequence gi. The sequence gi

is clustered in two subsets S1 and S2 by using a k-median
algorithm (k = 2) and the distance between the survival

curves of the samples in S1 and S2 is then computed. Seed
genes are those manifesting bimodality and separation
between the curves under a chosen significance threshold
(in all our experiments 0.05).

• Step 2: Signature propagation
Given a set of K seed genes selected as the previous

step, we expanded a a small gene signature starting from
each seed gene. A greedy strategy is adopted by selecting
as next signature gene the gene maximizing the increase of
the distance between the survival curves of the two sets S1

and S2 obtained by clustering the two-dimensional dataset
(containing of the seed gene and the next candidate
signature gene). The algorithm continue adding genes to
each signature in this way until no further improvement of
the distance between survival curves is obtained.

• Step 3: Signature analysis and pruning
An importance index is computed for each gene of the K

signatures, it is a measure of how much a single gene

Figure 1.  Outline of the gSFA procedure.  The gene Signature Finder Algorithm consists of 4 separate steps: (1) find candidate
seed genes; (2) generate a signature starting from each seed gene; (3) prune the signatures by statistical inference; (4) integrate
signatures by gene ranking.
doi: 10.1371/journal.pone.0072638.g001
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contributes to improve the distance between the survival
curves with respect to the distance based on all genes in a
signature. It is defined as 1 minus the ratio of the distances
of the survival curves obtained when the selected gene is
removed from the signature (details in the accompanying file
Supplementary gSFA procedure). Then each signature is
pruned by the genes that do not significantly contribute to
the separation of the dichotomy generated by the signature.

• Step 4: Gene Ranking
From the ensemble of gene in the K signatures, we can

obtain various scores to select candidate genes that are
potentially associated with the prognostic groups. We score
the genes on the basis of the number of signatures in which
they occur and their average importance index.

The accompanying Materials & Methods S1 (Supplementary
gSFA procedure) contains all the details of the algorithm and
the commands to replicate the whole analysis with R using the
gSFA package.

Results

gene Signature Finder Algorithm (gSFA) reveals many
signatures associated with cell adhesion and
extracellular matrix organization

We applied the gSFA to a dataset of two hundred and thirty-
two CRC samples and identified 16 seed-genes that show a
significant (p < 0.05 after correction) univariate separation of
the survival curves between good and poor prognosis groups,
and are bi-modal at the same time (about 1/3 of the probes
show bimodality). From each of the seed-genes we obtained
the signatures that are listed in Table 1; the corresponding
survival curves are illustrated in Figure S1. In most cases, the
p-value is not computable given that the t-value is beyond the
machine precision. Although the selected gene subsets can be
different, the survival curves often appear similar (Figure S1),
so we asked the difference between the separation induced by

each signature. We computed the distance between clustering
obtained by each of the 16 signatures and get the dendrogram
reported in Figure 2a: we observe that different gene signature
can eventually generate similar dichotomies. This dendrogram
allows to obtain a robust classification of the samples in two
groups according to the number of times a given sample falls in
one of the groups. In particular, the stable good prognosis
group comprises samples that in at least 80% of dichotomies
fall in the good prognosis group, analogously for the stable
poor prognosis group. Thus, 133 and 56 samples were
classified in the stable good or poor prognosis group,
respectively, whereas the 43 remained unreliably classified and
defined uncertain samples. The corresponding survival curves
are reported in Figure 2b, log-rank test between the three
curves gives a p-value < 10-16. 1609 differentially expressed
genes (fold change 1.5 and corrected p-value < 0.05) between
the two stable prognostic groups generated the clustering
heatmap of Figure 2c. The samples were divided in two main
clusters: the first comprised 113 out of 133 (85%) of the stably
classified as good prognosis group; the second 55 out of 56
(98%) of the poor prognosis group. The corresponding survival
curves are reported in Figure 2d, the log-rank test between the
two curves gives p = 6.6·10-6. The silhouette of the cluster
separation is also reported in the accompanying file
Supplementary gSFA procedure.

