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Abstract

Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and
encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations,
which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design
DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming
distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved
genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy
gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When
compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then
used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel
constraint parameters on the free energy gap.
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Introduction

More than half a century has passed since the double helix

configuration of DNA was identified [1]. Presently, such knowl-

edge about DNA contributes to virtually every area of science,

including the use of DNA as a computational tool [2]. The

hybridization reaction between 2 DNA sequences is important for

advanced DNA applications because its efficiency and accuracy

directly influence application reliability; however, false hybridiza-

tion is an unavoidable artifact of combining DNA strands due to

biotechnical limitations. False hybridizations occur as false

positives and false negatives [3,4]. A false positive hybridization

is a new duplex formed by mismatched single DNA sequences, due

to a lack of single-strand similarities. A false negative hybridization

involves matching DNA sequences that do not hybridize at all due

to biochemical errors [5,6]. DNA sequence design is critical to

many biotechnological applications. DNA microarrays rely on

accurate DNA design of probes that are immobilized on a surface

and bind specifically to complementary targets in a complex

mixture [7,8]. Designing DNA sequences which satisfy some

constraints could reduce false positives and improve hybridization

uncertainty and inaccuracy between probes and their comple-

mentary targets. Designed DNA sequences should satisfy single or

combinational constraints to ensure DNA sequence quality and

permit the shortest DNA sequence to code for each informational

unit required. Accurate DNA production also reduces false

hybridizations and improves accuracy. The goal of DNA sequence

design is to find the maximal number of designs that satisfy single

or combinatorial constraints as well as the smallest design that

satisfies these constraints.

We propose a novel distance criterion for designing DNA

sequences. Using the novel free energy gap constraint, we designed

DNA with better thermodynamic properties. Then, an improved

genetic algorithm was used to search the lower bounds of DNA

sequence sets that satisfy the novel and combinatorial constraints.

Finally, we describe the relationship between the thermodynamic

properties of DNA sequence sets and the parameters of novel

constraints.

Methods

Free Energy Gap Criterion
Biotechnical limitations contribute to DNA hybridization

uncertainties and inaccuracies which limit available DNA-based

applications. To improve hybridization between two DNA

molecules, investigators have explored DNA sequence thermody-

namic properties to control the MFE and melting temperature. As

a criterion for measuring thermodynamic properties of DNA

sequences, the MFE of a sequence or sequences is the minimum

value among free energies of all possible conformations of a

sequence (s) [9]. Here, we report our efforts using the online

freeware PairFold to predict the MFE of two interacting DNA

molecules and gauge the quality of DNA sequence sets by using

the free energy gap d.

A DNA sequencesis a string composed of alphabet

S= {A,C,G,T}. DG(u,v) denotes the value of MFE between
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DNA sequences u and v, which is calculated by PairFold [9]. In

addition, s9 denotes the Watson-Crick reverse-complement

sequence of DNA sequence s. S is the set of DNA sequences s,

S9 is the set of s9. To calculate the free energy gap d, definitions are

stated as follows:

(1) Sequence-Sequence Constraint: for all pairs of ui, vj in S,

DGww(ui)~ min
1ƒjƒn

fDG(ui,vj)g ð1Þ

(2) Sequence-Complement Constraint: for all pairs of ui in S, vj in

S9, and i ? j,

DGwc(ui)~ min
1ƒjƒn,i=j

fDG(ui,v
0
j )g ð2Þ

(3) Complement-Complement Constraint: for the pairs of ui, vj in

S9,

DGcc(ui)~ min
1ƒjƒn

fDG(u
0
i ,v
0
j )g ð3Þ

(4) Sequence-Self-Complement Constraint: for all pairs of ui in S,

ui in S9, and u = (u9)9,

DGws(ui)~ min
1ƒiƒn

fDG(ui,u
0
i )g ð4Þ

(5) Free energy gap: denoted by d. For two DNA sequences u and

v,

minfDG(u,v),DG(u,v0),DG(u0,v0)g{DG(u,u0)§d ð5Þ

where u,v[S and u0,v0[S0. In general, a larger d represents a larger

gap between the free energy of desired and undesired hybridiza-

tions, and thus a better set (DNA sequence set quality) [7,10]. We

used the free energy gap to gauge the quality of DNA sequence

sets constrained by the Hamming distance and the novel

constraint, namely the longest aligning common substring distance

constraint (LACS). By comparing the free energy gap, we

measured the influence of different distance constraints on DNA

sequence designs.

