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Abstract

Despite nearly two centuries of study, the fundamental transmission dynamic properties of cholera remain incompletely
characterized. We used historical time-series data on the spread of cholera in twelve European and North American cities
during the second cholera pandemic, as reported in Amariah Brigham’s 1832 A Treatise on Epidemic Cholera, to parameterize
simple mathematical models of cholera transmission. Richards growth models were used to derive estimates of the basic
reproductive number (R0) (median: 16.0, range: 1.9 to 550.9) and the proportion of unrecognized cases (mean: 96.3%, SD:
0.04%). Heterogeneity in model-generated R0 estimates was consistent with variability in cholera dynamics described by
contemporary investigators and may represent differences in the nature of cholera spread. While subject to limitations
associated with measurement and the absence of microbiological diagnosis, historical epidemic data are a potentially rich
source for understanding pathogen dynamics in the absence of control measures, particularly when used in conjunction
with simple and readily interpretable mathematical models.
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Introduction

Cholera is an infectious diarrhoeal disease caused by Vibrio

cholerae. The earliest western record of cholera dates back to at least

16th century, when cases were observed in India [1], but global

pandemics of ‘‘asiatic cholera’’ were first documented in 1817.

Cholera can be endemic or epidemic, and is a disease with

pandemic potential, with pandemics occurring as a result of

genetic reassortment microbial strains [2]; the seventh recorded

cholera pandemic occurred in the 1960s and cholera remains

endemic in many countries [3]. Cholera is treatable with oral

rehydration therapy and preventable with adequate sanitation and

water treatment, and cholera epidemics have not been seen in high

income countries since the early 20th century [3]; however, the

disease remains a major global threat, with an estimated 3–5

million cases and 100000–120000 deaths annually [4]. In recent

years, Africa has accounted for over 90% of cases reported to the

World Health Organization (WHO) globally, with majority of the

remaining cases reported from low and middle income countries

in Asia and South America [5,6].

Cholera swept across Europe for the first time in 1831 during

the second cholera pandemic (the first (1817) pandemic reached

only as far west as the Caspian Sea). The pandemic originated in

India in 1826 and moved along trade and military campaign

routes to Central Asia, the Middle East, Europe from east to west

across the Baltic states, and eventually to North America [1].

Notwithstanding this geographic march, cholera was not widely

believed to be contagious prior to John Snow’s work on the 1854

London cholera outbreak. Prevalent models for disease spread,

some of which lasted until the end of the 19th century, included the

diffusion of a poisonous ‘‘miasma’’, spread by tiny, invisible

insects, and hypotheses related to the disruption of the earth’s

magnetic field or atmosphere [7]. While the dispatch of expert

commissions to study the progress of the disease in far-off locales

[8] and the deployment of military cordons to prevent the disease’s

spread in eastern and central Europe [1] suggest an implicit

recognition of transmissibility, at least by civil authorities, medical

professionals tended to deride those who suggested cholera might

be contagious as superstitious and unsophisticated. As such,

limited attempts were made to control the spread of disease using

interventions that could be considered truly effective, and 19th

century epidemics may, consequently, provide a snapshot of the

true ‘‘natural history’’ of cholera.

Notwithstanding nearly two centuries of study by epidemiolo-

gists, the fundamental dynamic properties of cholera remain

poorly characterized. Using cholera outbreak data from Bengal

from 1891–1940, King et al. [9] estimated the basic reproductive

number (R0, the average number of secondary cases produced by

an index case of an infectious disease introduced into an

immunologically naı̈ve population [10]) to be approximately

1.660.3, while Hartley et al. [11] estimated an R0 ranging from

3 to 15 using average age of first infection and life expectancy data

(R0&L=A) from four past epidemics between 1985 and 2001.

Their analysis yielded an R0 of 18 for V. cholerae in a

‘‘hyperinfective’’ state. Similarly, the symptomatic attack rate of

cholera is poorly estimated. Currently available studies suggest

that the ratio of asymptomatic (or unrecognized) to symptomatic

(or recognized) cases range from 3 to 100 [9].

