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Abstract

Brain-machine interface techniques have been applied in a number of studies to control neuromotor prostheses and for
neurorehabilitation in the hopes of providing a means to restore lost motor function. Electrocorticography (ECoG) has seen
recent use in this regard because it offers a higher spatiotemporal resolution than non-invasive EEG and is less invasive than
intracortical microelectrodes. Although several studies have already succeeded in the inference of computer cursor
trajectories and finger flexions using human ECoG signals, precise three-dimensional (3D) trajectory reconstruction for a
human limb from ECoG has not yet been achieved. In this study, we predicted 3D arm trajectories in time series from ECoG
signals in humans using a novel preprocessing method and a sparse linear regression. Average Pearson’s correlation
coefficients and normalized root-mean-square errors between predicted and actual trajectories were 0.44,0.73 and
0.18,0.42, respectively, confirming the feasibility of predicting 3D arm trajectories from ECoG. We foresee this method
contributing to future advancements in neuroprosthesis and neurorehabilitation technology.
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Introduction

A number of prominent brain-machine interface studies have

arisen, in which electroencephalography (EEG), magnetoenceph-

alography (MEG), electrocorticography (ECoG), and intracortical

microelectrode have been applied to neuroprosthesis control,

neurorehabilitation and novel communication tools for paralyzed

or ‘‘locked–in’’ patients suffering from neuromuscular disorders.

Since EEG and MEG are non-invasive and have high temporal

resolution, they have been used in various paradigms, such as

online control of a computer cursor [1–2], direction inference of

hand movements [3–5], operation of a spelling device [6], and

neurofeedback for rehabilitation [7–13]. Although a large

proportion of these non-invasive methods succeeded in classifica-

tion of movement direction or intention, prediction of time-

varying trajectories is likely difficult due to insufficient spatial

resolution and low signal-to-noise ratio in such methods.

Signal recording with intracortical microelectrodes is a powerful

tool to realize precise trajectory prediction or accurate device

control. Using motor cortical signals in animals, studies have

shown successful prediction of hand trajectories [14–16] and grasp

types and velocity [17], control of a computer cursor [18] or a

robot arm [19–22], and controlled stimulation to a paralyzed arm

[23]. These techniques have also been applied in humans to

control a cursor [24] and a virtual keyboard and virtual hand [25].

However, though intracortical electrodes can provide rich

information for BMI control, they face limitations such as signal

degradation due to glial scarring [26]and potential displacement

from the recording site [27].

Conversely, ECoG is less invasive than microelectrodes and can

offer higher spatial resolutions than EEG and MEG. Researchers

have been applying ECoG in humans for several years now and in

numerous applications. The classification of hand movement

directions or grasp types [28–33], one-, two-, or three-dimensional

cursor control [27,34–40], and prediction of finger flexion [41] are

just some examples of ECoG applications in human patients.

Studies concerning the prediction of three-dimensional (3D)

trajectory or muscle activities from primate ECoG have shown

outstanding results [42–45]. Investigations on the prediction of 3D

arm trajectory using ECoG in humans, however, are lacking,

despite the potential to provide significant improvement in

neuroprosthesis and neurorehabilitation technology. The inade-

quate quality of ECoG signals recorded from patients is one

potential obstacle in predicting 3D trajectories. Specifically, (1)

paralyzed or elderly patients may find it difficult to perform a long

series of repeating trials and stably replicate the same motion for
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each trial, (2) ECoG signals in patients can include pathological

activity, depending on the condition, and (3) the electrode sites on

the cortex and the recording lengths can differ, depending on the

treatment.

The aim of this study was to predict 3D arm trajectories from

ECoG time series in human patients as a basis for a neuroprosth-

esis. Patients diagnosed with thalamic hemorrhage, ruptured

spinal dural arteriovenous fistula (dAVF) and intractable epilepsy

executed rotating tasks with three objects on a table. We

simultaneously recorded arm trajectories and ECoG signals from

15,60 electrodes on the sensorimotor cortex. Using a novel

method, we predicted four joint angles for the shoulder and elbow

joints and six coordinates for the elbow and wrist joints in patients

with different pathology.

Materials and Methods

Ethics Statement
The study was approved by the ethics committee of Osaka

University Hospital (Approval No.08061) and conducted in

accordance with the Declaration of Helsinki. ECoG electrodes

were embedded not for our experiments but for patients’ medical

treatments. Written informed consent was obtained before

initiating any research procedures. All patients or their guardians

gave written informed consent for the use of their data in the

academic study.