To elucidate the biological processes and functions
associated with the these two clusters, we identified 1394
differentially expressed probesets corresponding to 1024
different genes (DEGs), 87% of which are contained in the list
of DEGs between the stable prognostic groups. The DEGs list
enriched several Gene Ontology (GO) categories. Our gSFA
procedure selected, as related to the poor prognosis group, a
set of samples with mesenchymal features associated with by
genes involved in proliferation and cell adhesion. In particular,
GO analysis of genes up-regulated in the poor group showed
that Cell Adhesion was enriched with 123 DEGs (p < 10-28),
Extracellular Matrix Organization with 34 genes (p < 10-15),

Table 1. Signatures developed from 16 seed-genes.

Seed Gene t-value log(p-value) Signature
PCSK5 (205560_at) 76.572 <-16 PCSK5, AKAP12, NPR3, AGPAT5, GMFB, C6orf141, 1569202_x_at, KCNH8
FST (226847_at) 75.757 <-16 FST, AKAP12, ULBP2, SLC25A43, EI24, 1563467_at, CLDN8
POSTN (214981_at) 74.023 <-16 POSTN, AKAP12, AGPAT5, ATL3, SLC44A2
SUSD5 (214954_at) 71.842 <-16 AKAP12, 241867_at, ADAMTS5, APLP2, PITPNC1, 1556983_a_at
KIAA1462 (231841_s_at) 67.624 -15.654 KIAA1462, DCBLD2, ADIPOQ, FAM217B, C17orf48
DCBLD2 (230175_s_at) 66.71 -15.477 DCBLD2, AKAP12, GUSBP11, CDR2L, MGC16703, METTL4
NPR3 (219054_at) 66.457 -15.477 NPR3, DZIP1, 243820_at, 238109_at, 236795_at, DNAJC4, FOXA1, EMID2
AKAP12 (227530_at) 65.522 -15.256 AKAP12, ISM1, C11orf9, 244026_at, ARHGAP9, NOL3, AP2A1
PAPPA (201981_at) 65.024 -15.109 PAPPA, NT5E, DUSP7, 230711_at, CD96, ABI2
ETV1 (221911_at) 61.631 -14.386 ETV1, LONRF3, NGEF, RAB2A, U2AF2, CPO
KIAA1462 (213316_at) 60.733 -14.184 KIAA1462, AKAP12, UGGT2, 231989_s_at
SRGAP2P1 (1568955_at) 58.417 -13.674 SRGAP2P1, AKAP12, SNX16, NT5E
LOC100132891 (228438_at) 58.037 -13.589 LOC100132891, DCBLD2, ADIPOQ, SLFN5
DCBLD2 (224911_s_at) 50.106 -11.837 DCBLD2, ADCY7, EHD2
CTGF (209101_at) 46.099 -10.949 CTGF, FERMT1, AKAP12, CDK1
EFHA2 (238458_at) 42.166 -10.076 EFHA2, ST18, ACACB
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Response to Wounding with 95 DEGs (p < 10-22), Immune
response with 91 genes (p < 10-14). Moreover, these DEGs
enriched the KEGG Pathways ECM-receptor interaction (p <
10-10) and Focal adhesion (p < 10-8). When loaded in the
Ingenuity Pathway Analysis, our list of DEGs produced a set of
enriched categories whose p-value is reported in Figure S2a. In
particular, other categories related to tissue development and
cancer were significantly enriched; specifically those related to
colorectal cancer were enriched at p < 10-14.

In order to understand the key regulators involved in the
separation in the two prognostic groups, an enrichment
analysis of upstream regulators was performed. Interestingly,
transforming growth factor beta 1 (TGFβ1) was up-regulated in
the poor prognosis cluster [13]. Moreover, the network of the
20 regulators depicted in Figure S2b could explain the behavior
of 177 of the selected genes. The top regulators of the network

also comprised other soluble growth factors such as members
of the fibroblast growth factor (FGF) and tumor necrosis factor
(TNF) families. The selected genes are involved mainly in the
TGFβ1 signaling, as 109 molecules (p < 10-51) are its annotated
targets in the IPA knowledge base. Receptor mediated
signaling in response to these ligands triggers the activation of
intracellular effector molecules, such as, the small GTPase
family RAS, members of the SRC tyrosine-kinase family or
transcription factors including, SMAD, RUNX2, STAT3, NFκB,
p53 and β-catenin. These effectors have a central role in CRC
progression and metastatic invasion promoting the formation of
a tumor-associated microenvironment.