One source of quantitative data on the dynamics of cholera

epidemics that occurred without intervention, and which has not

previously been explored, is A Treatise on Epidemic Cholera by the

American psychiatrist Amariah Brigham [12]. Brigham published
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the book in 1832, the year cholera first appeared in North

America, and although it is disheartening to read Brigham’s

encyclopedic list of ‘‘remedies’’ for cholera (which included

everything from bloodletting and blisters, to cautery, heated sand,

and electricity), the book also includes quantitative appendices

containing data that can be used to reconstruct epidemic curves, as

well as data on case fatality for numerous cities in Europe and

North America. We used Brigham’s data to parameterize simple

mathematical models of cholera transmission; our objectives were

(i) to derive R0 using the Richards generalized logistic growth

model, (ii) to estimate projected ratios of recognized:unrecognized

cases using Kermack and McKendrick’s formula for final epidemic

size, and (iii) to examine the utility of historical data for the

parameterization of models of cholera spread.

Results

Time-series data from a total of 12 cities were analysed. The ten

European cities were all major port cities or centers for commerce

at the time, with several cities being members of the Hanseatic

League, a commercial alliance of trading cities surrounding the

Baltic Sea formed in the 13th century [13] (Figure 1). The North

American cities of Philadelphia and New York were included.

Population, death counts and case counts from Brigham’s A

Treatise on Epidemic Cholera are shown in Table 1. Symptomatic

attack rates and case fatality rates derived from Brigham’s data are

also shown in Table 1. Weekly and daily case counts are

presented in Table 2 and Table 3.

Overall, the Richards model fitted the cumulative weekly case

count well (Figure 2). Because the model was first fitted under the

assumption that the epidemic was single wave, it gave poor fits for

Dantzig, Stettin and Königsberg, where cholera epidemics

occurred in two waves, as evidenced by the observation that the

cumulative incidence curve produced by the model did not fit the

data well visually, and that two distinctive peaks could be seen in

the epidemic curve produced by the data. Data from these cities

were fitted again with a two-phase outbreak model [14], which

yielded better fits (Figure 3).

Based on the single-phase models, the estimated value of R0

ranged from 1.93 (Lemberg) to 550.92 (Petersburg), with a median

of 15.98 (11.85 if Petersburg is disregarded). Proportion of

unrecognized cases calculated based on final size estimation and

observed attack rates averaged at 0.96 (standard deviation, 0.04),

which gives an average asymptomatic:symptomatic ratio of 48.29

(standard deviation, 29.72). The estimated values for intrinsic

growth rate (r), R0, expected final size, percentage of unrecognized

infections and ratios of unrecognized to recognized cases from

each city are presented in Table 4.

It should be noted that for cities that had a two-phase epidemic,

the R0 estimation from the second phase of the epidemic is

somewhat meaningless, since the initial condition assumption of

I(0) = 0 does not hold at the beginning of the second phase. The

expected final size and percentage of unrecognized infections were

therefore estimated based on the R0 produced from fitting a single-

phase model to the epidemic curve.

As expected, sensitivity analysis showed that increasing the

infectious period (T) leads to an exponential increase in the

estimated R0 values [as shown in Supplementary Figure S1]: the

larger the modeled intrinsic growth rate (e.g. Riga), the greater the

variation, while estimated R0 values remained relatively stable

when the intrinsic growth rate is smaller (e.g. Philadelphia).

Discussion

We evaluated the dynamics in European and American centers

during the second cholera pandemic using mathematical modeling

techniques that can be applied to cumulative incidence data. R0

estimates generated through modeling were greatly heterogeneous,

though such heterogeneity is consistent with variability in cholera

dynamics described by contemporary investigators. Possible

sources of such heterogeneity could include differential data

quality, or true differences in the nature of cholera spread within

the cities. Higher R0 values may point to gross contamination of

water sources, while lower R0 values might indicate predominantly

person-to-person transmissions.

We also evaluated gaps between reported cumulative cases

reported in each jurisdiction, and the projected final epidemic sizes

expected based on reproductive numbers, in order to develop

estimates of the ratio of unrecognized to recognized cholera cases.