The Hamming Distance Constraint
The Hamming distance constraint is frequently used to reduce

DNA sequence similarity for DNA-based applications and mainly

includes the word-word Hamming distance constraint (WWH) and

the word-complement Hamming distance (WCH).

Garzon first proposed the definition problem of designing DNA

sequences for DNA computing [11] as follows: in the alphabet

S= {A,C,G,T}, there exists a set S with length n and size of

|S| = 4n. A subset C(S and let u, v any two codes in the C satisfy:

t(u,v)§d ð6Þ

d is a positive integer, t is the constraint criteria (or criterion) for

DNA sequences, such as the Hamming distance criterion.

Word-word Hamming distance (WWH). Word-word

Hamming distance constraint: for the DNA sequences u,v with

given length n (written from the 59 to the 39 end), H(u,v) denotes the

Hamming distance between u and v. WWH(ui) denotes the

minimal H(ui,vj) in all DNA sequences and should not be less

than parameter d,

WWH(ui)~ min
1ƒjƒn,j=i

H ui,vj

� �� �
§d ð7Þ

Word-complement Hamming distance (WCH). Word-

complement Hamming distance: for DNA sequences u,v9 with

given length n (written from the 59 to the 39 end), H(u,v9) denotes

the Hamming distance between u and v9. WCH(ui) denotes the

minimal H(ui,v9j) in all DNA sequences and should not be less than

parameter d, i.e.,

WCH(ui)~ min
1ƒjƒn,j=i

H ui,v
0
j

� �n o
§d ð8Þ

GC content constraint. The GC content constraint approx-

imates the thermodynamic properties of DNA sequences and is

combined with the distance constraint. A fixed percentage of

nucleotides within each DNA sequence is G or C. Using this

constraint, we assume this percentage is (tn=2s
�
n)%.

The Novel Distance Constraint
We propose the novel LACS distance constraint for the design

of DNA sequences. DNA sequences that satisfy the novel

constraint show reduced similarity and exhibit better thermody-

namic properties than sequences constrained by Hamming

distance.

Similarity. The LACS distance denotes [l,k] = LACS(A,B); l is

the length of the longest consecutive common substring between A

and B, k is the number of positions (excluding the longest

consecutive common substring) at which the corresponding

symbols are the same while aligning the location of the longest

common substring between A and B.

For example, strings A1 = 10111010, string B1 = 11001111,

A2 = 10101011, B2 = 11001100, [4,0] = LACS(A1,B1), [3,1] = LAC-

S(A2,B2). First, A1 and B1 align the location of the longest common

substring as in Fig. 1, in which we find that the longest consecutive

common substring is 0111, so l = 4. At the same, other aligned

sequences are not equal, then k = 0. For A2 and B2, they are

aligned as the location of the longest common substring as in Fig. 2,

in which we find that the longest consecutive common substring is

011, so l = 3. After alignment using the longest consecutive

common substring, the third subsequence of A2 is equal to the first

subsequence of B2, the k = 1.

In this paper, n denotes the length of the DNA sequence.

According to the definition of Hamming distance denoted by dH

for designing DNA sequences, we define the LACS distance dL,

dL = n – l – k. Generally speaking, the smaller the values of l and k

and the larger the value of dL, the smaller the similarity between 2

strings.

Thermodynamic property. MFE is the minimum free

energy of all possible structures and the most effective approach

to control for unexpected secondary DNA sequence structures.

The algorithm of PairFold and the standard thermodynamic

Figure 1. Example of A1 and B1.
doi:10.1371/journal.pone.0072180.g001
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parameters for DNA molecule are based on the nearest-neighbor

thermodynamic model [9]; therefore, we employed the LACS

distance constraint to approximate the MFE between 2 DNA

sequences (not necessarily matching each other) that could form

secondary structures.