Figure 2.  Analysis of the signatures generated by gSFA.  a. Dendrogram of the dichotomies generated by each of the 16 gSFA
signatures (Table 1 and Figure S1); b. Survival plot of the 133 samples stably classified in the good prognosis group, 56 samples in
the poor prognosis group and 43 uncertain samples (log-rank test gives p < 10--16); c. heatmap of DEGs between the two stable
groups, Red indicates overexpressed genes (expression levels over the median) and green indicates underexpressed genes
(expression levels under the median); d. survival curves samples in the two clusters of the heatmap as in c. (p = 6.6 ·10-6).
doi: 10.1371/journal.pone.0072638.g002
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TMA validation of the biomarkers identified by the
ensemble signatures

To identify robust biomarkers associated with CRC prognosis
that can be validated in our two libraries of tissues, we used the
ranking reported in the third step of gSFA and the resulting
genes are shown in Table S1, where AKAP12, DCBLD2, NT5E
were the most common genes selected by the algorithm in the
various signatures. We also validated SPON1 as,
unexpectedly, it was among the most differentially expressed
genes of the two groups; however, its role in CRC has not been
addressed yet. We screened by immunohistochemistry (IHC)
the TMAs of our series of 140 CRCs and a subset of 60 normal
matched colonic samples to determine the prognostic potential
of the selected genes. Markers’ expression pattern was
recorded as proportion of positive cells: a positive staining
above 25% of tumor cells was defined high expression. Figure

3a reports representative tissue slides of the TMA labeled with
antibodies against AKAP12, DCBLD2, NTE5 and SPON1.
Figure 3b reports the overall percentages of detection between
tumor and normal samples. In Figure S3 further staining of
DCBLD2 and NT5E at a higher resolution is illustrated.

In the normal colonic mucosa, AKAP12 immunostaining was
always positive, localized to the cytosol and mainly distributed
in the apical crypt compartment i.e. in more differentiated cells.
In CRC samples, AKAP12 immunoreactivity was retained in
55% and absent in about 45% of the cases.

DCBLD2 was always positive in normal colonic cells and
evenly localized at the baso-lateral plasma membranes. In
CRC samples, the immunostaining was detected in
approximately 52% of the cases. In few tumor sections,
DCBLD2 immunopositivity was also localized to the cytosolic
compartment.

Figure 3.  TMAs and western blot validation analysis of AKAP12, DCBLD2, NT5E and SPON1.  a. “Columns from left to right”
indicate immunostaining pattern in normal colonic samples and CRC cores negative and positive for each marker AKAP12,
DCBLD2, NT5E, SPON1. Black arrows indicate immunohistochemical staining pattern in normal or malignant colonic cells. White
arrows indicate the immunostaining distribution in the stromal compartment (endothelial, regulatory T-cells and macrophages)
characteristic of NT5E expression pattern. Magnification 10X; b. Number of positive cases detected on TMA validation series
comprising tumor specimens (TUM) and a subgroup of matched normal colonic mucosa (NM). Error bars indicate the standard
deviation from the mean (p < 0.05); c. Four representative frozen CRC specimens (T) and matched normal mucosa (N) were
identified in the same cohort of patients and analyzed by immunoblot. Molecular weight markers are indicated in kilodaltons. β-
tubulin was used as loading control to normalize band intensities.
doi: 10.1371/journal.pone.0072638.g003
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NT5E immunopositivity was mainly found in stromal cells
(endothelial or regulatory T-cells) of the normal colonic
mucosa, while it was weakly positive or negative in epithelial
colonic cells. In line with this finding, NT5E immunopositivity
marked the tumor-associated stroma and was absent in
malignant cells in about 40% of tumor samples. Interestingly, in
the remaining 60%, NT5E staining marked also malignant
epithelial cells, in addition to the stromal ones.