Participants
Three patients (males; 14–64 years) participated in our study

(Table 1). Patients 1 and 2 had spastic paresis and weakness in the

left arm due to stroke. Their sensorimotor cortices were

undamaged, though moderate motor dysfunction was observed.

The youngest participant, patient 3, was diagnosed with intrac-

table epilepsy but did not show motor dysfunction. As part of their

treatments, all participants were implanted with subdural

electrode arrays (Unique Medical Co., Tokyo, Japan) covering

the sensorimotor cortex, including the central sulcus. The arrays

remained implanted in the intracranium for two weeks to

determine the optimum site for effective pain reduction (patients

1 and 2) or epileptic foci localization (patient 3).

Behavioral Tasks
Patients executed the tasks in an electromagnetically shield

room approximately one week after electrode implantation. All

patients were seated upright on a chair at a table and were asked

to perform the tasks using their left hands. Patient 1 repositioned

three blocks around a 25 cm 625 cm square one by one and in a

clockwise fashion (green arrows in Figure 1). He moved his hand to

the first block (a rectangular parallelepiped in Figure 1), grasped it,

carried it to the vacant corner of the square, and released it. Next,

he moved the second block (a cube) to the corner vacated by the

rectangular parallelepiped. Finally, he moved the third block (a

cylinder) to the corner vacated by the cube. When all objects had

been moved to the next corner once, a cycle of hand motion was

completed. Patient 1 regularly repeated nine cycles in session 1

and eleven cycles in session 2. Patient 2 also carried the three

blocks to vacant corners of the square, but he randomly chose one

block among the three to move. Patient 2 performed similar arm

movements 19 and 20 times for sessions 1 and 2, respectively.

Patient 3 chose one of three blocks and placed it at an arbitrary

position on the table. He performed 18, 31, and 24 movements in

sessions 1, 2 and 3, respectively. We instructed patients to perform

the tasks at their own pace. Each session started just after an audio

cue, delivered through a speaker controlled with a MATLAB

R2007b (Mathworks, Inc., Natick, MA, USA) script, and

Table 1. Clinical profiles in patients who participated in this study.

No. Age Sex Diagnosis (Left/Right) Duration of disease Paresis (MMT) Sensation

1 64 yr. Male Thalamic hemorrhage (R) 7 yr. Spastic (4) Hypoesthesia

2 65 yr. Male Ruptured spinal dural arteriovenous fistula 8 yr. Spastic (4) Hypoesthesia

3 14 yr. Male Intractable epilepsy (R) 7 yr. None Normal

doi:10.1371/journal.pone.0072085.t001

Figure 1. Behavioral tasks. Patient 1 repositioned three blocks
one by one and clockwise (green arrows ) at the corners of a
25 cm 6 25 cm square. ECoG signals were obtained with planar-
surface platinum grid electrodes placed on the right sensorimotor
cortex. Half-closed circles on the left shoulder, elbow, and wrist joints
represent three-dimensional markers for the motion capture system.
The angles q1, q2, q3, and q4 are defined as an abduction/adduction
angle, a flexion/extension angle, an external/internal rotation at the left
shoulder joint, and a flexion/extension angle at the left elbow joint,
respectively. When he lowered his arm toward the -z direction and
turned his palm to the y direction with the elbow extended, q1, q2, and
q3 were all zero, and q4 was p radians.
doi:10.1371/journal.pone.0072085.g001

Prediction of 3D Arm Trajectories Based on ECoG
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Figure 2. Electrodes placed on the sensorimotor cortex of patient 1. (A) Positions of the electrodes (circles). (B) Two 5 66 electrode arrays
were placed on the right hemisphere, covering the sensorimotor cortex. Yellow lines depict the right central sulcus.
doi:10.1371/journal.pone.0072085.g002

Figure 3. ECoG signal processing and decoding method. (A) Raw ECoG signals from channels 1, 2, and 27 are shown as typical examples. (B) The ECoG signal
of channel 27 was divided into seven frequency components (d,h, …, c 2) with bandpass filters (black lines). These seven filtered signals were digitally rectified,
smoothed with a low-pass filter, and down-sampled to 100 Hz. The band-passed ECoG signals were then z-score normalized (red lines). The linear relationship
between the past 1 s of normalized ECoG (light-blue area; t , t-jDt, j = 1, 2, …, 100,Dt = 0.01 s, i.e., 100 sampling points) and a coordinate x, y, or z at the present t (tiny
yellow boxes) was determined using sparse linear regression. Once weight coefficients were obtained through training, construction of the decoder was complete.
doi:10.1371/journal.pone.0072085.g003

Prediction of 3D Arm Trajectories Based on ECoG

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | e72085



continued for 180 seconds. We excluded 20 trials in which patient

2 moved more than 20 cm sagittally because his torso swung

forward and backward during the tasks. The abovementioned

tasks included several actions, i.e., reaching, grasping, carrying and

releasing, which are basic and indispensable actions for daily life.

