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Abstract

The number of travel-acquired dengue infections has seen a consistent global rise over the past decade. An increased
volume of international passenger air traffic originating from regions with endemic dengue has contributed to a rise in the
number of dengue cases in both areas of endemicity and elsewhere. This paper reports results from a network-based risk
assessment model which uses international passenger travel volumes, travel routes, travel distances, regional populations,
and predictive species distribution models (for the two vector species, Aedes aegypti and Aedes albopictus) to quantify the
relative risk posed by each airport in importing passengers with travel-acquired dengue infections. Two risk attributes are
evaluated: (i) the risk posed by through traffic at each stopover airport and (ii) the risk posed by incoming travelers to each
destination airport. The model results prioritize optimal locations (i.e., airports) for targeted dengue surveillance. The model
is easily extendible to other vector-borne diseases.
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Introduction

Dengue is the most common mosquito-borne viral disease in the

world [1]. According to the World Health Organization [2]: ‘‘In

2012, dengue ranked as the fastest spreading vector-borne viral

disease with an epidemic potential in the world, registering a 30-

fold increase in disease incidence over the past 50 years.’’ An

increase in dengue occurrence in many of the endemic regions

worldwide, in conjunction with a significant rise in the volume of

international air travel, has resulted in an increased likelihood of

imported dengue infections among travelers returning from

dengue-endemic regions [3]. It has also increased the potential

for transport and establishment of populations of the mosquito

vector species in those regions in which they may not currently be

present but suitable habitat is available.

The infectious agent for dengue is a virus that is transmitted

between human individuals through the bite of infected Aedes

mosquitoes (mainly Ae. aegypti and Ae. albopictus), with humans also

serving as the main viral host [2]. The geographic establishment of

dengue is believed to be limited by the occurrence of its principal

vector mosquito species, Ae. aegypti and Ae. Albopictus [4]. Both

species have proven to be highly adaptable to human habitation

and, as a result, the global spread of the vector has been difficult to

contain [2]. Dengue is considered endemic to urban and suburban

areas in parts of tropical and subtropical America, part of

Australia, South and Southeast Asia, the Pacific, and eastern

Africa. In addition, the number of imported cases of dengue in the

U.S. and Europe is on the rise and further spread and

establishment is anticipated [3–5].

At present, there is little epidemiological surveillance for dengue

anywhere outside endemic areas, for instance, none on a national

scale in Europe or at the state level in the United States [5].

Limiting the importation and establishment of dengue in such new

areas will require dedicated surveillance measures, ideally based

on reliable models of vector presence and virus incidence. This

paper presents a model which quantifies the relative risk of dengue

importation and establishment posed by each airport based on the

likely presence of dengue-infected travelers. The model incorpo-

rates the arrival of potentially infected travelers at both stopover

and destination airports along travel routes originating in dengue-

endemic regions. The results from the model can be used to

prioritize airports at which dengue surveillance efforts should be

directed. Our network-level model uses international passenger

travel volumes, travel routes, travel distances, regional popula-

tions, and predictive species distribution models (for the two vector

species) to quantify the risk posed by both stopover and destination

airports. All global origin-destination (OD) travel pairs are

evaluated and all major world airports are considered. The

analysis also provides guidance for the type of data collection

efforts that must be undertaken to enhance the predictive accuracy

of such models. The model can also be used to evaluate the effects

of changes in passenger travel routes and volumes on spatial

patterns of infection spread.

The model compounds all modes of dengue infection which can

be caused by four virus serotypes (DENV-1, DENV-2, DENV-3,

and DENV-4), and can range in clinical manifestation from

asymptomatic infection to severe systemic disease [2]. Dengue

fever (DF) is the more common manifestation of the disease (with

an estimated 50 million infections occurring annually world-wide

in over 100 countries, more than malaria [2]), while dengue

haemorrhagic fever (DHF) and dengue shock syndrome (DSS) are

rarer and much more severe manifestations. The model presented
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in this paper does not distinguish between DF, DHF, and DHS

cases because the available data do not permit a more fine-grained

analysis.

Even in the parts of the world where dengue is now rare, e.g.,

the United States and Europe, the mosquito vectors are still

present. For example, at least one of the two major vector species,

Ae. aegypti or Ae. albopictus, is known to have established populations

in 26 U.S. states [6]. The European Center for Disease Control [7]

recently gathered entomological and environmental data to map

the current distribution, as well as establishment risk, for Ae.

albopictus in Europe in the event of its introduction. It concluded

that temperate strains of this species already exist and are likely to

spread with new populations becoming established in several parts

of Europe [7]. Further, the International Air Travel Association

[8] forecasts that international passenger numbers will grow from

1.11 billion in 2011 to 1.45 billion in 2016, with the dengue-

endemic regions of Latin America, Africa and the Asia-Pacific

region representing three of the top five fastest growing regions.

Thus, imported cases of dengue via international travel may

potentially result in establishment of an autochthonous disease

cycle and new regional outbreaks in previously non-endemic

regions. This can occur in at least two ways: (i) locally established

mosquito populations become infected from new hosts (infected

travelers) and then spread the disease; or (ii) mosquitoes carrying

the virus arrive at a new environment suitable for them. This

threat was exemplified recently in Key West, Florida, which

experienced sizeable local outbreaks of autochthonous dengue

transmission in 2009–2010 [9]. There have also been dengue

outbreaks in south Texas, along the Texas-Tamaulipas border, but

air travel is unlikely to have had a role in these outbreaks [10].

Additionally, in late 2012, Europe suffered its first sustained

outbreak since the 1920s, with 2,000 people infected on the

Portuguese Atlantic island of Madeira [2].

Further complications arise from the severe underestimation of

dengue cases due to under-reporting and passive surveillance in

both endemic and non-endemic regions. In tropical and subtrop-

ical countries where dengue fever is endemic, under-reporting may

be due to misdiagnosis, limitations of the standard World Health

Organization (WHO) case classification, and lack of laboratory

infrastructure and resources, among other factors [11]. In non-

endemic regions such as the U.S. and Europe, the actual number

of dengue infections is greatly underestimated due to unfamiliarity

with the disease. Additionally, 40–80% of all dengue infections are

asymptomatic or closely mimic flu symptoms for which they are

mistaken.

