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Abstract

In pluripotent stem cells, there is increasing evidence for crosstalk between post-transcriptional and transcriptional
networks, offering multifold steps at which pluripotency can be controlled. In addition to well-studied transcription factors,
chromatin modifiers and miRNAs, RNA-binding proteins are emerging as fundamental players in pluripotency regulation.
Here, we report a new role for the RNA-binding protein ESRP1 in the control of pluripotency. Knockdown of Esrp1 in mouse
embryonic stem cells induces, other than the well-documented epithelial to mesenchymal-like state, also an increase in
expression of the core transcription factors Oct4, Nanog and Sox2, thereby enhancing self-renewal of these cells. Esrp1-
depleted embryonic stem cells displayed impaired early differentiation in vitro and formed larger teratomas in vivo when
compared to control embryonic stem cells. We also show that ESRP1 binds to Oct4 and Sox2 mRNAs and decreases their
polysomal loading. ESRP1 thus acts as a physiological regulator of the finely-tuned balance between self-renewal and
commitment to a restricted developmental fate. Importantly, both mouse and human epithelial stem cells highly express
ESRP1, pinpointing the importance of this RNA-binding protein in stem cell biology.
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Introduction

Pluripotency is a unique state in which cells can self-renew

indefinitely whilst maintaining the ability to differentiate into

multiple cell types of the body. In embryonic stem (ES) cells, gene

regulatory networks comprising of the core transcription factors,

Oct4, Nanog and Sox2 as well as chromatin regulatory proteins

are involved in pluripotency maintenance [1]. High endogenous

levels of these factors are beneficial for ES cell pluripotency, but

deregulated expression of pluripotency-associated transcription

factors has been shown to change cell fate. Small increases or

decreases in Oct4 expression promote the differentiation of ES

cells into extraembryonic endoderm and mesoderm or trophec-

toderm, respectively [2,3]. Likewise, small increases in Sox2 can

trigger the differentiation of ES cells into cells that express markers

associated with a wide range of differentiated cell types [4].

Notably, there is increasing evidence for stemness and embryonic

pathways reactivating during oncogenesis [5]. It is thus extremely

important to deeper investigate the molecular mechanisms

regulating the expression levels of the pluripotency factors.

The mechanisms that control the transcription of core

pluripotency factors have been extensively studied [1,3,6,7,8]. In

addition, several lines of evidence have recently underscored the

importance of post-transcriptional regulation of gene expression in

pluripotency maintenance [9]. To this regard, the action of

microRNAs (miRNAs) as well as RNA-binding proteins (RBPs)

involved in miRNA maturation, like dicer and dcgr8 has been

investigated in detail [10,11,12,13]. More recently, the RBP Unr

(Upstream of N-ras) has been reported to post-transcriptionally

repress Gata6 expression, causing stabilization of the pluripotent

state of ES cells [14]. L1TD1, which interacts with Lin28, is also

required for human ES cells self-renewal [15]. Despite this

progress, the full contribution of RNA and of RBPs (RNA-based)

to the complex regulatory circuitry of pluripotency is probably still

underestimated, as suggested by the recent discovery that the

expression of many large intergenic non-coding (lincRNAs) has

effect on ES cell gene expression and on their differentiation state

[16,17]. In particular, the direct role of RBPs on the post-

transcriptional regulation of core pluripotency factors expression

in ES cells needs to be investigated in more depth. Genome-wide

screenings aided by computational predictions may largely assist in

this process [18].

To find new regulators of stemness/pluripotency, we analyzed

conserved co-expression network (CCN) obtained from human
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and mouse stem-cell specific cDNA microarray data [19]. This

analysis indicated the RBP Epithelial splicing regulatory protein 1

(Esrp1, also known as Rbm35a), first described as a tumor

suppressor gene mutated in approximately 50% of primary colon

tumors with microsatellite instability, as a protein possibly involved

in pluripotency [20]. We found that depletion of ESRP1 in mouse

ES cells resulted in increased self-renewal and impaired early

differentiation in vitro. Moreover, ESRP1 binds to the mRNA of

several pluripotency-related genes and decrease their polysomal

loading, hence contributing to finely tune their expression levels in

mouse ES cells. Altogether, our results indicate that ESRP1 is a

new regulator of pluripotency.

Materials and Methods

Cell Culture and Differentiation
E14 ES cells were cultured and differentiated in vitro in

embryoid bodies (EBs) as previously described [21], [22]. Briefly,

300 ES cells were cultured in EB differentiation media (see File S1

for details) in ultra-low attachment 96-well plates (Corning). Two

days later, the EBs were collected and further cultured in ultra low

attachment 6-cm dishes for the indicated times. Mouse spermato-

gonial stem cells (SSCs) were isolated from juvenile mice testis and

cultured as previously described [23]. Epcam-positive SSCs were

prepared from adult mice testis by MACS sorting [24] and

cultured on inactivated Mefs as previously described [25]. See File

S1 for details on SSC cultures.