ECoG Signals and Motion Recordings
Patients 1 and 2 were implanted with two 566 electrode arrays,

and patient 3 was implanted with a 365 array. The planar-surface

platinum grid electrodes had a diameter of 3 mm and an inter-

electrode distance of 7 mm, as shown in Figure 2. The number of

electrodes was 60 for patients 1 and 2, and 15 for patient 3. ECoG

signals were recorded inside an electromagnetically shielded room

with a 128-channel digital EEG system (EEG 2000; Nihon Koden

Corporation, Tokyo, Japan) set at a sampling rate of 1000 Hz. All

electrodes were referenced to a scalp electrode on the nasion of

each patient. Figure 2A shows electrodes placed on the cortex of

patient 1.

3D arm motions were recorded at a sampling rate of 100 Hz

with an optical motion capture system (Eagle Digital System;

Motion Analysis Corporation, Santa Rosa, CA) using reflecting

3D markers shaped in 6 mm-diameter spheroids to identify the left

shoulder, left elbow, and left wrist joint positions (Figure 1). The

frame lengths of images available for leave-one-out cross-

validation (LOO-CV) were as follows: 180 seconds for each

session by patient 1, 120 seconds for each session by patient 2, and

90, 180 and 120 seconds for sessions 1, 2, and 3 by patient 3,

respectively. Frame lengths differed between patients and sessions

since the 3D markers occasionally went out of the field of view or

were occluded by the patient’s body. The start of ECoG and

motion capture recordings was time-locked to the cue signal.

ECoG Signal Processing
ECoG signals were pre-processed with our previously proposed

method [44]. Firstly, the signal data sampled at 1000 Hz were re-

referenced with a common average reference (CAR) and divided

into seven frequency bands (d : ,4 Hz, h : 4,8 Hz, a: 8,14 Hz,

b 1:14,20 Hz, b 2:20,30 Hz, c 1:30,50 Hz, and c
2:50,90 Hz) using fourth-order bandpass Butterworth filters

(Figure 3). Secondly, these band-passed signals were digitally

rectified and smoothed with a second-order low-pass filter (cut-off

frequency: 2.2 Hz), which changed high oscillations into low

frequency features. Thirdly, the signals were down sampled to

100 Hz, i.e., the sampling rate of the motion capture recordings.

Finally, the obtained signals xi(t) (i = 1, 2, …, n 7) at time t were

normalized to the standard z-score zi(t) as follows (red lines in

Figure 3B).

zi(t)~
xi(t){mi

si

(i~1,2, . . . , n|7) ð1Þ

where mi, si and n denote the mean value of xi(t), the standard

deviation of xi(t), and the number of ECoG channels, respectively.

These z-scores calculated from ECoG signals were utilized as

training data to construct a decoder.

Decoding Method
The value of an angle or a coordinate Yp(t) at a present time t

was predicted with the following linear equation:

Yp(t)~
Xn|7

i~1

Xm

j~1

wijzi(t{jDt)zw0 ð2Þ

where Dt and m denote time-step and the number of consecutive

sampling points before the present time t used to predict Yp at t,

respectively. In this study, we assigned 100 points and 0.01 seconds

to m and Dt, respectively. w0 and wij are, respectively, a bias term

and a weight coefficient to the i-th filtered ECoG signal zi at time t-

jDt (Figure 3B). We applied a Bayesian algorithm called sparse

linear regression [44,46–49] to determine values of the weights wij.

Each session was segmented into 9,31 trials. Figure 4 shows z-

scores and coordinates x, y and z at the wrist joint in session 2 of

patient 1. In this example, the session was divided into 11 trials.

We defined the starting point of each trial as the instance when

tangential velocity at the elbow joint exceeded 5% of the

maximum velocity in the trial. The end point of each trial was

decided in a similar manner, i.e., the instance when tangential

velocity decreased to less than 5% of maximum. In Figure 4,

unused data between the k-th ending point and the k+1-th starting

point are colored over with yellow (yellow vertical lines).