Word-word LACS distance (WWL). Word-word LACS

distance constraint: for the DNA sequences u,v with given length

n (written from the 59 to the 39 end), WWL(ui) denotes the maximal

LACS(ui,vj) in all DNA sequences, where the values of l and k

should not be more than parameters tl and tk, respectively.

WWL(ui)~

li~ max
1ƒjƒn,j=i

LACS ui,vj

� �� �
ƒtl

ki~ max
1ƒjƒn,j=i

LACS ui,vj

� �� �
ƒtk

8<
:

9=
; ð9Þ

Word-complement LACS distance (WCL). Word-comple-

ment LACS distance: for the DNA sequences u,v9 with given

length n (written from the 59 to the 39 end), WCL(ui) denotes the

maximal LACS(ui,v9j) in all DNA sequences, where the values of l

and k should not be more than parameters tl and tk, respectively.

WCL(ui)~

li~ max
1ƒjƒn,j=i

LACS ui,v
0
j

� �n o
ƒtl

ki~ max
1ƒjƒn,j=i

LACS ui,v
0
j

� �n o
ƒtk

8><
>:

9>=
>;
ð10Þ

Here, we employed the improved genetic algorithm to design

DNA sequence sets which satisfy the combinatorial constraints

based on the different distance, and gauged the quality of the sets

using the free energy gap calculated by PairFold [19]. Comparing

free energy gaps can verify which distance constraint is better for

DNA design. To improve the quality of DNA sequence design, the

number of the LACS is equal to 1 in each pair of DNA sequences.

Algorithm Design
Genetic algorithms (GAs) are adaptive heuristic search algo-

rithms based on evolutionary concepts of natural selection and

genetics. An improved genetic algorithm to design DNA sequence

sets based on the LACS distance constraints could enhance global

search capabilities of a traditional genetic algorithm based on

DNA sequence set characteristics. Improvements include initial-

izing algorithm populations with the evenly distributed method.

This enhances multiformity of populations based on a global field.

According to the number of populations, the populations are

evenly distributed in the value scope by the evenly distributed

method. Randomly re-initializing the populations when they

satisfy certain conditions would overcome premature convergence.

Population re-initialization occurs once because increased time

decreases the convergence of the algorithm. In the mutation

process, we adjusted the probability of a mutation operator with a

dynamic method. The traditional genetic algorithm adopts unique

values to process the mutation operation, which could reduce

convergence. The optimization problem is defined by the problem

of maximum value, and we employ an average weight to manage

the evaluation function. We denote fitness function f(i):

f (i)~
Xm

j~1

vj fj ið Þ, fj(i)[fWWL(ui),WCL(ui)g, ð11Þ

where vj = 1 is the weight of each constraint, m is the number of

constraints, and fj(i) are the selected constraints.

The algorithm initializes DNA sequences with an evenly

distributed method, selecting sequences which satisfy the con-

straint (or constraints), generating new DNA sequences by

selection, crossover, and the mutation operator, and finally

yielding the desired DNA sequence sets. Figure 3 illustrates the

process flow.

The steps for designing DNA sequence sets with the improved

genetic algorithm are as follows:

Step 1: Set parameters and initialize the population with an

evenly distributed method.

Step 2: Calculate the value of fitness function. We employed the

MeanF to denote the mean of the fitness function. If

MeanFv

Pm
i~1

f (i)=m, then randomly re-initializing the popula-

tions.

Step 3: Generate the next generation population by selection,

crossover, and mutation. The algorithm uses random tournament

selection and the three-point crossover strategy. The size of the

tournament is 2 and the number of repetitions is equal to 10% of

the total population in the random tournament selection. In the

mutation process, if fitness is larger than MeanF, its probability of

mutation is 0.01, and if it is equal to MeanF, its probability of

mutation is 0.03. Otherwise, its probability of mutation is 0.3. This

process yields dynamic adjustment of the probability. If the

generation is less than 200, the algorithm proceeds to step 2; if not,

the algorithm moves to step 4.