SPON1 immunoreactivity was positive only in about 20% of
normal colonic samples. Remarkably, SPON1 was detected in
approximately 70% of CRC samples, with a membrane or
cytosolic localization. Positivity within tumors was significantly
correlated with collagen IV and vimentin expression,
suggesting a role of SPON1 in the reorganization and
remodeling of tumor extra cellular matrix (ECM) (data not
shown).

Western Blot Analysis On Primary CRC
To corroborate the IHC expression profile and to have more

quantitative data, twenty randomly selected CRC specimens
and matched normal mucosas from the same cohort of patients
were analyzed by western blot, using the same antibodies
employed in IHC. This analysis also verified the specificity of
the antibodies. The bands obtained were quantitated by
densitometry after normalization to �
AKAP12 and DCBLD2 were frequently detected at lower levels
in tumor (T) than normal matched tissues (N). In contrast,
NT5E and SPON1 expression showed significantly higher
levels in tumors than controls. Figure 3c reports the bands
corresponding to four representative samples, the quantization
of which is reported in Figure S4a. Although the data referred
only to 20 cases, they confirmed the specificity of the results
and reinforced the differences between normal and tumor
samples detected by IHC on TMAs.

Biomarkers Expression Profiles and Clinico-
pathological Parameters

We performed a multiple comparison test evaluating the IHC
expression frequency of each biomarker and the clinico-
pathological parameters. We found no association between
AKAP12 or SPON1 gene expression profile and patients’ age,
sex, tumor stage, differentiation or histology, presence of nodal
and liver metastases. In contrast, loss of DCBLD2 was
correlated with advanced stages of the disease (p = 0.021). In
fact, 37.4% of the samples tested low for DCBLD2 expression
was more frequently Stage IV-tumors as compared to 15% of
the DCBLD2 high expressing ones. Accordingly, even cases
associated with distant metastases had significantly lower
levels of DCBLD2 expression than those without liver
metastases (p = 5.71·10-5). Notably, also tumors expressing
high levels of NT5E showed a similar susceptibility to
metastatic tumors (p = 6.62·10-4). The association between
biomarkers and the clinico-pathological parameters in our CRC
dataset is illustrated in Table S2.

To explore which of the selected genes was also an
independent predictor of patient survival in our CRC validation
series, we classified tumors as low or high expressing each of
the biomarkers under investigation. Kaplan-Meier survival

analysis revealed that loss of AKAP12 was marginally
associated with poor overall survival (OS) (p = 0.0758, Figure
4a). Remarkably, low membrane-associated expression of
DCBLD2 and overexpression of NT5E in tumor cells was
strongly associated with shorter survival (p=5.97·10-7and
p=1.01·10-5 respectively, Figure 4c and 4d). No significant
association with OS was found taking into account only the
NT5E immunopositivity in tumor associated-stroma (Figure
S5). SPON1 over-expression was not correlated with patients’
prognosis (data not shown).

Finally, we evaluated whether all three predictive markers
(AKAP12, DCBLD2, NT5E) could exert reciprocal effects and
improve prognostic accuracy. The cases were classified into 4
groups according to their expression levels (Figure 4d, 4e, 4f).
Notably, 100% of patients showing the combination
DCBLD2high/NT5Elow were alive at 5 years after diagnosis. In
contrast only 30% of patients whose tumors expressing the
combination DCBLD2low/NT5Ehigh were alive. This survival
difference was independent of adjuvant chemotherapy or stage
of the disease.

Expression of selected biomarkers in CRC cell lines
To gain further insights into the candidate genes, we

assessed their protein expression profile in six representative
human CRC derived cell lines (Figure S3b). AKAP12 protein
was detected only in HCT116 and DLD1 cells according to
previous studies [14]. DCBLD2 was expressed at very low
levels in the majority of cell lines, while NT5E was highly
expressed in HT29 and HCT116 as compared to the other cell
lines. Finally SPON1 was detected in the majority of the cell
lines, with the highest levels in DLD1.