This lack of accurate infection data makes it difficult to assess

the actual threat of the disease. Epidemics of dengue, their

seasonality, and oscillations over time, are reflected by the

epidemiology of dengue in travelers [3]. Modern transportation

bridges the natural barriers previously responsible for containing

infected vectors to specific geographic regions. For example, the

global movement of troops and cargo ships during World War II

facilitated the dissemination of Aedes mosquitoes and resulted in

substantial spread of the disease in Southeast Asia [12].

Transportation of used tires has been held responsible for

introducing Ae. albopictus into the U.S. from Brazil in the 1980s [3].

Various studies have been conducted to identify the highest

travel risks. One survey conducted by the European Network on

Imported Infectious Disease Surveillance program, analyzed 294

patients with DF for epidemiological information and clinical

features from January 1999 through December 2001 [13]. They

found most infections were imported from Asia. Tatem et al. [14]

estimated the relative risk of the importation and establishment of

Ae. albopictus by sea and air routes, based on normalized measures

of traffic and climatic similarity, and found a strong positive

correlation between the historic spread of Ae. albopictus (into new

regions) and a high volume of shipping (routed from ports where

the species was already established). The total volume of travel was

determined by the number of ship visits for sea travel and

passenger volume for air travel. The climatic similarity was

calculated as a distance-based vector. While their work provided

insight into the vector importation and establishment process,

model validation remained qualitative. Moreover, Tatem et al.’s

approach addressed the risk of importation and establishment of

vector species but not the likelihood of infection directly.

Gardner et al. [4] extended the work by Tatem and collabo-

rators by complementing qualitative risk analysis with quantitative

model calibration using infection data, thus taking infected

individuals into account. Gardner et al. incorporated climatic

factors using species distribution models which are more robust

than statistical correlational analysis as relied upon by Tatem and

collaborators [15]. This methodology has become standard in

disease ecology and epidemiology [16–19]. The analysis that

follows expands on the paper by Gardner et al. [4] in five ways:

i) The model identifies high risk airports, whereas the previous

model identified high risk travel routes. Quantifying the risk

posed to travel routes and airports requires different

modeling approaches. Furthermore different types of

surveillance efforts and control policies are required to

monitor each. The shift of emphasis to airports from travel

routes is motivated by the assumption that monitoring and

surveillance of airports would be easier to implement than

travel routes.

ii) The model is able to differentiate between two different

types of risk, destination risk and stopover risk. Each of

these risk types will require different airport monitoring

measures. High destination risk airports will require

monitoring which identifies travelers exiting an airport,

while high stopover risk will require monitoring travelers

within an airport (between flights).

iii) The new model is more spatially disaggregated. Travel

between each airport is modeled, rather than aggregating

travel volumes across states or countries.

iv) The new model is temporally disaggregated from an annual to a

monthly time scale. This allows the model to account for

the impact of seasonality on travel risk. For reasons

indicated below, we use June, 2011 in our analysis.

v) In this paper all global airports are modeled, whereas the

previous study was limited to destinations in the United

States and the EU. This turned out to be a significant

extension because a majority of the highest risk airports

were identified as being located outside of the EU and the

U.S.

More recently Nicolaides et al. [20] evaluated the risk posed to

US airports using a stochastic agent-tracking model which detailed

air traffic and the correlated nature of mobility patterns and

waiting-time distributions of individual agents. The objective was

to provide an accurate measure of the early-time spreading power

of individual nodes, i.e. airports. However, the model only

considered contact-based diseases and, therefore, did not incor-

porate any climactic or other ecological data. In this paper we seek

to identify the set airports in which infected passengers are most

likely to be present. This is accomplished by separately computing

the risk posed by each stopover airport as a function of the

passenger through traffic, and the risk posed by each destination

airport as a function of the incoming passenger traffic. While

Airport Risk Model for Dengue
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Nicolaides et al. relied on Monte Carlo simulation to evaluate the

risk, this paper uses analytical expressions to quantify the airport

risk. Finally, while our analysis quantifies the relative risk of

dengue infected (air travel) passengers arriving at airports, it does

not include the importation of infected vectors since the influence

of that possibility is yet to be established [2–3], [7].

Methods

This section further illuminates the problem and introduces our

species distribution model and network-based model for the risk

analysis.

2.1 Data
The network model required four types of types of input data

which are listed below. The species distribution models required

data on the geographical occurrence of Ae. aegypti and Ae. albopictus

and a suite of predictive environmental variables; these will be

discussed in Section 2.2. The required data for the network model

were:

1. Transportation data

2. City population data

3. The set of dengue-endemic regions

4. Output from the Species Distribution Models

The transportation data consisted of all global airports travel

routes for each month. The spatial data consisted of travel

distances for each travel route. The transportation and spatial data

was obtained from the International Air Transport Association

(IATA) [8], and included origin, destination and stopover airports

for all routes, as well as the flight distances and calibrated

passenger travel volumes for each route. The route-specific

passenger travel volumes supplied by IATA were calibrated based

on data from 240 airlines comprising 84% of global air traffic, and

includes over 9000 airports [8]. The passenger volumes were

available at a monthly temporal resolution, which thus determined

the temporal resolution of the model. (In cases where travel data

are available at a finer (i.e., more disaggregated) temporal

resolution, the model can be used for the relevant (e.g., daily or

weekly) time period.) The transportation data used in this paper

were limited to passenger travel volumes and did not include cargo

flights on which vectors could potentially be transported because

the latter mode of dengue spread was excluded from this model.

The analysis was conducted using June, 2011 travel data [8]. June

was chosen based on the results of Tatem [21] who find it to be the

month where climatically sensitive organisms moving on the

worldwide airline network (WAN) will be most likely to find their

arrival destinations habitable [21]. This climatic similarity during

June appears to compensate for the fact that June is not at the

height of the dengue season in many countries in the Southern

hemisphere.