Step 4: End and output results.

Our algorithms were successful with many different combina-

torial constraints. Our results were better than those described in

previous reports [12,13]. Thus, our algorithm is sufficient to design

DNA sequence sets which satisfy the LACS distance constraint.

Results

The parameters of the improved genetic algorithm in our

example are as follows: population size 1000, crossover 0.45, initial

probability of a mutation is 0.01. To control the run time of the

algorithm, the number of generations is 200. We used the PairFold

package [9] to calculate the MFE of 2 DNA sequences. According

to recent research, no statistically significant differences exist

among free energy approximations in 4 publicly available and

widely used programs [8]. The temperature in the algorithm is

37uC. To increase the reliability of our experimental results, we

performed 50 experiments for every value and reported the mean

of these experiments. In the tables, d is the distance based on the

Hamming, LACS, or both constraints, and n is the length of the

DNA sequence. Blank cells contain the ‘–’ symbol.

Comparing the Free Energy Gaps
In Tables 1 and 2, d is the distance based on the Hamming and

LACS constraints, for which d = dH = dL. Data in Table 1 are the

free energy gaps of DNA sequence sets which satisfy the WWL and

WCL combinatorial constraints. Parenthetical data are the free

energy gaps that satisfy the WWH and WCH combinatorial

Figure 2. Example of A2 and B2.
doi:10.1371/journal.pone.0072180.g002
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constraints in Table 1. Table 2 data are the free energy gaps that

satisfy the WWL, WCL, and GC content combinatorial

constraints. Data in parentheses are the free energy gaps that

satisfy the WWH, WCH, and GC content combinatorial

constraints in Table 2.

Tables 1 and 2 depict data based on the Hamming distance

constraint [13], for which we used the same experimental

parameters and algorithms, including the experiment run times.

In order to verify the influence of the LACS constraint in the

Figure 3. Algorithm process flow.
doi:10.1371/journal.pone.0072180.g003

Table 1. Data with two combinatorial constraints.

n\d 4 5 6 7 8

4 1.408 (0.526) – – – –

5 1.148 (0.574) 2.144 (1.060) – – –

6 1.172 (0.018) 2.348 (0.454) 2.968 (1.600) – –

7 1.380 (20.018) 2.170 (0.780) 3.958 (2.142) 4.180 (2.558) –

8 1.582 (20.246) 2.128 (0.084) 3.044 (0.840) 4.858 (2.268) 5.162 (3.324)

doi:10.1371/journal.pone.0072180.t001

Table 2. Data with three combinatorial constraints.

n\d 4 5 6 7 8

4 1.542 (0.716) – – – –

5 1.938 (0.456) 2.454 (1.236) – – –

6 1.726 (0.496) 3.040 (1.608) 3.470 (2.044) – –

7 1.944 (0.282) 2.692 (1.246) 3.888 (2.410) 4.362 (2.586) –

8 2.588 (0.264) 3.246 (0.030) 3.982 (0.652) 5.118 (2.042) 5.594 (3.102)

doi:10.1371/journal.pone.0072180.t002
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design of DNA sequences, we compared the free energy gaps

based on the Hamming distance and LACS distance constraints,

while having the same length of DNA sequences and same

distance constraint.

A comparison of the free energy gaps based on different

distance constraints (Tables 1, 2) suggest the LACS distance

constraint is better than the Hamming distance constraint for

designing DNA sequences. The data in the tables suggest the

quality of DNA sequence sets constrained by LACS distance

constraint is significantly better after adding the GC content

constraint. Thus, the novel constraints express thermodynamic

properties more relevant to the MFE. Comparisons with the

Hamming distance constraint do not account for values of l and k.

Lower Bounds of DNA Sequence Sets
Table 3 depicts the lower bounds of the designed DNA

sequence sets that satisfy different combinatorial constraints. d is

the distance based on the LACS constraint, where d = dL. Data

shown are DNA sequence sets that satisfy the WWL and WCL

combinatorial constraints and parenthetical data represent sizes

that satisfy the WWL, WCL, and GC content combinatorial

constraints. DNA sequence set sizes differ for each unique value l

or k, while DNA sequence lengths are constant (dL). Maximal sizes

are depicted in Table 3.