Cross-talk between TNF-α and PPARγ signaling
regulates NT5E and DCBLD2

The in vivo results suggested that NT5E and DCBLD2 are
involved in tumor invasion and metastasis likely through a
tumor-induced immunosuppressive mechanism. Thus, we
focused our attention on TNF-α, a cytokine that regulates a
signaling network implicated in inflammatory diseases and
tumorigenesis [15]. Ingenuity Pathway Analysis was queried to
highlight the effects of TNF-α and interacting cytokines. NFκB
emerged as the main hub of the network of upstream
regulators of the selected DEGS and, in turn, as a crucial
modulator of genes implicated in inflammatory and immune
response (Figure S6a) [16]. Based on these observations, we
searched for cis-acting regulatory DNA elements in NT5E and
DCBLD2 promoters (Figure S6b) and identified several putative
NFκB site-like elements. To verify whether NT5E, and possibly
DCBLD2, could be regulated by the inflammatory cascade, we
treated HEK 293T cells with LPS, a powerful pro-inflammatory
NFκB inducer, and obtained a significant time-dependent
induction of NT5E; similarly, ectopic expression of p65/RelA
NFκB subunit caused a significant induction further enhanced
by the LPS treatment. In contrast, transfection of the super
suppressor IκBα S32/36 fully abolished the LPS stimulatory
effect on NT5E (Figures S6c and S6d). These results
demonstrated that NT5E could be considered an NFκB target
gene, expanding the list of known transcriptional activators

Ensemble of Gene Signatures for Novel Biomarkers
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such as β-catenin [17] and HIF-1α [18]. DCBLD2 was
expressed at very low levels, if any, in HEK293T cells and no
significant variations were appreciated following LPS treatment
(data not shown). Albeit the limited sensitivity of the detection
method, we cannot exclude that this gene is negatively
regulated by the NFκB cascade.

In the network of upstream regulators derived from the DEGs
list, a role is played by PPARγ as a negative mediator of NFκB
action (Figure S6a). This nuclear receptor is able, in fact, to
restrain cell growth and preserve epithelial differentiation
[10,19]. Since a peroxisome proliferator response element
(PPRE) was present in the NT5E and DCBLD2 proximal
promoter, we hypothesized that both genes could respond to
PPARγ signaling and their transcription modulated by a
crosstalk with TNF-α signaling. To this goal, we used HT29 and
RKO cell lines as representative of high or low PPARγ-
expressing cells, respectively (Figures 5a and [10]). No
significant effects on NT5E and DCBLD2 protein levels were
detected in HT29 cells treated with TNF-α; conversely, a 2-fold
induction of NT5E and a reduction of DCBLD2 was observed in
RKO as compared to controls (Figure 5b). As expected, we did
not detect any variation of PPARG in RKO following TNF-α
treatment, as the gene is epigenetically silenced. In HT-29 cells
we observed instead a 40% reduction of PPARγ protein but not
of the corresponding mRNA as compared to controls (data not
shown). These results indicate that PPARγ levels and/or

activity can be affected by TNF-α signaling in a cell context-
dependent manner, in keeping with literature data (15). We
cannot exclude, however, that PPARγ protein–protein
interactions or other “poorly understood” molecular
mechanisms can modulate NT5E intracellular levels in
response to TNF-α. To test the hypothesis that the results of
the TNF-α treatment might depend upon PPARγ activity, we
treated the cells with troglitazone (TGZ), a well-known PPARγ
agonist able to induce apoptosis and block DNA synthesis
[20,21]. Following exposure to TGZ (10 µM) for 48h, NT5E was
dramatically down-regulated at the mRNA and protein level in
HT29 cells and only slightly reduced at the protein level, with
no changes of the mRNA in RKO cells (Figure 5c and 5d). In
contrast, DCBLD2, that is barely expressed in both cell lines,
showed a striking 4-fold increase only at the protein level in
HT29 cells and no detectable variations in RKO cells (Figure 5c
and 5d). GW9662, a specific PPARγ-inhibitor, completely
blocked the effects reported on NT5E and DCBLD2 in HT29
cells, confirming that they are PPARγ-dependent (data not
shown). Altogether, these findings suggest that PPARγ
expression/activation may directly affect the intracellular levels
of NT5E and DCBLD2 by interfering with the TNF-α signaling.