The corresponding populations for all cities serviced by a given

airport were collected from multiple sources. For U.S Airports

2069 of the 2343 airports were assigned city populations based on

the city in which the airport was located by using U.S. Census

Data [22]. The remaining U.S. airports and 4147 of the 7353 non-

U.S. world airports were matched by name using the Spatial

Analyst extension of ArcMap10, and the WorldAirports.dat [23]

and WorldCities.dat [24] databases. The remaining 3206 world

airports that could not be matched by name were assigned

populations of the closest city with a population greater than

15,000 using the Spatial Analyst extension and the Cities15000.dat

[25] and WorldAirports.dat [23]. The data set including only cities

with populations greater than 15,000 was chosen to capture the

risk posed to the nearest medium- or large-sized town or city in the

region served by the airport. Often, airports which serve major

cities are located outside of the city center, thus if all named towns

were considered, the model would incorrectly compute and

attribute risk to a small town closer to the airport rather than the

major metropolitan region actually served by the airport.

The set of dengue-endemic regions were based on those

identified by the U.S. Center for Diseases Control (CDC) [26].

2.2 Species Distribution Models
The risk for the establishment of dengue and potential cases of

disease in an originally non-endemic area depends fundamentally

on the ability of a vector to establish itself in that area, that is, on

the ecological conditions for the vector there. When these

ecological conditions are suitable, the disease can become endemic

in two ways: (i) if the vector is already established, it can become

infected from a person infected with dengue arriving in that area;

or (ii) infected vectors can be transported into such an area and

establish themselves. For this process, habitat in that area must be

ecologically suitable for that vector. A quantitative relative

measure of the suitability of one area compared to another defines

the relative ecological risk of that area [16–19]. If the ecological

risk is low, such an establishment is highly unlikely. If that risk is

high, then other factors, such as the (temporally) immediate

ambient environmental conditions and the size of the founder

population or the availability of hosts, become critical for

establishment.

This analysis was based on habitat suitability for the two

principal dengue vector species, Ae. aegypti and Ae. albopictus. It was

assumed that these two species do not interact, that is, the

probability of the presence of each is independent of that of the

presence of the other. The relative ecological risk for the

establishment for each species was estimated using a global species

distribution model at a 1 arc-minute resolution [15], [27] based on

a maximum entropy algorithm incorporated in the Maxent

software package [28–29]. Maxent was used because it has proven

to be predictively superior to other species distribution modeling

algorithm in a large variety of studies [27], [30].

As input, Maxent uses species occurrence points (presence-only

data) and environmental layers (the explanatory variables).

Distributional data were obtained from the Disease Vectors

Database [31]. Coverage was global but not uniform with an

overrepresentation of Ae. aegypti in Australia that may bias model

results (data not shown). At the resolution of this analysis, there

were 456 independent data points for Ae. aegypti and 117 for Ae.

albopictus. Typically, about 30 points suffice for accurate SDM

construction for mosquito species [17]. Moreoer, since these

methods use only presence-only data (rather than presence-

absence data), lack of uniform coverage is generally not considered

problematic [16–19].

The environmental layers consist of four topographic variables

(elevation, aspect, slope, compound topographic index) and a

standard set of 19 climatic variables. Elevation was obtained from

the United States Geological Survey’s Hydro–1K digital elevation

model (DEM) data set [32]. Slope, aspect, and compound

topographical index were derived from the DEM using the

Spatial Analyst extension of ArcMap 10. Climatic data were

obtained from the WorldClim database and consisted of 19

bioclmatic variables (annual mean temperature, mean diurnal

range, isothermality, temperature seasonality, maximum temper-

ature of warmest month, minimum temperature of coldest month,

temperature annual range, mean temperature of wettest quarter,

mean temperature of driest quarter, mean temperature of warmest

Airport Risk Model for Dengue
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quarter, mean temperature of coldest quarter, annual precipita-

tion, precipitation of wettest month, precipitation of driest month,

precipitation seasonality, precipitation of wettest quarter, precip-

itation of driest quarter, precipitation of warmest quarter, and

precipitation of coldest quarter) [33]. Models were constructed

using a variety of subsets of these environmental variables as

described in Sarkar et al. [19]. All computations used default

settings [30]. Averages over 100 replicate models were computed

in Maxent.

Model performance was judged using the Akaike Information

Criterion (AIC) for species distribution models as incorporated in

the ENMTools software package [34]. Since the best model was

signigicantly better than the others (p,0.05), no further criterion

to break potential ties was needed. The best model for Ae. aegypti is

one that used all 23 explanatory variables; that for Ae. albopictus is

based on elevation, slope, aspect, maximum temperature of

warmest month, minimum temperature of coldest month,

precipitation of wettest month, and precipitation of driest month.

The best models for Ae. Aegypti (Figure 1.a) and Ae. Albopictus

(Figure 1.b) are reported as part of the results. The output from

Maxent consists of relative suitability values between 0 and 1

which, when normalized, can be interpreted as the probabilistic

expectation of vector presence of a species in a cell. The

probabilistic expectation of at least one of the vector species being

present in a cell was calculated as the complement of the

probability that neither is present, assuming statistical indepen-

dence. The expectations are aggregated to the city level by

averaging them over all the cells in the relevant geographical units.

These expectations define the relative ecological risk for dengue in

each cell.

2.3 Mathematical Network Model
The proposed network model quantifies the relative risk of

dengue infected travelers being present at any given airport. The

risk posed by each airport is defined based on two criteria. Criteria

I is stopover risk, defined as the total expected harm (or cost) posed

by a given stopover airport k to regions other than airport k. The

stopover risk is a function of the volume of passengers traveling

through stopover airport k, and the origin-destination (OD) pairs

they are traveling between. Criteria II is destination risk, defined as

the total expected harm posed to destination airport j by all

passengers arriving at airport j. The destination risk is a function of

the volume of passengers traveling to destination airport j, and

their route origins. Since, mathematically, both risks are expec-

tations, which are additive, the sum of these two risks represents

the total harm posed by a given airport.