We verified the validity of our method using LOO-CV. Firstly,

a decoder was constructed using filtered ECoG signals and actual

arm position or actual joint angle in all trials except the k-th trial,

which was used as test data. The weight coefficients wij were

obtained from this training. Iterations of the sparse linear

regression were terminated just before over-training. Secondly,

an arm trajectory Yp in the k-th trial was predicted with the

decoder. Pearson’s correlation coefficient (CC) and the normalized

root-mean-square error (nRMSE) were obtained by comparing Yp

and Yact of the k-th test trial. Thirdly, the abovementioned training

and testing phases were repeatedly executed using different trials

for k (Figure 4, k = 1, 2, …, 11). Finally the CC and nRMSE values

were averaged across all trials.

Figure 4. Color-map of the normalized ECoG signals and
coordinates at the left wrist joint. Signals were obtained from
channels 1,30 in session 2 of patient 1(channels 31,60 are not
shown). This session includes 11 cycles. We treated each cycle as an
independent trial.Start and end points were respectively defined as the
instances where tangential velocity of the arm exceeded or fell below
5% of maximum velocity. Unused sampling points are colored yellow
(yellow vertical lines). Precise wave forms of z-score on channel 27
inside of a red rectangle were already displayed in detail in Figure 3.
doi:10.1371/journal.pone.0072085.g004

Prediction of 3D Arm Trajectories Based on ECoG
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Results

Reconstruction of Angles and Positions
Movement duration average and standard deviations across 20

trials for patient 1 was 17.1762.76 s, indicating that his motion in

each trial was non-uniform (see Fig. S1). Figure 5 is an example of

the comparison between predicted (red lines) and actual 3D

trajectories (blue lines) for six seconds in the 10th trial of session 2

by patient 1. The red lines were drawn using inferred joint angles

q1, q4 and the patient’s arm length. Figure 6 shows predicted

joint angles (red lines in the left column) and joint positions (red

lines in the center and right columns) in comparison with actual

measurements (blue lines) in the 10th trial of session 2 as typical

plots by patient 1 (Figure 4). In this trial, it took 15.1 s to move all

three blocks to the next open corners of the square. Most blue lines

have curvatures with three peaks representing the three block

moving tasks. The timings of the peaks differed between q2 and q3

indicated by green arrows. The predicted red lines fit the peaks at

various timings, even though the ECoG signals utilized for the

prediction were common between q2 and q3. The traces for q1, z

at the elbow, and z at the wrist have narrow variation ranges and

many peaks, in contrast to those of the other joint angles/

coordinates. The ranges of CC and nRMSE for joint angles (left

column in Figure 6) were 0.57,0.88 and 0.13,0.40, respectively.

The flexion/extension angle q2 at the left shoulder showed the

best result. CC and nRMSE for joint coordinates (middle and

right columns) were 0.48,0.82 and 0.16,0.30, respectively. The y

coordinate values at the elbow were relatively greater than those of

the other coordinates. Both q2 and y at elbow showed wider ranges

of variation than the others.

Average CC and average nRMSE of the three patients are

summarized in Figure 7. The best average CC and nRMSE

among joint angles were 0.7160.026 and 0.2360.010 (mean 6

SEM), respectively, corresponding to angle q2 for patient 1. The

Figure 5. Examples of the predicted (red lines) and actual 3D trajectories (blue lines). A part of the 10th trial (6 s) in session 2 of patient 1
is shown (see Video S1). Markers (circles, triangles, squares, and diamonds) represent 2 s time intervals. Circles and diamonds indicate the earliest and
the latest positions, respectively. The red trajectories were computed using predicted data q1,q4 and patient 19s actual arm length. The timings
(positions of the markers) and trajectory curves of the predicted data were similar to those of the actual data.
doi:10.1371/journal.pone.0072085.g005

Prediction of 3D Arm Trajectories Based on ECoG
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best average CC and nRMSE among joint coordinates were

0.7360.022 and 0.1860.0071, respectively, corresponding to the

z coordinate of the left wrist for patient 1.