Figure 1. Knockdown of Esrp1 in E14 ES cells using short hairpin RNA. A. qRT-PCR analysis shows depletion of Esrp1 mRNA in Esrp1-
depleted ES cells (E2) w.r.t. Scr controls; RQ is relative quantity (n = 3). B. Western blot analysis of Esrp1 expression in Scr and Esrp1-depleted ES cells.
Densitometric analysis of the Western blot is shown; A.U. is arbitrary unit (n = 3). C. Immunofluorescence analysis of ESRP1 in Scr and Esrp1-depleted
ES cells. Scale bar is 20 mm. D. Upper panel: Methylene blue staining of Scr and Esrp1-depleted ES cells plated on gelatin. Middle and lower panels:
Alkaline phosphatase (ALP) staining of Scr and Esrp1-depleted ES cells in presence and absence of LIF, respectively, showing higher number of
pluripotent colonies upon Esrp1 depletion. E. MTT assay perfomed on Scr and Esrp1-depleted ES cells at different time points shows higher
proliferation rates of the latter (n = 6). F. qRT-PCR analysis shows an increase in (i) FGFR2 IIIc/IIIb ratio and (ii) Slug, Snai1 and Vimentin in Esrp1-
depleted ES cells compared to Scr controls (n = 4). A slight decrease in E-cadherin (E-cad) was also observed. (iii) CD44 was amplified by PCR and
shows a shift from variable isoform (CD44v) to standard isoform (CD44s) upon ESRP1 depletion indicating acquisition of a ‘‘mesenchymal’’
phenotype.
doi:10.1371/journal.pone.0072300.g001

Role of Esrp1 in Stem Cells
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Generation of ES Cells with Stable Knockdown of ESRP1
Screening of short hairpin (Sh) RNA for efficient knockdown of

Esrp1 in ES cells, vectors as well as lentiviruses production,

quantitative real-time polymerase chain reaction (qRT-PCR),

immunoblotting and immunofluorescence staining are described

in File S1. Primers and probes employed for PCR and qRT-PCR

are described in Table S1. Pluripotency, colony forming (alkaline

phosphatase and methylene blue staining) and cell proliferation

Figure 2. Pluripotency-related genes expression is affected by ESRP1 depletion. A. Confocal microscopy analysis of ESRP1 (red) in mouse
ES cells reveal that the protein is expressed not only in the nucleus by also in the cytoplasm of these cells. Nuclei are stained with DAPI (blue). Scale
bar is 5 mm. B. Representative Western blot analysis shows that ESRP1 is expressed mainly in the cytoplasm of mouse ES cells. As expected, Oct4 has a
main nuclear localisation. Actin and Lamin A/C were used for normalisation. C. qRT-PCR analysis of Esrp1, Oct4, Nanog, Sox2, and c-Myc mRNA in Scr
and Esrp1-depleted ES cells shows that there was a increase in their expression. RQ is relative quantity (n = 4). D. Representative Western blot analysis
of Oct4, Nanog, Sox2 and c-Myc expression in nuclear extracts from Scr and Esrp1-depleted ES cells. Densitometric analysis of the Western blots is
shown; A.U. is arbitrary unit (n = 3).
doi:10.1371/journal.pone.0072300.g002
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assays are also described in File S1. For rescue experiments, site

directed mutagenesis was perfomed on pIBX-C-FF-EmGFP-B-

ESRP1-2A (Kind gift of Pr. Russ Carstens) using QuikChange

Site-Directed Mutagenesis Kit and following the manufacturer’s

protocol (Stratagene). Primers used are described in Table S2.

pIBX-C-FF-EmGFP (Kind gift of Pr. Russ Carstens) was used as

control. Reverse transfection with lipofectamine 2000 was used for

delivery plasmid DNA into ES cells (Invitrogen). See File S1 for

further details.

Teratoma Formation
Animals were bred in the central animal facility of the

Molecular Biotechnology Center, University of Turin and were

allowed free access to chow and drinking water and maintained

under specific pathogen-free (SPF) conditions. Three hundred and

fifty thousand Scramble (Scr) control or Esrp1-depleted ES cells

were injected subcutaneously in recipient NOD-SCID-gamma

(NSG) female mice. Teratomas were allowed to grow for 3 to 5

weeks. Mice were sacrificed using carbon dioxide euthanasia,

followed by cervical dislocation to ameliorate suffering and

teratomas were taken. Formalin- fixed, paraffin-embedded

sections were stained with hematoxylin and eosin. For teratoma

Figure 3. Rescue of Esrp1-depleted cells and differentiation potential of Esrp1-depleted ES cells. A. Sequence of Esrp1 cDNA showing
ShRNA binding site (in bold and underlined) and the position of inserted mutations (red). The corresponding amino acid sequence is shown as well. B.
Alkaline phosphatase (ALP) staining of Scr and Esrp1-depleted ES cells transiently transduced either with empty vector (pEm) and with the ShRNA-
immune Esrp1-GFP cDNA (Esrp1*) (n = 3). C. qRT-PCR analysis of FGFR2 IIIc/IIIb ratio in Scr and Esrp1-depleted ES cells transiently transduced either
with empty vector (pEm) and with the ShRNA-immune Esrp1-GFP cDNA (Esrp1*) showing a reduction in this ratio upon rescue. RQ is relative quantity
(n = 3). D. qRT-PCR analysis of Esrp1, Oct4, Nanog and Sox2 mRNA in Esrp1-depleted ES cells transfected with pEm or Esrp1* expression vectors
showing reduction in the expression of these genes upon rescue. RQ is relative quantity (n = 3).
doi:10.1371/journal.pone.0072300.g003
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volume assessment, 56104 cells were injected as described above.