Figure 4.  Survival curves of our cohort as function of the selected genes.  a. Survival curves on our CRC validation series,
categorized as having high (red curve) and low (green curve) AKAP12, DCBLD2 and NT5E expression. p-value for the null
hypothesis of equal population survival curves is provided by log-rank test in each graph; b. Survival curves estimated combining
the expression (high and low) of all 3 markers (AKAP12, DLBLC2, NTE5). Red curve represents the combination high/high; the blue
curve represents the combination high/low; the black curve represents the combination low/high; the green curve represents the
combination low/low.
doi: 10.1371/journal.pone.0072638.g004
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Discussion

Recent advances in high-throughput technologies allow
unbiased genome wide screening of potential biomarkers or
gene expression signatures that might predict prognosis
[2,5–7]. Despite the significant progresses in understanding the
molecular mechanisms underlying CRC progression, most
therapeutic approaches are still based on clinico-pathological
parameters. In the current study, we applied a new
computational intensive gene selection procedure on genome-
wide surveys of gene expression data to identify novel potential
biomarker genes or a gene expression signature that could
associate the biological and clinical characteristics of patients

with prognosis. We applied a combination of signatures
together with score metrics to measure the contribution of the
gene to the signatures where it belongs. By using this novel
approach, we identified and validated a number of genes
whose expression patterns can predict patients’ survival. Gene
expression data from two independent public dataset were
used as a training set. The robustness of the signature as well
as the genes selected was validated in our two CRC
independent cohorts, comparing tumor samples with the
matched normal mucosa. The algorithm was able to select
novel survival-related biomarkers such as AKAP12, DCBLD2,
NT5E, and several other differentially expressed genes. In our
tumor validation set we focused on AKAP12, DCBLD2, NT5E

Figure 5.  Cross-talk between TNF-α and PPARγ signaling regulates DCBLD2 and NT5E intracellular levels in CRC cell
lines.  a. Western blotting analysis shows PPARγ expression in HT29 and RKO CRC derived cell lines, as a model to investigate
variations of NTE5 levels in response to TNF-α treatment. b. PPARγ-dependent protein induction of NT5E by TNF-α in CRC cells
treated with 12,5 ng/ml TNF-α at different time points and analyzed by western blotting. c and d. Time course of NT5E and DLBLC2
mRNA and protein regulation by troglitazone (TGZ), a PPARγ agonist, in the same cells. β-actin and Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were used as control to normalize expression levels in Western blotting and Real-time RT-PCR analysis.
The results are expressed as means ±S.D. of three independent experiments. *p < 0.05, **p < 0.01.
doi: 10.1371/journal.pone.0072638.g005
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 with a higher stringent threshold cut-off, and SPON1 whose
expression appears to be highly cancer-related in the
explorative “training series”. Tissue microarray technology was
used to increase the throughput of this analysis. We tested the
hypothesis that differences in the expression of these genes
and related proteins could account for differences in the clinical
outcome in our cohort of patients.

Protein kinase A anchor protein 12 (AKAP12) was one of the
most representative genes of the signature that discriminates
for patient’s prognosis in the public dataset analyzed. AKAP12
is a scaffold protein for PKA and PKC that regulates actin-
cytoskeleton reorganization and inhibits SRC-mediated
oncogenic signaling [22]. The gene is localized on
chromosome 6q24-25.2, a deletion hotspot region in several
cancers [23]. It has been implicated in tumor progression and
indeed in our cohort its reduced expression correlates with a
poor outcome, strengthening the hypothesis that it acts as a
tumor suppressor in CRC [13,24]. AKAP12 down-regulation is
due to promoter methylation and a de-methylating agent such
as 2’-5-Azacytidine, reactivates its transcription affecting
downstream gene expression [25–27].

SPON1/F-Spondin is a member of the thrombospondin
(TSR) gene family comprising trans-membrane proteins
involved in regulating extracellular matrix organization, cell-cell
interaction and axon guidance [28,29]. Recent studies suggest
that alterations in “axon guidance” molecules are involved in
several pathological processes [29–31]. SPON1 contribution to
CRC tumorigenesis is essentially unknown. We selected
SPON1 to prove its biological relevance in our TMA validation
series. It robustly discriminated between tumor and normal
samples but was not associated with patients’ survival. We
hypothesize SPON1 as active mediator of tissue remodeling,
promoting an aberrant cell-ECM interaction and acquisition of
mesenchymal markers in malignant tissues (our data not
shown) [31].