As this calculation was a function of R0 estimates it is perhaps

unsurprising that we found these ratios to be heterogeneous as

well. While it is possible that misclassification and underreporting

of cholera could have been major sources of error in the data it

should be noted that such misclassification would not have affected

our estimates of R0: the Richards model evaluates rate (and hence

R0) of growth in a manner that is independent of case counts

reported. Distortion of R0 values could have occurred if case

ascertainment changed over time in a given center; however, to

explain the diversity of R0 values such changes would have had to

have occurred in different ways in each city we studied, and

consequently true variability in epidemic growth remains plausi-

ble.

Variation in case measurement across cities would have been

more likely to explain heterogeneity in apparent ratios of

unrecognized to recognized case counts. Cholera was a highly

stigmatized in the 1830s, and was seen as a disease that struck the

poor and immoral as a punishment from God [15]. Cases of

cholera could have been underreported among communities that

were supposedly immune to the disease, such as ostensibly

temperate members of the establishment. Furthermore, the

background level of diarrhoea and dysentery in communities is

likely to have been high at the time [16,17,18]. Bacteriological

diagnosis of cholera awaited the work of Robert Koch in the 1880s

[19], hence the ability of clinicians to distinguish between ‘‘Asiatic

cholera’’, so-called cholera morbus (basically endemic watery

diarrhea [1]), and other forms of gastrointestinal disease which

shares the symptoms of Asiatic cholera was also limited. Since

most cases of cholera only result in mild or asymptomatic cases,

many of them were likely to have been misclassified as well.

Even though there is much uncertainty about the reliability of

Brigham’s data, the R0 values produced in this study are for the

most part remarkably similar to R0 estimates from studies using

more detailed transmission models and greater number of

parameters. King et al. estimated an R0 of 1.660.3 for endemic

cholera in the Bengal region when taking into consideration

environment-human transmissions and human-human transmis-

sions [9]. Postulating the existence of a ‘‘hyperinfective’’ stage for

cholera, Hartley et al. estimated an R0 of 18 for the disease in this

stage [11]. Our estimated unrecognized to recognized case ratios

are also consistent with those generated using contemporary data

(which are also highly variable) [9].

Our model represents, to our knowledge, the first application of

the Richards growth model to evaluate the dynamics of historical

epidemics. The Richards model, while long known in ecology and

population biology, has had relatively recent application to

infectious diseases, but has a number of attractive properties,

Historical Cholera Epidemiology
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including its use of a single equation, its ready parameterization

when (as in this case) only epidemic curve data are available, and

the easy interpretation of model parameters (such as growth rate,

carrying capacity/final size, and ‘‘turning point’’) in terms that

have direct relevance to disease control practice. The model has

been applied to contemporary infectious disease outbreaks and

Figure 1. Map showing the locations of cities with time-series data on the 1832 cholera epidemic available in Amariah Brigham’s A
Treatise on Epidemic Cholera. New York and Philadelphia are not shown.
doi:10.1371/journal.pone.0072498.g001

Table 1. Cholera Cases and Deaths in Selected Cities, 1832.

City Population Deaths Cases Reported Attack Rate (%) Reported Case Fatality (%)

Lemberg 45000 2622 5011 11.13 52.32

Riga 49000 1913 4897 9.99 39.06

Dantziga 66367 1043 1432 2.15 72.83

Petersburgh 434000 4331 8803 2.02 49.19

Elbing 19225 245 378 1.96 64.81

Posen 30000 549 867 2.89 63.32

Konigsberga 69560 1210 1996 2.86 60.62

Stettina 21680 241 343 1.58 70.26

Berlin 230000 1384 2193 0.95 63.10

Vienna 290000 1895 3546 1.22 53.44

Philadelphia 161000 615 1710 1.06 35.96

New York 203000 2067 5319 2.62 38.86

aCities with two-phase outbreaks.
doi:10.1371/journal.pone.0072498.t001
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epidemics, including those caused by influenza, Severe Acute

Respiratory Syndrome (SARS), and dengue [14,20,21]. Model

generated case counts produced with the model for cities under

study fit remarkably well with case counts reported by Brigham.