Tumor volume was measured with a calliper, using the formula:

K (length6width6height).

Ethics Statement
All animal procedures were carried out under animal bioethics

permit 116/92 (decreto legislativo 116/92) issued on the 11th of

September 2011 by the Bioethical committee of the University of

Turin, Italy.

RNA-immunuprecipitation
ES cells (Scr and Esrp1-depleted) were lysed and cytoplasmic

extracts used for immunoprecipitation with anti-ESRP1 antibody

or rabbit IgG and for RNA extraction as described in File S1.

Sucrose Gradient Polysome Fractionation
ES cells (Scr and Esrp1-depleted) were incubated with

cycloheximide (100 mg/ml, 15 min) and cytoplasmic lysates

(200 ml) were fractionated by ultracentrifugation through 10–

50% linear sucrose gradients and divided into 12 fractions for

analysis. Where specified, the fractions were collected using an

ISCO fractionator. RNA was extracted using Trizol and purelink

RNA kit (Invitrogen) from pooled fractions 6–12 (polysomes).

Protein was extracted using acetone/trichloroacetic acid precip-

itation. See File S1 for additional information.

Western Blotting
Protein was extracted using TENT buffer (50 mM Tris-HCl,

5 mM EDTA, 150 mM NaCl, 1% Triton-X100) and a cocktail of

protease inhibitors (Roche) and separated by SDS-PAGE.

Fractionation of nuclear and cytoplasmic proteins is described in

File S1. Antibodies used are described in Table S3. Cell culture

and protein extraction for analysis of human ESRP1 expression in

CD133+ kidney progenitor cells (KPC) [26] and kidney cancer

stem cells (KCSC) [27] were generously provided by B. Bussolati

and are described elsewhere. Densitometric analysis was per-

formed using the volume analysis option of Quantity One software

(Biorad Laboratories Inc).

Reporter Assay
ES cells were transfected with firefly luciferase reporter plasmids

(Pou5f1-luc [28], pGL3-CMV-SOX2-59UTR [29] or Basic-luc

control plasmid and control Renilla luciferase using Lipofectamine

2000 (Invitrogen). Forty-eight hours after transfection, cells were

processed using a Dual-Luciferase Reporter Assay System

(Promega) and reactions were read on a luminometer (Promega).

Figure 4. Analysis of differentiative potential of Esrp1-depleted ES cells. A. qRT-PCR analysis of Brachyury (mesoderm), Cdx2
(trophectoderm), Fgf5 (ectoderm) and FoxA1 (endoderm) mRNA in Scr and Esrp1-depleted embryoid bodies (EB) five days after the differentiation
process. RQ is relative quantity (n = 4). B. Representative qRT-PCR analysis of Oct4, Nanog and Sox2 mRNA in Scr and Esrp1-depleted EBs at different
time points. C i. Teratoma formation 4 weeks after subcutaneous injection of 350 000 Scr or Esrp1-depleted ES cells in NSG mice. Hematoxylin/eosin
staining demonstrates the presence of all three germ layers (n = 8). ii. Teratomas generated at 19 days after subcutaneous injection of 50 000 Scr and
Esrp1-depleted ES cells in NSG mice. Graph shows tumor volume measured with a calliper (n = 3).
doi:10.1371/journal.pone.0072300.g004
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Reporter firefly luciferase values were normalized to those of the

control Renilla to evaluate transfection efficiencies.

Statistical Analyses
Data are expressed as mean 6 standard deviation. Statistical

differences were determined by a 2-tailed Student’s t-test

(*P,0.05, **P,0.01, ***P,0.001). All experiments were per-

formed independently at least 3 times.

Results

Knockdown of Esrp1 Cells Results in Enhanced Self-
renewal in Mouse ES Cells
To identify new RBPs that may affect self-renewal in

pluripotent stem cells, we first selected a cluster of genes

significantly down-regulated upon the onset of differentiation in

mouse germline cell-derived pluripotent stem cells (GPSC), from

our previously generated cDNA microarray data [22,25]. Only

those genes that display an expression profile strongly similar to

key pluripotency factors in both human and mouse ES cells were

selected among them, using a previously described stem-cell

specific CCN [19]. As expected, the resulting short-list (Table S4)

was strongly enriched for proteins well known to play a critical role

in ES cell fate determination, such as SALL4, OCT4, DPPA4 and

L1TD1 [1,15,30,31]. Interestingly, this list also contained three

RNA-binding proteins, the role of which has not been previously

characterized in self-renewal of pluripotent cells: ELAV2,

RBPMS2 and ESRP1. We decided to concentrate our functional

validation on the latter, also considering that its expression has

been strongly correlated to the expression of pluripotency-

associated factors such as L1TD1, DNMT3B, LIN28 and TDGF1

by previous independent studies [15].

To examine the function of ESRP1 in mouse ES cells, we

knocked down the endogenous ESRP1 expression. ShRNA-

mediated depletion of ESRP1 by lentivirus in ES cells under

basal conditions was confirmed both at the mRNA level, by qRT-

PCR, and at the protein level, by western blotting and

immunofluorescence analyses (Figure 1A–C).