Two previous mathematical models quantifying risk estimates

for acquiring arboviral infection are by Massad and Wilder-Smith

[35] and Codeco et. al. [36]. Massad and Wilder-Smith’s model

was intended to evaluate the risk of infection at a specific site as a

function of human population size, the number of infected

mosquitoes, and estimated parameters for the biting rate and the

probability that an infectious mosquito will infect a susceptible

human. The model did not incorporate travel patterns or species

distribution data; moreover, model predictions were not quanti-

tatively validated using infection data. Codeco et. al. assessed the

risk of yellow fever (YF) emergence in the city of Rio de Janeiro,

Brazil, by estimating the probability of infected individuals arriving

from YF-endemic areas via air and bus travel, and the probability

of infective individuals triggering an epidemic (by using a

stochastic transmission model). While this model accounted for

travel patterns and local transmission probabilities, the model

predictions were again not quantitatively validated.

2.3.1 Problem formulation. In the proposed network

structure, airports are represented as nodes, and the links in the

network represent directed air travel connections between airports.

Figure 2 illustrates an example travel route which originates at

origin airport i, transfers through stopover airport k, and ends at

destination airport j. There can be multiple stopover airports on a

given travel route. In the data provided by IATA the maximum

number of stops on any travel route is two. The notation used in

the formal problem formulation is shown in Table 1.

The total flow through each stopover airport z originating at x

and ending at y is computed by aggregating the passenger volumes

for all flights travelling from x to y, which stop at z at some point

along the route for time period t. In this analysis the time period is

equal to one month:

f z
xy~

X
i~x, j~y,k~z

rk
ij : ð1Þ

Given the total volume of flow along a route i-k-j, f k
ij , the total

flow through each stopover airport k across all OD pairs can be

computed:

f k~
X

i

X
j
f k
ij : ð2Þ

The flow at any given airport is comprised of the stopover flow

transferring at airport k, f k, the total flow originating at airport k,X
j
vkj , and the total flow ending at airport k,

X
i
vik. The flow at

a given node is illustrated in Figure 3 below. There is no

conservation of flow at node k because the total flow originating

and ending at node k are independent. However all the stopover

flow that enters node k must exit node k.

The harm posed by stopover airport k from travel originating at

airport i and destined for airport j is defined by equation 3:

~wwk
ij~ei � si � si � f k

ij � aj � sj � 1=Dk
ij ð3Þ

This model quantifies the risk transfer through an airport. The

model is not intended to quantify risk of establishment at the

stopover airport; rather that is quantified at the destination airport

in the destination risk model presented in the following section.

Equation (3) is specific to the OD pair (i,j), and is dependent on the

origin being in a dengue-endemic region, the outbreak intensity at

the origin, the suitability at the origin, the total passenger volume

traveling through k between (i,j), the population at the destination,

the suitability at the destination and the travel distance. The values

computed using equation (3) are normalized by dividing by the

highest value computed over all (i,j,k) combinations. The

normalized risk, wk
ij~~wwk

ij=max (~wwk
ij), represents the relative harm

posed by stopover airport k from travel originating at airport i and

destined for airport j. The endemic binary variable, ei, is included

because only routes originating in dengue-endemic regions are

assumed to have infected outgoing travelers. The origin suitability,

si is included to represent the relative ecological risk of dengue

existing at the origin, and can serve as one proxy for the likelihood

of an outgoing traveler being infected. The destination suitability,

sj, is included because in order for a disease to continue to spread

after being introduced into a new region by an infected traveler

the destination habitat must be ecologically suitable for the

spreading vector to exist and/or establish itself. The outbreak

Airport Risk Model for Dengue
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intensity, si, is a function of the outbreak size and population

density at the origin, which can also serve as a proxy for an

outgoing traveler being infected. The outbreak intensity variable is

set to a constant in this work due to a lack of available data. The

total passenger volume along route (i,j) through airport k, f k
ij , is

captures the potential migration of the disease. Intuitively, the

higher the passenger volume into airport k, the more likely an

infected traveler will arrive at airport k, all other things being

equal. The population at the destination, aj , captures the threat

posed to a given region if the disease was to be introduced. The

destination airport parameters in the stopover risk model are

necessary to capture the contribution of the final location of the

passenger with the disease agent. As an example, consider two

different travel routes: On Route 1 passengers travel from Miami

to Winnipeg with a stopover in Houston; on Route 2 passengers

travel from Miami to New Orleans with a stopover in Atlanta. In

this case, airport surveillance of transfer passengers would be more

beneficial in Atlanta to identify infected passengers traveling on to

New Orleans where the spreading vector population exists, rather

than in Houston, where infected travelers would be continuing on

to Winnipeg where no local vector population exist and the habitat

is ecologically unsuitable. Thus, where the infected passenger will

end up represents the expected (negative) outcome (in analogy

with utility theory), and is a necessary parameter for inclusion in

the model in order to optimally allocate surveillance resources.

Lastly, we assume that the risk is inversely proportional to the

Figure 1. Map illustrating the Species Distribution Models for (a) Ae. aegyptii and (b) Ae. Albopictus [19]. The numbers on the scale are
the predicted probabilities of presence.
doi:10.1371/journal.pone.0072129.g001

Figure 2. Schematic of a route with origin i, destination j, and
stopover k.
doi:10.1371/journal.pone.0072129.g002

Airport Risk Model for Dengue
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distance traveled which is correlated with the total time of transit.

Our assumption was that longer travel time mitigates risk [14,21]

though the incubation and infection times for dengue can last

much longer than travel times. Given that there was relatively little

variation in distances between endemic areas and those with a

high ecological suitability, this dependence was weak.

The harm posed by stopover airport k from travel route (i,j) is

the same if it is the first or second stop along the route, as the risk is

solely a function of the attributes of the origin and destination.

Therefore the same risk function is applied to all stops along a

route i,j.