Table 3 also depicts the lower bounds of DNA sequence sets

which satisfy different combinatorial constraints based on the

LACS criterion. The data suggest that DNA sequence set sizes

would be reduced by adding the GC content constraint. Free

energy gap values increased with increases in LACS distance,

whereas DNA sequence set sizes decreased, similar to the

Hamming distance [13].

The Relations between the Parameters of LACS
When the DNA sequence sets are the same length and have the

same distance constraints, their free energy gaps often differ. To

investigate the influence of different values of l and k on the free

energy gap value in same-length DNA sequences with the same

distance constraints, we used DNA sequence sets with n = 8 as the

analytic example and free energy gaps as the criterion. Tables 4

and 5 depict data for the free energy gaps constrained by the

combinatorial constraints. Parenthetical data are values of k.

Tables 4 and 5 also demonstrate that free energy gaps increase

with increasing values of LACS distance (See Tables 1 and 2 for

similar characteristics). Also, free energy gaps decrease with

increasing values of k, keeping l constant. Also, free energy gaps

decrease with increasing the values of l, keeping k constant. Finally,

the maximum free energy gap was best estimated using a

maximum value of l, the LACS distance.

Discussions

The distance constraint (or the similarity constraint) is the chief

method for designing DNA sequences. Constraints such as the

Hamming distance are used to reduce the similarity of DNA

sequences used in hybridization reactions by describing the

minimum number of substitutions required to change one DNA

stand into the other. Simple mathematical formulae are used to

confirm the similarity of a pair of DNA sequences, helping to

reduce the likelihood of false positives; however, this technique

does not accurately address the thermodynamic properties of

DNA sequences, even when accounting for GC content.

Addressing thermodynamic constraints for DNA design would

increase sequence accuracy more than present design strategies

based on distance constraints. Baum proposed the existence of

DNA sequence similarity [5] and suggested constraints that could

be used in DNA sequence design. He also described maximum

DNA sequence sets that would satisfy these constraints. Deaton

proposed that DNA sequence design should be combined with

biochemical techniques and reported coding reliability problems

when information theory was used alone [6]. Deaton suggested an

evolutionary genetic algorithm to design DNA sequences. In

contrast, Hartemink proposed DNA design based on distance

constraints (such as the Hamming distance) and the free-energy

criterion [14]. Improving on these discoveries, Zhang used an

improved genetic algorithm to design DNA sequences that

satisfied combinatorial constraints, including the Hamming

distance constraint and accounting for GC content [12]. Shin

used the Multi-objective evolutionary algorithm to design DNA

sequences and developed a system (NACST) using a genetic

algorithm [15,16].

These studies describe a combination of distance constraint

considerations and GC content to design DNA sequences with

better thermodynamic properties; however, these methods only

roughly constrain the thermodynamic attributes of DNA sequenc-

es. To address this gap, minimum free energy criteria are widely

used to measure the thermodynamic properties of DNA sequenc-

es. Garzon and Rose proposed a method for measuring the quality

Table 3. Size values to satisfy different combinatorial
constraints.

n\d 4 5 6 7 8

4 2 (1) – – – –

5 3 (2) 2 (1) – – –

6 5 (5) 3 (2) 1 (1) – –

7 6 (5) 5 (4) 2 (2) 2 (1) –

8 11 (9) 6 (6) 4 (4) 2 (2) 1 (1)

doi:10.1371/journal.pone.0072180.t003

Table 4. Data without GC content.

d\l 2 3 4 5 6 7

1 – – 0.286 (3) 0.244 (2) 0.404 (1) 0.366 (0)

2 – – 0.642 (2) 0.860 (1) 1.208 (0) –

3 1.528 (3) 0.866 (2) 1.322 (1) 1.942 (0) – –

4 1.736 (2) 1.582 (1) 2.388 (0) – – –

5 2.128 (1) 2.582 (0) – – – –

doi:10.1371/journal.pone.0072180.t004

Table 5. Data with GC content.