The conserved coexpression of Esrp1 with the main pluripo-

tency genes and its down-modulation during pluripotent cells

differentiation suggested that it could be a positive regulator of

pluripotency. However, in contrast with this prediction, methylene

blue and alkaline phosphatase (ALP) staining showed that Esrp1-

depleted ES cells formed undifferentiated colonies with greater

efficiency than controls, both in the presence and in the absence of

LIF. Scr ES cells differentiated in the absence of LIF and gave

reduced ALP positivity. These results suggest that a reduction in

ESRP1 may support LIF-independent ES cell propagation

(Figure 1D). Accordingly, Esrp1-depleted cells proliferated at

higher rate than Scr controls (Figure 1E). A second, independent

ShRNA against Esrp1 gave similar results (Figure S1). On

inactivated mouse embryonic fibroblasts (Mefs), Esrp1-depleted

ES cell colonies were morphologically similar to controls and

stained positive for OCT4 and NANOG (Figure S2).

As ESRP1 is well known for its involvement in maintaining an

epithelial phenotype, we analysed the EMT status of the ES cells

depleted for ESRP1 (Figure 1F). There was a statistically

significant increase in the FGFR2 IIIc/IIIb ratio in these cells

compared to Scr controls. This was accompanied by a switch from

the CD44v to CD44s isoform upon knockdown of ESRP1, as well

as an increase in Slug, Snai1 and Vimentin which are known

markers of EMT. These changes were confirmed with another

ShRNA against ESRP1 (Figure S1). On the other hand, there was

a slight but significant decrease in E-cadherin expression in the

ESRP1-depleted ES cells (Figure 1F).

Confocal microscopy analysis of E14 ES cells revealed that

ESRP1 was localized both in the nucleus and in the cytoplasm.

Figure 5. ESRP1 is expressed in spermatogonial stem cells. A.
Spermatogonial stem cells (SSCs) were characterised by qRT-PCR
analysis. RQ is relative quantity (n = 4). B. Western blot analysis shows
that ESRP1 is expressed in ES cells, in GPSCs as well as in SSCs. ES cells
and GPSCs were lysed after 30 minutes’ preplating to remove Mefs,
while SSCs were scraped off together with the Mef-feeder layer for lysis.
The primordial germ cell marker, MVH was enriched in SSCs versus the
other cell lines. Actin was used for normalisation (n = 2). 3T3 fibroblasts
were used as negative control. C. Confocal microcroscopy analysis
revealed that ESRP1 is both nuclear and cytoplasmic in the SSCs as well.
MVH staining was used as positive control. Scale bar is 5 mm.
doi:10.1371/journal.pone.0072300.g005
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Fractionation of nuclear and cytoplasmic proteins showed that

ESRP1 was mainly located in the cytoplasm in the E14 ES cells

(Figure 2A and B), in good agreement with previous reports on

LS180 colon carcinoma cells [32]. Analysis of another ES cell line,

v6.5, confirmed these results (Figure S3). This finding, together

with the fact that ESRP1 was found to bind to c-Myc and regulate

its expression, prompted us to investigate whether ESRP1 could be

involved in the regulation of pluripotency- related genes as well.

We thus measured the levels of the core pluripotency factors,

Oct4, Nanog and Sox2 as well as the Esrp1 target c-Myc,

(Figure 2C and D) and found that they were higher, albeit

moderately, both at mRNA and protein levels with respect to Scr

controls [32].

In order to exclude the possibility of off-target effects of the

ShRNAs, rescue experiments were performed using a mutant

Esrp1. The four mutations inserted in the ShRNA binding site in

pIBX-C-FF-EmGFP-B-ESRP1-2A plasmid (Figure 3A) did not

alter ESRP1 expression when compared to a plasmid expressing

the wild-type ESRP1 (Figure S4A) [33]. Importantly, transient

introduction of this mutant plasmid into Esrp1-depleted ES cells

reverted the phenotype observed after Esrp1 depletion. In

particular, compared to cells transfected with the empty vector

only, less ALP- positive colonies formed from Esrp1-depleted ES

cells transfected with the ShRNA-immune Esrp1 (Figures 3B).

Restoration of Esrp1 expression also induced a decrease in FGFR2

IIIc/IIIb ratio and in core pluripotency genes expression

(Figure 3C and D, respectively) to a level that was comparable

to that of Scr ES cells. Similar results were obtained with ES cells

in a different genetic background (v6.5) (Figure S4B) or after

knockdown with a second ShRNA against Esrp1 (Figure S4C).

Taken together, these results indicate that Esrp1 was acting on

self-renewal by regulating the expression of pluripotency tran-

scription factors.

Depletion of Esrp1 Enhances Induced Pluripotent Stem
(iPS) Cell Colony Generation
To establish whether, besides to its role in ES cell proliferation

and self renewal, ESRP1 may also play a role in pluripotency

acquisition, its expression was analysed during the reprogramming

of primary Mefs into iPS cells as previously described [34]. In

accordance with previous studies, the expression of Esrp1 shows a

trend similar to the core pluripotency factors starting at Day 8 of

reprogramming and increasing progressively (Figure S5A) [35].