Once the stopover risk, wk
ij , is computed as above, we can

aggregate across origins, destinations, or both to identify the

origins and destinations most susceptible and most liable.

Specifically the following risks can be assessed:

(i) The expected relative harm posed by stopover airport k

originating at airport i (equation 4),

wk
i ~

X
j
wk

ij , ð4Þ

(ii) The expected relative harm posed by stopover airport k

destined for airport j, (equation 5), and.

wk
j ~

X
i
wk

ij : ð5Þ

(iii) The total expected relative harm posed by stopover airport k

(equation 6):

wk~
X

i

X
j
wk

ij : ð6Þ

The harm posed to a destination airport j from travel

originating at airport i is defined in equation 7. The set of

variables and reasoning is similar to that in the stopover risk

calculated previously. The main difference is the passenger flow

variable, vij , is now used in place of f k
ij . The total passenger

Table 1. Problem Notation.

i: Origin airport

j: Destination airport

k: Stopover airport

t: Time period analyzed in the model

rk
ij : Total passenger volume on route i-j-k

f k
ij : Total flow through stopover airport k, originating at airport i and ending at airport j

f k : Total flow through stopover airport k

vij : Total flow originating at airport i and ending at airport j (includes direct and stopover routes)

Dk
ij : Distance of route i-k-j, that originates at i, ends at j goes through stopover k

Dij : Distance of route i–j, that originates at i and ends at j

si : Suitability at node i

si : Outbreak intensity at node i (kept constant for now, outbreak size can be used as a proxy)

ei : Endemic binary variable, equal to 1 if region is endemic, 0 o/w

ai : Population at i

~wwk
ij : Harm posed to regions other than k by stopover airport k (function of flow along route i-k-j)

wk
ij : Relative harm posed to regions other than k by stopover airport k (function of flow along route i-k-j)

wk
i : Relative harm posed to regions other than k by stopover airport k (function of flow originating at origin i which travels through k)

wk
j : Relative harm posed to regions other than k by stopover airport k (function of flow ending at destination j which travels through k)

wk : Total relative harm posed to regions other than k by stopover airport k (function of all flow traveling through k)

~uuij : Harm posed to destination airport j by all flow originating at origin i and traveling to j

uij : Relative harm posed to destination airport j by all flow originating at origin i and traveling to j

uj : Total relative harm posed to destination airport j by all flow traveling to j

Rk : Total relative harm posed to airport j due to both stopover risk and destination risk

doi:10.1371/journal.pone.0072129.t001

Figure 3. Schematic of all incoming and outgoing flow at node
k.
doi:10.1371/journal.pone.0072129.g003
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volume originating at airport i and traveling to airport j, vij,

includes travel on both direct routes and indirect routes with

stopovers. To quantify the destination risk we are only concerned

with the total volume of passengers moving between regions in the

time period considered; the actual route path does not impact the

risk posed to a given destination:

~uuij~ei � si � si � vij � aj � sj � 1=Dij : ð7Þ

Similar to the stopover risk computed above, the values

computed using equation (7) are normalized by dividing by the

highest value computed over all (i,j) combinations. The normalized

risk, uij~~uuij=max (~uuij), represents the relative harm posed to a

destination airport j from travel originating at airport i. This

relative harm can be aggregated across all origin airports to

quantify the expected relative harm posed to destination airport j,

as defined in equation 8:

u j~
X

i
uij ð8Þ

The previously computed stopover and destination risk can be

summed to provide the expected relative harm contributed by

each airport. This information can be used to prioritize airports

where surveillance should be implemented. However the stopover

and destination risk are also valuable independently, as they would

require surveillance at different locations within the airport (i.e.

stopover risk would require within airport surveillance, while

destination risk requires surveillance upon exiting the airport). The

total relative risk posed to airport k is illustrated in equation 9:

Rk~wkzuk: ð9Þ

Results

Figure 4 illustrates the spatial distribution of all airports

included in the model. Figures 1.a and 1.b depict the global

Species Distribution Models (SDM) results for Ae. Aegypti and Ae.

Albopictus, respectively. These results can be obtained by contacting

either author.

The SDMs make some interesting preliminary predictions

possible. The Ae. albopictus SDM designates suitable habitat along

the west coast of the United States where persistent populations

are yet to be reported; but specimens have been collected from two

counties in Washington and California [37]. However, the SDM

also predicts some suitable habitat at northern latitudes beyond the

traditional northern limits [38]. The SDM predicts suitable habitat

for Ae. albopictus in New Mexico; there is a report of possible

establishment in that state [39]. It also predicts some suitable

habitat for Ae. albopictus in Colorado; one report supports this

prediction [40]. In Brazil, the SDM correctly predicts suitable

habitat in the state of Ceará from which Ae. albopictus was collected

for the first time in 2006 [41]. In Africa, Ae. albopictus was

discovered in Bioko Island off Equatorial Guinea in 2003 [42], a

highly suitable habitat according to the SDM. The Indian Ocean

islands off the east coast of Africa, which are known to contain Ae.

albopictus, are all predicted to have suitable habitat.

In Europe, since records from France and the Netherlands were

used to construct the Maxent models, it is not surprising that the

SDM predicts suitable habitat there. However, the SDM also

identifies suitable habitat in Spain and Italy (including Sardinia),

from which regions no data point was available, and published

reports confirm those predictions [43–46]. In Australia, the SDM

predicts suitable habitat in the northeast, in particular, in Cape

York peninsula [47] as well as the Torres Strait Islands where

infestation is widespread [48]. It finds large quantities of suitable

habitat in northern New Zealand. Though the species has been

intercepted there several times it does not yet appear to be

established there [49]. The SDM correctly predicted suitable

habitat for Ae. albopictus at the northern limits of its range in Hoshu

island in Japan [50].