Discoidin, CUB and LCCL domain containing 2 (DCBLD2)
was identified as one of the most enriched genes in the
signature indicative of prognosis. DCBLD2 was down-regulated
in our CRC samples with respect to the normal adjacent
mucosa and more frequently in patients with liver metastases
and shorter overall survival. This gene belongs to a group of
trans-membrane glycoproteins, known as neuropilins, with
different biological roles as: a) they inhibit tumor angiogenesis
and progression being specific antagonists of vascular
endothelial growth factors; b) they act as receptors for axon
guidance factors called semaphorins [32–35]. However, little is
known about its involvement in CRC pathogenesis. In keeping
with previous data, our results suggest that DCBLD2 plays an
important role in reducing tumor proliferation and metastasis in
gastric cancer [33].

NTE5/CD73 has recently received great attention through its
ability to promote tumor immune surveillance evasion and
metastasis [36]. NTE5/CD73 is a GPI-anchored cell surface
enzyme expressed in hematopoietic and endothelial cells that
converts AMP to adenosine, an immune suppressive molecule.
It has also been identified as a component of 7-gene
expression signature in stage III tumor patients, implying that it
could serve as a prognostic and/or therapeutic target in CRC

[2]. Despite a reinvigorated interest in NT5E expression,
understanding of the precise role is still limited. In our CRC
series, elevated levels of NT5E within the tumor
microenvironment but also in malignant epithelial cells were
strongly related to patients’ poor outcome [36,37].

We applied multiple pairwise combinations to verify whether
reciprocal combinations of the selected genes could better
predict patients’ clinical outcome. We identified NT5Elow/
DCBLD2high and NT5Ehigh/DCBLD2low combinations that
“robustly” differentiated the predictive and prognostic nature of
the biomarkers. Remarkably, none of the patients presenting
the NT5Elow/DCBLD2high combination died after surgery,
whereas only 30% of patients with the NT5Ehigh/DCBLD2low

combination were still alive 5 years from diagnosis.
Finally, we investigated the molecular mechanisms that

regulate NT5E and DCBLD2 expression. NFκB was identified
as a potential central upstream regulator implicated in the TNF-
α signaling that plays important roles in inflammation, tissue
remodeling and cancer development. In vitro we validated
NT5E as a novel NFκB target gene in addition to the hypoxic
nature of the tumor microenvironment and the Wnt/β-catenin
pathway, well established triggers of NT5E expression in tumor
cells [17,18]. In this scenario, our previous results and present
findings suggest that a variety of corrupted pathways in CRC
could merge to activate NT5E expression and promote cancer
growth and metastasis. In line with this, activation/over-
expression of NFκB and β-catenin is frequently observed in
aggressive CRCs [38,39]. Intriguingly, our algorithm identified
PPARγ as a central player in the same regulatory network. This
nuclear receptor is associated with a longer survival in our
cohort of patients and interferes with the NFκB signaling in
various cell contexts [19,38,39]. We hypothesized and
confirmed in vitro that tumor cell sensitivity to TNF-α and the
subsequent NT5E expression was PPARγ-dependent. Since
NT5E gene response to TNF-α/NFκB appeared to inversely
correlate with PPARγ, we hypothesize that also in CRC PPARγ
counteracts TNF-α/NFκB activation, likely through a
transrepression mechanism [40]. Even more interestingly, the
PPARγ-dependent downregulation of NT5E was accompanied
by DCBLD2 upregulation. This positive modulation was
observed only at protein level, suggesting that protein–protein
interactions can modulate DCBLD2 intracellular levels, likely
through still undefined mechanisms. Since NT5E and DCLB2
inversely affect cell proliferation and associate with patients’
outcome, the interplay of TNF-α with PPARγ revealed by our
approach could represent a pivotal relay-point in determining
tumor progression towards a more aggressive behavior. The
relevance of PPARγ and the interplay with TNF-α/NFκB as
mediators of NT5E and DCBLD2 functions requires further
investigations at genome-wide level.