Moreover, depletion of Esrp1 in Mefs before the reprogramming

procedure resulted in increased number of iPS cell colonies as

evidenced by CDy1 and OCT4 staining compared to Scr controls

Figure 6. ESRP1 binds to pluripotency-related mRNAs. A. RNA-immunoprecipitation (RIP) was performed using an anti-ESRP1 antibody. qRT-
PCR was employed to analyse for the presence of Oct4, Nanog, Sox2, c-Myc and Lin28 mRNA bound by ESRP1. ESRP1-depleted samples were used as
negative control; RQ is relative quantity (n = 3). 18s mRNA was equally immunoprecipitated in both cell types and average threshold cycle (Ct) is
shown. B. 59UTR reporter luciferase assay of Scr and ESRP1-depleted ES cells transfected with pGL3-pCMV-59UTR-Oct4 and pGL3-pCMV-59UTR-Sox2
versus Basic pGL3 vector; A.U. is arbitrary unit (n = 6).
doi:10.1371/journal.pone.0072300.g006
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or controls not infected with ShRNA-harbouring lentiviruses (NT)

in agreement with the data on ES cells (Figure S5B and C,

respectively) [36]. EBs generated from iPS resulting from the three

conditions expressed markers of the three germ layers upon EBs

formation (Figure S6A) and formed teratomas when injected into

immuno-compromised mice (Figure S6B).

Downregulation of Esrp1 in ES Cells Results in Impaired
Early Differentiation Capacity
To assess the impact of Esrp1 depletion on the differentiation

capacity of ES cells, we generated EBs from Scr control and

Esrp1-depleted ES cells. At Day 5 of differentiation in vitro, Esrp1-

depleted ES cells showed impaired early differentiation, as

indicated by the reduced levels of mesoderm (Brachyury) and

endoderm (FoxA1) markers (Figure 4A). Ectoderm (Fgf5) marker

expression was comparable (Figure 4A). In order to exclude the

possibility that a reduction of ESRP1 expression might lead to

trophectoderm differentiation of ES cells (as previously observed

upon Oct4 and Sall4 depletion in ES cells [2,30]), we also analysed

the expression of trophectoderm (Cdx2) marker. A reduction in

Cdx2 expression was observed in Esrp1-depleted ES cells

compared to Scr ES cells (Figure 4A). Moreover, in the EBs

derived from Esrp1-depleted ES cells, the expression of pluripo-

tency-related genes remained elevated till Day 5 of differentiation

and then become comparable to Scr controls by Day 8 (Figure 4B).

In order to test whether the delay in differentiation was temporal

or absolute, in vivo teratoma assay was performed by injecting

3.56105 Esrp1-depleted cells in NOD-SCID-Gamma (NSG) mice

[37]. Resulting teratomas in 8 out of 8 mice per group comprised

all the three germ layers showing that these cells are indeed

pluripotent and that their differentiation defect is only temporal

(Figure 4C). These data establish that the depletion of Esrp1 does

not impair the multilineage differentiation potential of ES cells on

the long term. Interestingly, the same assay, performed under non-

saturating conditions (56104 ES cells) showed that Esrp1 KD ES

cell-derived teratomas grew significantly faster that those derived

from Scr control (Figure 4C). This was due to the higher

proliferation rate, as evidenced by PCNA staining, of the more

prominent neuroepithelium (asterisks and insets in Figure S7) in

teratomas generated from Esrp1-depleted ES cells compared to

Scr ES cells (Figure S7).

ESRP1 is Expressed in Epithelial Stem Cells
In order to assess the applicability of these findings to other

types of stem cells, we analysed the expression of ESRP1 in the

unipotent spermatogonial stem cells or SSCs. As expected, the

mouse SSCs express pluripotency markers like Oct4, Sox2, Klf4,

Lin28, c-Myc as well as e-cadherin, but not Nanog compared to

the pluripotent stem cells, ES and GPSCs [38,39]. ESRP1 is

expressed both at the RNA and protein levels in SSCs (Figure 5A

and B). Interestingly, ESRP1 is present both in the nucleus and the

cytoplasm of these cells, in accordance with the results obtained on

ES cells (Figure 5C and Figure 2A, respectively). Moreover,

ESRP1 is also highly expressed in CD133+ human kidney

progenitor cells, but downregulated in kidney cancer stem cells

(protein extracts kindly provided by B. Bussolati) (Figure S8)

[26,27].

Figure 7. Polysomal loading of pluripotency-related mRNAs. A i. Polysome profiles of Scr and Esrp1-depleted ES cells obtained using an ISCO-
fractionator. ii. qRT-PCR analysis shows the abundance of Oct4, Nanog, Sox2, c-Myc, Esrp1 and Lin28 mRNA in pooled polysomal fractions. 18s mRNA
was equally immunoprecipitated in both cell types and average threshold cycle (Ct) is shown. RQ is relative quantity (n = 3). B. Representative Western
blot analysis of ESRP1, RPS6 and RPL4 expression in the sucrose gradient fractions obtained from ES cells lysates under basal conditions.
doi:10.1371/journal.pone.0072300.g007
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ESRP1 Binds to Pluripotency-related mRNAs
As a protein containing RNA-recognition motifs, ESRP1 has