Turning to Ae. aegypti, it is instructive to compare the SDM to

the 2005 range map for Ae. aegypti from the CDC [51]. The CDC

map is based on political boundaries and therefore lacks fine

resolution. Moreover, it is a map of Ae. aegypti occurrence and not

suitable habitat. Compared to the SDM, it underestimates the

range in the United States, Brazil, and Australia but overestimates

the range in southern Africa. It also excludes the area around the

Caspian Sea. For Asia and Australiasia, the maps are very similar

with the SDM allowing suitable habitat to be identified at a much

finer resolution. All countries that have had recognized DHF

outbreaks [52] have suitable habitat for Ae. aegypti according to the

SDM. For the U.S., the SDM predicts the existence of suitable

habitat for Ae. aegypti in southern Arizona and New Mexico, that

would usually have been presumed to be too dry for this species.

However, anthropogenic modification of land cover, especially the

creation of artificial water bodies, may have made the habitat

more hospitable to Ae. aegypti which has already possibly

established itself in some counties just north of the Mexican

border [53–54].

The most important results of the analysis were the prioritiza-

tion of stopover and destination airports on the basis of risk. The

100 highest risk stopover airports and destination airports are

shown in Figures 5 and 6, respectively. Tables 2 and 3 list,

respectively, the high risk destination and stopover airports which

are located in non-endemic regions. Table 4 lists the high risks

U.S. airports in non-endemic regions, and their corresponding

regional suitability. Tables S1 and S2, included as supporting

documents, contain the full list of the top 100 high risk airports,

their rank and corresponding relative risk for both stopover risk

and destination risk, respectively. These tables show that 14 and

26 of the destination and stopover airports in non-endemic

regions, respectively, lie in the top 100 highest risk category. For

stopover risk, six of the top 10 highest risk airports are in Brazil; no

airport in India occurs in the top 10 in spite of its higher

population total and population density–only two Indian airports

(Delhi and Kolkata) occur in the top 20, in the latter case in spite

of low passenger volume. Seven of the top 20 highest risk stopover

airports are located in Southeast Asia. Destination risk is more

evenly spread across the endemic regions; Brazil has three airports

in the top 10 (three in the top 20) and India has two in the top 10

(four in the top 20), and five of the top 10 are in Southeast Asia. In

addition, both the Changi Airport in Singapore and Hong Kong

International Airport in Hong Kong are located in the top 20

highest risk for both stopover and destination airports; both these

airports are among the top 20 busiest airports in the world. There

are few African airports in either category; the Murtala

Muhammed Airport in Nigeria is the only African airport that

falls in the top 20 of either list, ranking 11th in destination risk.

Many of the high risk airports identified by the network-based

risk model as likely to import dengue infected passengers also lie in

regions predicted to be suitable habitats for the principle vector

species by the SDM. For instance, in Europe, the risk model

identified Charles De Gaulle Airport (CDG) in Paris, France,

Airport Risk Model for Dengue
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Amsterdam-Schiphol Airport (AMS) in Amsterdam, Netherlands

and Barajas Airport (MAD) in Madrid, Spain as likely candidates

for carrying infected stopover passengers. These three airports all

lie in regions identified as suitable habitats by the SDM model.

Travellers through these airports carry the potential for local

transmission through the introduction of certain disease parasites

into the local mosquitoes’ population. Such transmission has been

documented resulting in ‘‘airport malaria’’ and attributed to

individuals coming from malaria-endemic regions [55–60].

The risk model identified Narita Airport (NRT) in Tokyo, Japan

as both a high risk stopover and high risk destination airport, while

the SDM also identified Japan as a potentially habitable

environment for the vector species. Two other airports in Japan,

Haneda Airport (HND) in Tokyo and Kansai International

Airport (KIX) in Osaka, were identified as high risk destinations

as well. While the risk model reveals travellers to and through

these airports to be likely candidates for carrying dengue, the

results from the SDM imply the additional risk of an autochtho-

nous transmission cycle resulting in the surrounding regions due to

the suitable habitats.

Over the past decade travel acquired dengue cases have been

increasingly reported in multiple non-endemic regions [3]. Table 2

and Table 3 list the high risk destination and stopover airports

which are located in non-endemic regions, respectively. These

tables include airports located in major cities such as Buenos Aires,

Sydney, Tokyo, London, and New York City. The potential harm

each of these airports pose, were an autochthonous transmission

cycle to result, is further increased due to the large population size

of the cities. Many airports listed in Table 3 represent major hubs

for travel between tropical regions such as Southeast Asia and the

western world. Multiple airports in the United States and Europe

are among those likely to transfer infected passengers, as well as

the Doha airport in Qatar, Johannesburg International Airport in

South Africa, Changi Airport in Singapore, among others. In

order to reduce the potential role of these airports in the further

spread of dengue infected passenger’s into new regions targeted

surveillance measures must be implemented.

Table 4 highlights both the stopover and destination airports in

the United States which are at risk of importing infected

passengers, and their corresponding suitability variable based on

the SDM. Most significant are the airports in highly suitable

Figure 4. Map of all airports included in risk model.
doi:10.1371/journal.pone.0072129.g004

Table 2. Airports in List of Top 100 Destination Risk located in
non-endemic regions.

IATA code Airport City Airport Name Airport Country

AEP Buenos Aires Arpt. Jorge Newbery Argentina

EZE Buenos Aires Ezeiza Ministro Pistarini Argentina

SYD Sydney Kingsford Smith Australia

CKG Chongqing Chongqing Jiangbei
International

China

ACC Accra Kotoka Ghana

NRT Tokyo Narita Japan

HND Tokyo Haneda Japan

KIX Osaka Kansai International Japan

SIN Singapore Changi Singapore

ICN Seoul Seoul (Incheon) South Korea

LHR London Heathrow United Kingdom

JFK New York John F Kennedy Intl United States

MIA Miami Miami International
Airport

United States

IAH Houston George Bush Intercntl. United States

doi:10.1371/journal.pone.0072129.t002
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environments, thus likely to import infected passengers who will

remain in the region. Both Miami International Airport in Miami,

Florida George Bush International Airport in Houston, Texas fit

this criterion. In addition, the International Airport in Fort

Lauderdale, Florida is also a highly suitable environment and

likely stopover for dengue infected passengers.