In conclusion, we developed a novel computational
approach, gene Signature Finder Algorithm (gSFA) to generate
several small gene-sets that stratify patients according to
survival. By applying this procedure, we validated new
prognostic biomarkers and found PPARγ and TNF-α signaling
as novel regulators of NT5E and DCBLD2 levels. The gene
signature reflects the molecular characteristics of the patients
and provides an opportunity for the rational identification of
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novel biomarkers of potential clinical benefit. The method
proposed, if implemented and confirmed in prospective studies,
can open new therapeutic possibilities and effective guidelines
in a variety of human malignancies.

Supporting Information

Figure S1.  Survival curves for the 16 signatures of Table
1. Each signature is labeled with the corresponding seed gene
are reported in Table 1.
(JPEG)

Figure S2.  IPA Pathway Analysis of DEGs between cluster
1 and cluster 2. a. Enriched Biological Functions as reported
by IPA from the list of 1024 DEGs between cluster 1 and
cluster 2; b. Regulatory interaction network showing the central
role TGF-β1, FGF and TNF signaling pathways. This network
was algorithmically generated mapping DEGs to known
biological relationships. The network of 20 modulators controls
17% of DEGs. Regulator elements are represented as nodes
and their interactions as edge.
(JPEG)

Figure S3.  DCBLD2 and NT5E specific staining in CRC.
a,b. CRC section (T) and adjacent normal mucosa (Nm)
stained with DCBLD2 and NT5E. Black arrow indicates NT5E
positive staining in stromal cells; negative NT5E staining in
normal and malignant epithelial cells is observed. c,d.
immunopositivity of DCBLD2 and NT5E in two CRC samples.
DCBLD2 is abundantly expressed in membrane and cytosolic
compartment. NT5E marks intensely malignant epithelial cells
and stromal compartment (black arrow). Magnification 20X.
(JPEG)

Figure S4.  Biomarkers expression levels in tumor tissues
and CRC derived cell lines. a. Expression levels of each
biomarker detected by western blot analysis in 4 representative
paired tumor and normal tissues. The box-plots show
expression profiles in a group of 20 representative tumor
samples (T) and matched normal mucosa (N). The expression
levels were normalized to that of β-tubulin by calculating the
relative expression levels.
b. AKAP12, DCBLD2, NT5E and F-spondin levels were
examined by western blot in the indicated CRC cell lines. The
histogram reports their relative expression levels after
normalization to b-tubulin.

(JPEG)

Figure S5.  Kaplan–Meier curve stratified on NT5E
immunostaining in tumor associated stroma. Red curve
represents survival of samples with NT5E high expression in
tumor stroma; the green curve represents survival of samples
with low NT5E expression. The p-value was not significant p
>0.05.
(JPEG)

Figure S6.  Signaling crosstalk between proinflammatory
stimuli, NFκB pathways and NT5E and DCBLD2. Interactive
network of top 17 focus gene hubs centered on TNF signaling;
NFκB is the most highly connected gene inhibited by PPARγ.
b. site-like elements of NFκB and peroxisome proliferator
response elements (PPRE) in NT5E and DCBLD2 promoters.
c. LPS stimulates NT5E expression in a time dependent
manner in 293T cells. A vector encoding the super suppressor
IκBα S32/36A (flag ss-Ikβa) abolishes the stimulatory effect of
LPS on NT5E. d NFκB-p65-V expressing vector HA-tagged
(HAp65V) determined a significant induction of NT5E,
increased with LPS treatment. Expression is determined by
western blot analysis. Bars represent mean values ±s.d. of
three independent experiments relative to β-actin. **p<0.01.
(JPEG)

Table S1.  Gene ranking reports the most common genes
selected by the algorithm in the various signatures. The
second column reports the number of signature containing the
corresponding gene and third column is its average importance
index.
(PDF)

Table S2.  Correlation of selected biomarker and clinico-
pathological parameters The classification of the tumors was
based on the TNM (Tumor-Node-Metastasis) system according
to the criteria of the International Union Against Cancer. In red
are indicated statistically significant levels.
(PDF)

Materials & Methods S1.  (PDF)
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