been reported to associate with multiple mRNAs at their 59UTRs

in the cytoplasm and to control their turnover and/or translational

regulation [32]. To further analyse if pluripotency-related mRNAs

are also bound by ESRP1, we performed RNA-immunoprecipi-

tation with an anti-ESRP1 antibody on cytoplasmic extracts from

mouse control ES cells. In agreement with the mentioned study, c-

Myc mRNA was specifically immunoprecipitated in this assay, as

no binding to the preimmune IgG (Figure S9) or in Mefs (Table

S5) used as negative controls was detected (Figure 6A). Most

interestingly, Oct4 and Sox2 mRNAs were consistently co-

immunoprecipitated with ESRP1(Figure S9). Accordingly, when

ESRP1-depleted ES cells were used, there was statistically

significant reduction in these pluripotency-related mRNAs, but

not in Nanog or Lin28 mRNA, in the ESRP1 immunoprecipita-

tion compared to the Scr controls (Figure 6A). We further

investigated whether ESRP1 could regulate the expression of Oct4

and Sox2 mRNAs through their 59UTR regions, by analysing

translation of firefly luciferase reporter using pGL3-pCMV-

59UTR-Oct4 and pGL3-pCMV-59UTR-Sox2 versus basic

pGL3 vector. The luciferase reporter assays show that there was

a statistically significant increase in luciferase activity when ESRP1

was depleted in ES cells compared to Scr controls (Figure 6B),

Figure 8. Model for the role of ESRP1 in regulating pluripotency. Under basal conditions (upper panel), ESRP1 in the cytoplasm binds to the
59UTR of mRNAs of core pluripotency factors and negatively regulates their polysomal loading and translation. In the nucleus, the well-known role of
ESRP1 in alternative splicing ensures an epithelial-like phenotype in these cells. The ES cells are thus in a differentiation-poised state. When ESRP1 is
depleted (lower panel), the check imposed by this protein on the translation of core pluripotency factors mRNAs is removed, and there is excess
translation of the latter resulting in impaired early differentiation of these ES cells. These cells also undergo an EMT-like change.
doi:10.1371/journal.pone.0072300.g008
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confirming that ESRP1 could inhibit the expression of Oct4 and

Sox2 by binding their 59UTR regions.

Depletion of ESRP1 does not Affect the Decay Rate but
Stimulates the Polysomal Loading of Pluripotency-
related mRNAs
Since RBPs can regulate mRNA turnover, we investigated

whether ESRP1 can influence the stability of pluripotency-related

mRNAs. Actinomycin D-treated Scr and Esrp1-depleted ES cells

showed similar mRNA decay rates of Oct4, Nanog, Sox2 and c-

Myc, while as expected, there was a significant difference the

Esrp1 mRNA degradation rate in these two cell types (Figure S10).

Thus, at least in our hands, ESRP1 does not affect the analysed

pluripotency-related mRNA stability in mouse ES cells.

It is generally believed that mRNAs actively being translated are

associated with polysomes and that an increased polysome

association indicates an increase in translation efficiency [40].

Based on this assumption, to provide further evidence supporting

the inhibitory role of Esrp1 on mRNA translation, we performed

polysomal profiling [32]. Cytoplasmic extracts from Scr and

Esrp1-depleted ES cells were subjected to sucrose gradient

fractionation and total RNA was extracted from polysomal

fractions. While there was no difference in the ISCO fraction-

ator-generated polysome profile of Scr and Esrp1-depleted ES cells

(Figure 7A), the amount of core pluripotency-related factors and c-

Myc mRNAs in the pooled polysomal fractions was significantly

higher upon depletion of Esrp1 compared to controls (Figure 7A).

These results suggest that the increased protein levels of

pluripotency factors shown in Figure 2D are at least partially

due to their increased translation. On the other hand, Nanog and

Lin28 mRNA loading did not significantly differ between Scr and

Esrp1-depleted ES cells (Figure 7A). To further investigate in

which sucrose gradient fractions ESRP1 was found in ES cells

under basal conditions, we extracted proteins from the different

fractions. The results show that ESRP1 is not located in the

polysomal fractions (Figure 7B), suggesting that ESRP1 may

sequester pluripotency-related mRNAs away from the polysomes.

Taken together, our findings indicate that depletion of ESRP1 in

ES cells resulted in alteration in the level of expression of core

transcription factors and the resultant cumulative effect of these

changes affects early differentiation of these cells.

Discussion

ESRP1 has been shown to affect the mRNA translation of

several cancer-related genes, including c-Myc and Fos, through

direct binding of their 59 untranslated regions (UTRs) [20,32].

Moreover, Warzecha et al. demonstrated that ESRP1 can

promote the alternative splicing of transcripts that switch splicing

during epithelial to mesenchymal transition (EMT) [33,41,42]. Its

role in EMT and tumor progression is getting increasingly studied

[43,44,45].

In this study, we identified the RBP ESRP1 as a candidate

regulator of self renewal and pluripotency in ES cells on the basis

of its conserved co-expression with well-established pluripotency

factors. Moreover, and most importantly, we provide strong

functional evidence in support of this hypothesis, showing that

ESRP1 controls the translation of pluripotency-related mRNAs in

mouse ES cells and that its downregulation favours reprogram-

ming of differentiated fibroblasts into pluripotent cells.

The capability of ESRP1 to restrain self renewal could appear

paradoxical if its expression profile is considered. Indeed, ESRP1

is downregulated with the other pluripotency factors when both

mouse GPSC and ES cells lose pluripotency, and it is upregulated

when fibroblasts are reprogrammed into iPS cells. However, the

experiments that we performed clearly indicate that ESRP1

functionally counteracts the activity of pluripotency-related genes.