Lastly, it is interesting to note that the airports identified by the

risk model are not necessarily the busiest airports with respect to

passenger volume (see Table S3). For instance, only 21 airports in

the list of top 100 destination risk airports are among the top 100

busiest airports in terms of passenger travel volume. While 33

airports from the list of top 100 stop over risk airports are included

in the top 100 busiest airports. This suggests it is important to

consider other factors beyond travel volume when assessing airport

risk.

Discussion

Dengue currently presents a serious risk to many parts of the

world where suitable environmental conditions for vector species’

occurrence and establishment provide the potential for local

outbreaks, were the virus to be introduced. For dengue to be

established in an autochthonous transmission cycle in a non-

endemic region, the satisfaction of one critical criterion is likely

necessary, and that of a second is likely to be important. The

critical necessary criterion is that the area into which the infection

is imported contains suitable habitat for the long–term persistence

of dengue vectors. The likely criterion is that, at the time at which

the infection arrives, local vector populations must be abundant or

expanding in size for there to be potential disease outbreak/

establishment.

The motivation for this analysis was the increasing number of

dengue cases being reported, coinciding with an increase in both

the prevalence of dengue worldwide and increased volume of

international passenger air traffic originating from dengue-

endemic regions since the 1990s. The aim of this paper was,

therefore, to develop a preliminary integrated quantitative model

that specifies the relative likelihood of the establishment of dengue

in non-endemic areas based on passenger air travel patterns. More

specifically, the model quantifies the relative risk posed to each

stopover and destination airport based on the likelihood of a given

air travel route carrying infected passengers. Besides passenger

travel patterns, the model incorporates predictive species distri-

bution models for the principal vector mosquito species.

However, before we discuss the practical implications of this

model, the following limitations must be noted. First, with respect

to the SDMs, as noted earlier, the mosquito distributional data

were global but not uniform in coverage with an overrepresen-

tation of Ae. aegypti in Australia. While lack of uniform coverage is

generally not considered problematic in the type of analysis we use

[16–19], further collection of data points, particularly from Africa,

would add confidence in the results. Second, the ecological risk

Table 3. Airports in List of Top 100 Stopover Risk located in non-endemic regions.

IATA code Airport City Airport Name Airport Country

BWN Bandar Seri Begawan Brunei International Brunei Darussalam

SCL Santiago Arturo Merino Benitez Chile

TEN Tongren Tongren China

CNI Changhai Changhai China

TNH Tonghua Tonghua Liuhe China

CDG Paris Charles De Gaulle France

FRA Frankfurt Frankfurt International Airport (Rhein-Main) Germany

GUM Guam Guam International Guam

NRT Tokyo Narita Japan

AMS Amsterdam Amsterdam-Schiphol Netherlands

CUR Curacao Hato International Airport Netherlands Antilles

LIS Lisbon Lisboa - Portela Portugal

DOH Doha Doha Qatar

SIN Singapore Changi Singapore

JNB Johannesburg Johannesburg International South Africa

ICN Seoul Seoul (Incheon) South Korea

MAD Madrid Barajas Spain

LHR London Heathrow United Kingdom

MIA Miami Miami International Airport United States

ATL Atlanta Hartsfield-Jackson Atlanta Int United States

IAH Houston George Bush Intercntl. United States

DFW Dallas Dallas/Ft Worth Intl United States

CLT Charlotte Douglas United States

FLL Fort Lauderdale International United States

JFK New York John F Kennedy Intl United States

MVD Montevideo Carrasco International Airport Uruguay

doi:10.1371/journal.pone.0072129.t003
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Figure 5. Map illustrating top 100 stopover risk airports identified by the model.
doi:10.1371/journal.pone.0072129.g005

Figure 6. Map illustrating top 100 destination risk airports identified by the model.
doi:10.1371/journal.pone.0072129.g006
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model assumed that there was no competition between Ae. aegypti

and Ae. albopictus. Whether this is a reasonable assumption is simply

not known: for us it served as the simplest assumption in the

absence of data suggesting otherwise. The third limitation is due to

a lack of available infection data. In the model the value of the

outbreak intensity variable is set to one. This variable is intended

to serve as a proxy for an outgoing traveler being infected, but

requires time-dependent data on the outbreak size at a given

origin. Infection reports for many countries were unavailable at

this time of this study, even at the annual level, let alone the city

and monthly level which would be consistent with the scale of the

proposed model. Future improvements in surveillance and case

reporting will allow for more precise quantification of this variable,

further increasing the value of the model. Last, the set of dengue-

endemic regions used to identify high risk origins was based on

those identified by the CDC [26]. It is likely that the set of dengue-

endemic regions is changing as the range of the disease has

expanded during the last decade in which case the set of endemic

regions specified in the model may require expansion and our

entire analysis in need of reiteration.

The results from the model suggests there are major cities in the

United States, Europe, Japan, and Australia, among others, all

where dengue is not currently endemic, with a high risk of

importing dengue infected travelers. Furthermore, many of the

cities identified by the risk model, such as Miami, Florida and

Houston, Texas in the United States are also at risk of dengue

becoming established due to the highly suitable environmental

conditions as predicted by the SDMs. The ability of the model to

identify and rank airports based on the risk they pose can lead to

more specific surveillance recommendations than, for instance,

what the CDC is currently able to make with respect to prioritizing

optimal airports for passenger surveillance efforts. In general,

quantitative results from the model can aid in efficient and

economic design of control measure strategies.

However, what this analysis mainly shows is that much of the

high risk is driven by travel connections between airports in

endemic regions. Most of the high stopover risk airports are in

endemic regions of South America and Asia, especially in Brazil.

For destination risk, there is a similar pattern but with India also

figuring prominently. There are few African airports in either

category, likely due to lower passenger volumes. This pattern

suggest that, to arrest the continuing spread of dengue, more

attention needs to be directed to airports in endemic region in

comparison to those outside (in United States and the European

Union).