Our complementary use of the Richards growth model and the

Kermack-McKendrick final size formula emerges as a potentially

useful index of the proportion of cases that are unrecognized or

truly asymptomatic in situations where effective interventions are

not put in place for epidemic control. The lack of understanding of

the role of contagion and contaminated water in the spread of

cholera in 1832 makes the situation under study one in which this

approach is likely to be valid, and this approach may be

particularly attractive for the study of historical epidemics where

control measures were ineffective. In contemporary epidemics

with control, comparison of final epidemic size with expected final

size projections based on the Kermack-McKendrick formula

would have a different (but also useful) interpretation, and would

be a function of both unrecognized/asymptomatic case rates and

the effectiveness of control measures.

We propose that the ease of use of the Richards model, and the

face validity of the disease dynamic properties generated here for

cholera, suggest that this tool may find application in the study of

historical epidemics. While subject to limitations associated with

measurement and the absence of microbiological diagnosis,

historical epidemic data are potentially extremely attractive for

study for several reasons: as with early cholera epidemics, the

absence of effective control measures means that observations

relate to the transmission dynamics of the pathogen itself.

Furthermore, advances in disease control through sanitation and

vaccination have made many communicable diseases of public

health importance uncommon, making the study of epidemic

dynamics with contemporary data difficult. For example, Earn has

previously demonstrated that regular epidemic cycles become

chaotic once vaccination is introduced [22]. The study of historical

epidemics can also provide important insights into the impact of

Table 2. Weekly cholera case counts in various European cities, 1832.

Time (Week) Lemberg Riga Dantzig Petersburgh Elbing Posen Konigsberg Stettin Berlin Vienna

1 147 707 52 201 73 27 44 18 64 764

2 337 1331 87 1975 81 65 265 50 163 442

3 508 650 111 3492 36 124 346 59 336 391

4 774 635 153 1655 41 189 260 51 217 509

5 792 682 154 659 40 114 231 37 249 434

6 907 335 88 304 34 135 125 19 251 399

7 631 251 60 165 31 87 103 16 271 326

8 314 163 135 80 22 53 73 50 239 281

11 286 78 165 99 9 26 48 20 135

10 105 65 167 84 6 33 63 23 141

11 72 102 41 4 13 100 64

12 50 60 30 1 1 111 63

13 34 36 18 143

14 23 18 84

15 15 11

16 12 22

17 3 8

18 1 3

doi:10.1371/journal.pone.0072498.t002

Table 3. Daily cholera case counts in Philadelphia and New
York, 1832.

Time
(Day) Philadelphia New York Time (Day)

New York
(Cont’d)

1 2 7 24 122

2 6 18 25 145

3 6 24 26 122

4 15 85 27 103

5 19 42 28 121

6 21 105 29 86

7 40 109 30 81

8 35 129 31 90

9 45 119 32 88

10 65 101 33 96

11 176 115 34 101

12 136 133 35 89

13 114 163 36 82

14 154 146 37 73

15 142 138 38 97

16 126 202 39 76

17 110 226 40 67

18 130 311 41 105

19 111 241 42 42

20 73 231 43 75

21 94 296 44 79

22 90 157 45 63

23 141 46 77

doi:10.1371/journal.pone.0072498.t003
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economic development on health. With advances in public health

and improvement in living conditions, cholera has practically

disappeared from Europe and North America, save for a few

imported cases each year [3]. As our data demonstrate, early 19th

century cholera epidemics in Europe and North America had

properties similar to those seen in low income countries today

[23,24,25], highlighting the fact that it is not intrinsic character-

istics of populations, but rather economic conditions, that

determine vulnerability to disease.