Indeed, reduced levels of Esrp1 enhances ES cells proliferation

and self renewal, as shown by the higher number of undifferen-

tiated colonies generated in vitro and by the increased size of

teratoma obtained upon injecting non-saturating amounts of cells

into immune-compromised animals compared to Scr controls. In

addition, Esrp1 knockdown increases the number of iPS cell

colonies obtained from primary differentiated fibroblasts. An

alternative explanation for these phenotypes could be that a

reduction of Esrp1 could transform pluripotent cells, a conceivable

scenario especially if considering the previous implication of

human ESRP1 as a tumor suppressor gene and in EMT [32,33].

However, our data seem to exclude this possibility. Indeed, Esrp1-

depleted cells are still capable of responding to differentiative

stimuli, albeit with a slower kinetic when compared to control

cells. Moreover, teratoma formation assays showed that these cells

are still capable of giving rise to derivatives of the three germ

layers. On the basis of these data, it seems safe to us to conclude

that, in pluripotent cells, ESRP1 is a physiological regulator of the

finely tuned balance between self renewal and commitment to a

restricted developmental fate.

The simplest explanation to reconcile the functional properties

of Esrp1 with its expression profile could be that the same

transcriptional program that sustains the expression of pluripo-

tency factors is responsible for the activation of a negative control

layer, composed of Esrp1, and possibly, by other coding or non-

coding genes. The existence of such negative fine-tuning would be

very helpful to explain how the pluripotency machinery is kept

under strict control, if considering that it is maintained in

pluripotent cells by strong positive feedback loops between the

core transcription factors [46]. An important next step to further

support this scenario will be to investigate how Esrp1 is regulated

at the transcriptional level. Interestingly, CHIP-seq data indicated

that its promoter contains binding sites for both polycomb

repressive complex (PRC) members (PRC2: EZH2 and SUZ12

and PRC1: RING1B) as well as for pluripotency-related genes

(NANOG, KLF4, TCF3), suggesting that ESRP1 level in mouse

ES cells is controlled by both pluripotency factors as well as PRC

members [46,47]. However, further studies are needed to assess

how important these factors are for the regulation of ESRP1 in ES

cells under basal conditions and in response to differentiative

stimuli.

Another important question is how does ESRP1 work at the

molecular level? The increased levels of pluripotency factors that

we detected in Esrp1-depleted cells as well as the luciferase

reporter assays, together with the previous information on ESRP1

functions, strongly suggest that it may influence the expression of

these genes by directly binding to their mRNA. Consistently, we

found that the mRNA of c-Myc as well as the mRNA of Oct4, and

Sox2 can be specifically co-immunoprecipitated with ESRP1. This

interaction does not affect the decay rate of the studied mRNAs

(Figure S7), suggesting that ESRP1 probably does not bind to the

39UTR of these mRNAs and does not affect mRNA stability [48].

The alternative possibility that ESRP1 may primarily regulate

translation was already supported by previous evidence. Indeed, it

has been shown that ectopic expression of ESRP1 results in

moderate changes in polysomal loading of a number of genes and

that it can exert a differential effect on reporter RNA translation

mediated by various 59UTRs [32]. The degree of 59UTR-

mediated translational inhibition by ESRP1 is strongly dependent

on the complexity of the secondary structure of the 59UTRs. Esrp1

was also shown to control the translation of the oncogene and
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pluripotency factor c-Myc [32]. Consistent with this hypothesis, we

found that, in Esrp1-depleted cells, the polysomal loading of

pluripotency genes is significantly increased and that ESRP1 is not

associated with polysomes. These results strongly support a

scenario in which ESRP1 reduces the levels of pluripotency

factors primarily by binding to their mRNAs and thus preventing

their association to active ribosomes. As the pluripotency

transcription factors are known to form part of a feed forward

auto-regulatory loop, even the moderate rise in their protein levels

may result in increased transcription as observed upon ESRP1

depletion in mouse ES cells (Figure 8) [46]. However, we cannot

rule out the possibility that ESRP1 may prevent translation

initiation, like for e.g., the physical binding of Esrp1 to these

mRNAs may interfere with the binding of certain elongation

initiation factors that form the initiation complex. We also cannot

exclude that ESRP1 is acting, in parallel, on alternative splicing of

other factors of the extended transcriptional network and thus

influencing the self-renewing capacity of ES cells.

Conclusion

Our results strongly support the role of ESRP1 as a

physiological regulator of pluripotency-related factors in mouse

ES cells. The expression of ESRP1 in other stem cells, of both

mouse and human origin, pinpoints the importance of this RBP in

stem cell biology.

Supporting Information

Figure S1 Two ShRNAs versus Esrp1 gave similar
results. A. Methylene blue and ALP staining of ES cells after

infection and puromycin selection in the presence of LIF. NT are

non-infected controls; ES cell colonies from Scr control and from

Esrp1-depletion with two different ShRNAs versus Esrp1 (E2 and

E4) are shown. B. Methylene blue staining of 2000 cells plated at

passage 4 on gelatin 7 days post-plating with or without LIF. ES

cell colonies from Scr control and from Esrp1-depletion with two

different ShRNAs versus Esrp1 (E2 and E4) are shown. C. MTT

assay performed 5 days after plating of Scr and Esrp1-depleted (E2

and E4) ES cells on gelatin. Bars indicate mean absorbance at

540 nm (n= 6). D. PCR analyis of CD44 isoforms (CD44

variable(v) and CD44 standard(s)) in NT and Scr ES cells versus

Esrp1-depleted (E2 and E4) ES cells. Esrp1 and Oct4 expression

was also analysed and normalised to Actin. E. qRT-PCR analysis

of FGFR2 IIIc/IIIb ratio in ES cells depleted for Esrp1 with

another ShRNA (E4) compared to Scr cells. RQ is relative

quantity.