While many control measures exist that can be effective in

controlling the spread of insect-borne disease during air travel, it is

impractical to implement all measures at all at risk locations. For

agencies designing such control strategies, predictive risk models

can be used to identify the most economical use of available

surveillance resources. The general categories of control measures

for Dengue Fever which are most common in practice are

discussed below.

Disinsection procedures involve the use of pesticides in

aircrafts in order to exterminate insects, which are known vectors.

Disinsection has been shown to be very efficient [61–62]. Although

disinsection can effectively prevent importation of known vectors,

the health issues associated with exposing passengers and crews to

pesticides have been recorded, and must be further examined [63–

65], As well as the importation potential from vectors surviving air

travel in areas outside the main cabin [61].

A second option is containment strategy. The objective of

containment strategies is to isolate infected people and minimize

the number of infected individuals exposed to vectors that can

further spread the disease, thereby decreasing the probability of

subsequent infections. In order to prevent increased numbers of

susceptible individuals to be exposed to known vectors, planning

agencies may limit accessibility from or to endemic areas. In

extreme cases, containment strategies may include the closing of

airports. Additional containment measures may include travel

restrictions on affected areas to contain the spread of the disease.

Airline routes may be modified to minimize indirect multi-stop

routes to destinations. Emergency measures are already imple-

mented at times to deal with potential epidemics. To efficiently

employ such containment strategies it is integral to have

quantitative models such as that proposed in this paper which

can rank airports and travel routes based on the potential risk they

pose. The information can be used to reduce inter-region vector

flows in emergency response situations by restricting air travel

between certain high risks destination pairs. The same data can be

used for proactive risk mitigation, when developing new flight

schedules.

Thirdly, screening procedures can allow arrival and

departure terminals to limit the frequency of successful importa-

Table 4. High Risk US Airports in non-endemic regions.

IATA code Airport City Airport Name Airport Country Suitability

U.S. Airports in Top 100 Stopover Risk in Non-Endemic Regions

MIA Miami Miami International Airport United States 0.892

ATL Atlanta Hartsfield-Jackson Atlanta Int United States 0.134

IAH Houston George Bush Intercntl. United States 0.694

DFW Dallas Dallas/Ft Worth Intl United States 0.096

CLT Charlotte Douglas United States 0.085

FLL Fort Lauderdale International United States 0.861

JFK New York John F Kennedy Intl United States 0.290

U.S. Airports in Top 100 Destination Risk in Non-Endemic Regions

JFK New York John F Kennedy Intl United States 0.290

MIA Miami Miami International Airport United States 0.892

IAH Houston George Bush Intercntl. United States 0.694

doi:10.1371/journal.pone.0072129.t004
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tion into new areas due to air travel by known vectors. The

Taiwan CDC has implemented a Rapid Dengue Blood Screening

with the purpose of quarantining individuals who exhibit

suspicious symptoms. The objective of the screen test is to prevent

spreading of the disease due to native competent vectors during

the viremia period. Screening of passengers presents complex

challenges: Firstly, development of accurate screening tests is

paramount, as unnecessarily quarantining individuals based on

faulty results would not result in a feasible system. Secondly, the

screening process must be fast enough to be accepted by

passengers in specific locations. Similar to containment strategies,

quantitative models which can identify high risk airports where

screening should be implemented are required. Additionally, the

proposed model is able to differentiate between risk from arriving

and risk from stopover passengers, which require different

screening policies.

A final option is vector control. Vector control is based on the

idea of reducing transmission of the disease by targeting site-

specific activities which are cost-effective. Vector control strategies

range from large-scale implementation of bed nets to large-scale

pesticide treatment in an effort to eradicate vectors. Other vector

control strategies include larval control, and environmental

control. Larval control can only be applied efficiently in areas

where the mapping and characterization of breeding sites is well-

documented. None the less vector control is of vital importance in

control of global insect-borne diseases. Implementing sustainable

and effective preventative and detection measures to contain

epidemics in high-risk areas can be challenging and costly. It is,

therefore, necessary to be selective in choosing the most

appropriate set of intervention measures.

A model that accounts for potential control measures, in

particular the costs (operational, monetary, organizational), and

benefits (decreased importability and establishment of vectors,

decreased probability of epidemics given establishment) of such

control measures must be developed. While, ultimately, the

primary target is to limit the number of people affected with such

diseases, several other benefits can be identified:

i) Decreasing the time necessary to identify disease outbreaks

through the analysis of spatiotemporal data can allow for

improved diagnosis capabilities in the health sector. Timely

diagnosis is particularly important in areas where insect-borne

diseases are not endemic, and as such, not expected.

ii) Identifying efficient mitigation strategies in a timely manner

can save agencies significant resources by curbing the overall

magnitude of disease episodes. The earlier outbreaks or

epidemics can be identified and subsequently contained, the

more efficient the use of resources will be.

The development of predictive risk models is an integral step in

improving local and regional surveillance efforts. The explicit

effect that airports have in the spread of diseases has yet to be fully

quantified. However, the analysis reported here takes a significant

step towards that end. Given that there is currently no vaccine for

dengue, surveillance and intervention, along with vector control,

remain the only relevant options to prevent further geographic

spread of the disease. Results from the risk model and SDM

together provide the means to evaluate and address the risk posed

to currently non-endemic regions, and reduce the likelihood of

dengue becoming established there. Meanwhile, the limitations of

this analysis highlight the need for improving the quality of readily

accessible disease data so as to enhance the prediction and control

of epidemic episodes of vector-borne diseases in susceptible

countries.

This model could be directly applied to Chikungunya and other

diseases transmitted by Aedes albopictus [66]. Additionally, the

techniques developed here can be used for the analysis of other

diseases in which air transmission plays a role [17,20,21,36]. The

network analysis is applicable to all such diseases; however, the

ecological suitability analysis is restricted to vector-borne diseases,

but extendible to those which, unlike dengue, involve reservoir

species along with vector species as part of the disease cycle

[5,16,18,19]. Finally the network model can potentially be

extended in a multigraph framework to include other types of

links–in the case of dengue, maritime transport links which have

been implicated in the dispersal of Ae. albopictus [3].
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