Our study has limitations, most of which relate to the

temporally distant nature of the epidemics under study, and the

lack of clarity in Brigham’s document with respect to the

conditions under which data were collected. Nonetheless, it shows

an innovative use of the Richards model and the Kermack-

McKendrick final size formula in conjunction with historical data

that help illuminate the dynamics of cholera transmission in the

2nd pandemic in 19th century Europe and North America. Our

Figure 2. Selected curve fits of Richards curve to cumulative case count of cholera in the cities of (a) Lemberg (Lviv) and (b)
Petersburgh (St. Petersburgh) reported in Brigham’s A Treatise on Epidemic Cholera.
doi:10.1371/journal.pone.0072498.g002

Historical Cholera Epidemiology
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study also highlights the potential of the Richards model to be an

effective tool for modeling infectious diseases.

Methods

Data Sources
Dr. Amariah Brigham (1798–1849) was an American clinical

physician known mainly for his work in psychiatry. When cholera

spread across North America in 1832, he was residing in Hartford,

Connecticut [26]. He took it upon himself to compile information

on the origin and progress of the epidemic from reports, treatises,

lectures and essays, published as A Treatise on Epidemic Cholera, in

order to ‘‘furnish a correct history of the disease, together with all

the most important practical information that has been published

respecting its nature, cases and methods of treatment’’ [12].

In the appendix of the volume, Brigham had included time-

series data on cholera in various European and North American

cities. Weekly case counts were made available for Lemberg (now

Lviv, Ukraine), Riga, Dantzig (Gdańsk, Poland), Petersburgh

(Saint Petersburg, Russia), Elbing (Elbląg, Poland), Posen (Poznań,

Poland), Königsberg (Kaliningrad, Russia), Stettin (Szczecin,

Poland), Berlin and Vienna, and daily case counts were provided

Figure 3. Selected curve fits of Richards curve to cumulative case count of cholera in the cities of (a) Dantzig (Gdansk) and (b)
Stettin (Szczecin) reported in Brigham’s A Treatise on Epidemic Cholera. Results show poorer fits of the data with a single-wave outbreak
model, whereas a two-wave outbreak model yielded better fits.
doi:10.1371/journal.pone.0072498.g003

Historical Cholera Epidemiology
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for Quebec, Montréal, New York and Philadelphia. Quebec and

Montreal were excluded from the present analysis due to

aggregation of case counts early in the epidemic (for Montreal)

and the reporting of hospitalized cases only (for Quebec).

Epidemic Growth Model
The Richards growth model is a generalized logistic growth

describing biological growth [27]. It has been used in infectious

disease epidemiology as a method to estimate R0 and forecast

epidemics with SARS and dengue [20,21]. The intrinsic growth

rate of an epidemic can be estimated by fitting the cumulative

time-series case data from an epidemic curve to the Richards

model: I 0(t)~rI ½1{(I=K)a�, where r is the intrinsic growth rate of

the infected population, I(t) is the cumulative case count at time t,

K is the final total case number of the outbreak, and a measures the

deviation of the curve from the standard logistic curve [21]. The

advantage of the Richards model is that it involves relatively few

parameters and only requires an epidemic curve for analysis,

which proves to be convenient when data availability is limited.

The intrinsic growth rate derived from Richards model can be

used to calculate the basic reproductive number (R0) of a disease

[14,28]. In general, when R0,1, the infection is expected to

eventually disappear from the population, and when R0.1, then

one would expect an epidemic of the infection to occur. Using the

estimated value of r from the Richards model, R0 can be estimated

with R0~erT , where T is the duration of infectiousness [14]. For

cholera, the infectious period is estimated to be 3–6 days [29], and

is assumed to be 4 days in our analysis. A sensitivity analysis was

performed to explore the effect of varying the infectious period

from 3 to 6 days on the values of R0. Best-fit model parameters

were estimated empirically via least squares minimization for

model projections and reported case counts.

The Richards model is generally suited for single-phase

epidemics [28,30], but can be adapted to model multi-wave

epidemics as well [14]. In a two-phase outbreak model, the

Richards model is fitted to the cumulative incidence curve from

the first wave of the epidemic, and then again to that from the

second wave. We applied the two-phase outbreak model in cases

where the epidemic curve showed two distinctive peaks in the

course of the epidemic. In our study, the turning point between the

first and second wave of cholera outbreak was determined by

examining the incidence epidemic curve. It was identified as the

point at which there was a rebound in case counts after a decline

from the first peak to reach a second peak. Two sets of best-fit

model parameters were obtained, one from each phase of the

epidemic.