(TIF)

Figure S2 Esrp-1-depleted ES cells are pluripotent.
Phase contrast images of Scr and Esrp1-depleted ES cell colonies

grown on inactivated Mefs. Lower panels show immunofluores-

cence staining for Oct4 and Nanog. Scale bar is 20 mm.

(TIF)

Figure S3 Analysis of Esrp1-depleted v6.5 ES cells.
Fractionation of nuclear and cytoplasmic proteins of Scr and

Esrp1-depleted ES cells were analysed for the abundance of

ESRP1. A representative Western blot is shown. Oct4 was mainly

nuclear. Blots were normalised with Actin and Lamin A/C.

(TIF)

Figure S4 Correct expression of mutated ESRP1. A.

Western blot analysis showing expression of mutated ESRP1-GFP

compared to wild type ESRP1-GFP and empty vector using anti-

GFP antibody. B. qRT-PCR analysis of the FGFR2 IIIc/IIIb ratio

upon rescue in Esrp1-depleted v6.5 ES cells. Cells were transfect-

ed either with the empty vector (pEm) or with the mutated Esrp1

(Esrp1*). RQ is relative quantity. C. Rescue experiment was

performed on ESRP1-depleted (E4) and control Scr E14 ES cells.

E4 is another ShRNA wich gave efficient reduction of ESRP1

expression. qRT-PCR analysis shows the reduction in FGFR2

IIIc/IIIb ratio upon introduction of mutated Esrp1 (Esrp1*) in E4

cells. RQ is relative quantity (n = 3).

(TIF)

Figure S5 Generation of iPS cells from Scr and Esrp1-
depleted Mefs. A. Representative qRT-PCR analysis of Esrp1,

Oct4, Nanog and Sox2 expression at different time points during

the reprogramming process. B. Representative fluorescence

images for CDy1 probe (red) of iPS colonies generated from

OSK-infected Mefs only (NT) and those double-infected either

with OSK and lentivirus expressing short hairpin versus Scr or

Esrp1. Bars show mean counts of colonies per dish. Scale bar is

100 mm. C. Oct4 staining of iPS cells generated from Esrp1-

depleted Mefs versus non-infected (NT) or Scr controls. Scale bar

is 100 mm.

(TIF)

Figure S6 Differentiative potential of iPS cells generat-
ed fromMefs infected with lentivirus harbouring ShRNA
against Scr or Esrp1. A. qRTPCR analysis of EBs generated

for the indicated time points shows that all three iPS cell types

(NT, Scr and E2) differentiate into the 3 germ layers. This graph is

representative of 2 independent analyses. B. 56105 iPS cells were

injected subcutaneously in five NOD-scid mice. Tumors were

sought after 4 weeks. Hematoxylin/eosin staining of the teratoma

sections reveal the presence of the 3 germ layers.

(TIF)

Figure S7 Histological analysis of teratomas. Hematox-

ylin/eosin (H/E) staining of sections of teratomas generated from

ESRP1-depleted ES cells compared to those derived from Scr ES

cells. Asterisks show representative neuroepithelium shown in

inset. PCNA staining shows that ESRP1-depleted teratomas have

larger proliferating neuroepithelial areas compared to Scr

teratomas. Arrows show neuroepithelium.

(TIF)

Figure S8 Analysis of ESRP1 expression in human
stem/progenitor cells. CD133+ kidney progenitor cells

(KPC) [26] express ESRP1 while kidney cancer stem cells (KCSC)

[27] do not.

(TIF)

Figure S9 RNA-immunoprecipitation in Scr ES cells.
qRT-PCR analysis of mRNA eluted from RIP in Scr ES cells

shows that there was little binding to preimmune IgG for Oct4,

Sox2 and cMyc mRNAs versus anti-ESRP1 antibody. This graph

is representative of 2 independent experiments.

(TIF)

Figure S10 mRNA decay rates of pluripotency-related
mRNAs upon Esrp1 depletion. qRT-PCR analysis of the

percentage of Oct4, Nanog, Sox2, c-Myc and Esrp1 mRNA

remaining in the ES cells after actinomycin D treatment for the

indicated time points (n = 6).

(TIF)

Table S1 Primers used for PCR and qRT-PCR, and UPL
probes used in this study.

(DOC)
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Table S2 Primers used for mutagenesis of Esrp1 cDNA
at ShRNA binding site.

(DOC)

Table S3 Antibodies used in this study.

(DOC)

Table S4 Stem cell-specific co-expression analysis re-
veals genes that are co-expressed with Oct4, Sall4,
L1TD1 and Dppa4.

(DOC)

Table S5 qRT-PCR analysis following RNA-IP with anti-
ESRP1 antibody. Results show relative quantity of mRNA of

each gene immunoprecipitating with anti-ESRP1 antibody in

primary Mefs, or using ES cells infected with lentivirus harbouring

short hairpin against Scr or GFP versus short hairpin against

Esrp1.

(DOC)

File S1 Supplementary Materials and Methods.

(DOC)
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