d\l 2 3 4 5 6 7

1 – – 0.542 (3) 0.432 (2) 0.646 (1) 0.742 (0)

2 – – 0.624 (2) 1.448 (1) 1.522 (0) –

3 2.512 (3) 2.512 (2) 1.992 (1) 2.192 (0) – –

4 2.770 (2) 2.588 (1) 2.800 (0) – – –

5 3.250 (1) 3.246 (0) – – – –

doi:10.1371/journal.pone.0072180.t005
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of DNA sequence sets based on their thermodynamic properties

by using statistical mechanic principles [17,18], and Penchovsky

and Ackermann employed combinatorial criteria to design sets of

sequences for molecule-based computing [19]. To maximize the

desired hybridization and minimize undesired hybridizations, they

limited the range of the sequence set melting temperature. They

proposed an important new ‘free energy gap’ measure of a set

quality, and designed their sets based on this new constraint.

Tulpan researched DNA sequence sets based on MFE with a

PairFold package, which is freeware available online [9]. They

described a new algorithm for designing DNA sequence sets in

which sets would satisfy several thermodynamic and combinatorial

distance constraints [7,20]. This new technique aimed to

maximize desired hybridizations between strands and their

complements, while minimizing undesired false hybridizations.

Garzon’s paper presents exhaustive research to produce DNA

sequence sets of sizes comparable to maximal sets while

guaranteeing the highest quality, as measured by the MFE

between any pair of DNA sequences [21]. A comparison of their

experimental results with previous work revealed improved lower

bounds of DNA sequence sets based on MFE. Subsequently,

Kawashimo [22] employed dynamic neighborhood searches to

design DNA sequence sets and further improve Garzon’s methods.

Kawashimo introduced a technique to reduce such time-consum-

ing evaluations of MFE, rendering the dynamic neighborhood

search strategy applicable to practical thermodynamic constraints.

They increased the speed of local-search type algorithms for

designing DNA sequence sets based on MFE [23] and their

algorithm generated better DNA sequence sets than existing

methods. Tulpan presented a quantitative comparison of four

published DNA/DNA duplex free energy calculation methods and

concluded that no statistically significant differences exist among

free energy approximations in these publicly available and widely

used programs. In another report, improved genetic algorithms

were used to design DNA sequence sets which satisfied different

combinational constraints and enabled the creation of the highest

quality DNA sequences sets thus far [13]. Recently, Bystrykh

proposed a method of generalized DNA barcode design based on

Hamming codes [3]. In their work, Hamming barcodes could be

employed for DNA tag designs in many different ways while

preserving minimal distance and error-correcting properties. In

the Xiao’s paper [24], a multi-swarm particle swarm optimization

was proposed to deal with DNA encodings problem. The method

proposed used the local PSO with the time-varying acceleration

coefficients (TVAC) as the search engine for each sub-swarms, and

incorporated the differential evolution to improve the swarm

search space.

Conclusions

Here we propose a novel distance constraint: the LACS distance

for designing DNA sequences. This constraint decreases the

similarity of DNA sequences and better models the thermody-

namic properties of DNA in comparison to current Hamming

distance constraints. The thermodynamic properties of different

distances are accounted for using an improved genetic algorithm

to design DNA sequence sets which satisfy the Hamming and

LACS distances. Free energy gaps are used to gauge DNA

sequence set quality. According to DNA sequence set sizes

obtained using this improved genetic algorithm, we identified the

lower bounds of novel constraints which satisfy different combi-

natorial constraints. Finally, we discussed the effect of different

values of l and k on the free energy gaps of DNA sequence sets

with identical DNA sequence lengths and distance constraints. We

hypothesize that the maximal length of the LACS is even more

important for designing DNA sequence sets based on thermody-

namic properties.

Our work represents a valuable contribution to DNA sequence

design. Future studies will improve our algorithm and the lower

bounds based on the novel constraint. According to the proof

based on Hamming distance, we could theoretically prove the

exact lower and upper bounds of novel constraint and offer proof-

of-concept for the theoretical relationship of l and k.
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