R0 estimates derived from Richards models were used to project

final epidemic sizes using the final epidemic size formula first

published by Kermack and McKendrick [31]. Under the SIR

model proposed by Kermack and McKendrick, an epidemic

ceases when a certain proportion of the susceptible population has

been infected (not necessarily the entire population), even without

intervention (as was, effectively, the case during the 2nd cholera

pandemic). This proportion (Z) is dependent on the R0 of a

disease, and is defined by the equality Z~1{e{R0Z [32]. Using

the expected final sizes and the observed attack rates, the

proportion of unrecognized (asymptomatic or undiagnosed) cases

can be calculated, and thereby the ratio of unrecognized cases to

symptomatic, recognized cases of cholera can be determined. Few

assumptions are made by the Richards model: 1) the rate of

increase in cumulative case is proportional to present number of

Table 4. Model-Estimated R0, Expected Final Size of Epidemic, and Percentage of Asymptomatic or Unrecognized Cases.

City r R0

Expected Final Size
(Proportion of population)

Percent Asymptomatic
or Unrecognized

Asymptomatic/Unrecognized
to Symptomatic Ratio

Lemberg 1.152 1.93 0.77 85.53 5.915

Riga 5.363 21.4 0.99 89.90 8.906

Dantziga 0.5592 1.38 0.48 95.50 21.25

Phase 1 0.9638 1.73

Phase 2 0.3679 1.23

Petersburgh 11.04 551 0.99 97.95 47.81

Elbing 4.921 16.6 0.99 98.01 49.35

Posen 5.265 20.2 0.99 97.08 33.26

Konigsberga 4.775 15.3 0.99 97.10 33.50

Phase 1 6.190 34.4

Phase 2 0.07147 1.04

Stettina 3.722 8.39 0.99 98.40 61.57

Phase 1 6.940 52.8

Phase 2 0.5979 1.41

Berlin 3.512 7.44 0.99 99.03 102.8

Vienna 1.617 2.52 0.90 98.64 71.79

Philadelphiab,c 0.9239 40.3 0.99 98.92 92.21

New Yorkc 1.253 150 0.99 97.35 36.78

aCities with two-phase outbreaks: Expected final size, percent asymptomatic or unrecognized cases and asymptomatic/unrecognized to symptomatic ratio were
calculated using the R0 estimated from fitting the single-phase model to the epidemic curve.
bPhiladelphia data is from second wave of outbreak.
cCases were counted daily in these cities.
doi:10.1371/journal.pone.0072498.t004
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cases, 2) case incidence grows exponentially without intervention

and 3) effective interventions would decrease incidence growth

[28]. Cholera satisfies all three assumptions.

In the original publication of Kermack and McKendrick’s final

size formula, two major assumptions were made: that the

infectious periods of the disease are exponentially distributed,

and that the host population is homogenously mixed. Ma and

Earn showed that the formula still holds ‘‘(i) regardless of the

number of distinct infectious stages, (ii) if the mean contact rate is

itself arbitrarily distributed and (iii) for a large class of spatially

heterogeneous contact structures’’ [32]. For two-wave epidemics,

this approach is problematic since I(0) is not equal to zero for the

second wave. Consequently, we approximated expected final size

for two-wave epidemics based on the best-fit single epidemic curve

generated using the Richards approach.

Supporting Information

Figure S1 Sensitivity analysis on the impact of estimated cholera

generation time on cholera R0. City names in legend are ordered

from highest R0 (Riga) to lowest (Philadelphia). A 4-day generation

time was used in the base case. Cities with an asterisk next to name

had 2-wave cholera epidemics; best-fit single wave R0 estimates

are presented here. It can be seen that as expected the absolute

impact of uncertainty in generation time is greatest for high-R0

cities.
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