To judge whether performance of the proposed method differed

significantly between patients, a two-way ANOVA with Tukey’s

multiple-comparison test was conducted to analyze the effects of

two factors (patients and joint angles; patients and joint

coordination). The 2-way interaction did not show any signifi-

cance. Significant differences were observed among the patients

(joint angle: F2, 436 = 82.46, p,0.001; coordination:

F2, 654 = 117.56, p,0.001), whereas significant differences were

not observed among joint angles and joint coordination. The CC

values of both patients 1 and 2 were significantly higher than those

of patient 3. The nRMSE values for patient 3 were also

significantly higher than those of the other patients (joint angle:

F2, 436 = 10.42, p,0.05; coordination: F2, 654 = 41.14, p,0.01).

This may be interpreted such that the proposed method is more

suitable for patients 1 and 2 than for patient 3.

Frequency Components Contributing to Reconstruction
of Arm Trajectory

3D hand trajectories were predicted using each sensorimotor

rhythm, one by one. The results averaged across 20 trials for

patient 1 are shown in Figure 8. A two-way ANOVA was

employed to judge two effects (seven sensorimotor frequency

bands and four joint angles or six coordinations). Among the 2-

way interactions, only elbow coordination showed significance

(joint angle: F18, 532 = 1.07, p = 0.38; elbow coordination:

F12, 399 = 1.86, p = 0.04; wrist coordination: F12, 399 = 1.4,

p = 0.16). Significant differences were observed among the

sensorimotor frequency bands (joint angle: F6, 532 = 27.26,

p,0.001; elbow coordination: F6, 399 = 33.67, p,0.001; wrist

coordination: F6, 399 = 43.58, p,0.001), as shown in figure 8. The

CC values of the d and c2 bands were significantly higher than

those of the other bands.

Figure 6. Examples of predicted joint angles and positions in time series. Blue lines are actual recoded joint angles (left column), and actual
positions at the left elbow (center column) and left wrist joint (right column) in the 10th trial shown in Figure 3 and Figure 4. The joint angles and
coordinates predicted with sparse linear regression are plotted in red. The Pearson’s correlation coefficient (CC) and the normalized root-mean-square
error (nRMSE) are shown at the top of each graph.
doi:10.1371/journal.pone.0072085.g006
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Discussion

We predicted 3D arm trajectory in humans based on ECoG

signals divided into seven frequency bands using a sparse linear

regression method. Although two-dimensional (2D) cursor trajec-

tories on a display have been precisely predicted using ECoG

signals obtained from patients in several studies [35,37–38], to the

best of our knowledge, inference of 3D trajectory for the human

arm using ECoG has not been previously presented.

We inferred both joint angles (q1, q4) and joint positions (x, y

and z) to reconstruct 3D trajectory and obtained acceptable

prediction accuracies in both cases. Our average CC and nRMSE

were 0.44,0.73 and 0.18,0.42, respectively, excluding patient 3.

In the previous studies on 2D cursor trajectories with humans,

average CC were approximately 0.22,0.71 for Schalk et al.

(2007) (with the average across positions and velocities for the best

participant being 0.62) [35], 0.3,0.6 for Pistohl et al. (2008) [37],

and 0.52,0.87 for Gunduz et al. (2009) [38]. Kubanek et al.

(2009), who predicted individual finger flexions, showed an

average CC of 0.23 (little finger) , 0.75 (thumb) (CC averaged

across all fingers and participants was 0.52) [41]. Our results were

not inferior to the aforementioned studies, especially considering

the higher dimensionality of trajectory data.

The prediction accuracy for patient 3 was significantly worse

than that of the other patients. His average CC and nRMSE were

0.13,0.38 and 0.28,0.52, respectively. We suggest the following

as possible causes for this result: (1) ECoG signal quality; There

were obvious disturbances or noise in his ECoG signals which

Figure 7. Prediction results for all patients. Averaged correlation coefficients (CC) for joint angle (A) and x, y, z coordination (B), and the
normalized root-mean-square error (nRMSE) for joint angles (C) and x, y, z coordination (D) were obtained using LOO-CV on 20, 19 and 73 trials for
patients 1, 2, and 3 (blue, red, and green bars), respectively.
doi:10.1371/journal.pone.0072085.g007

Prediction of 3D Arm Trajectories Based on ECoG
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could be discerned through visual inspection. The baselines of his

ECoG signals also randomly and widely fluctuated. (2) Electrode

number; Patient 3 had only 15 electrodes placed around his

central sulcus, whereas the other patients had 60 electrodes. (3)

Pathology; Patient 3 had epilepsy while the others did not. (4) Task

properties; He was allowed to place the blocks at arbitrary places

on the table. He decided their positions impromptu, in contrast to

the other participants who placed their blocks at fixed positions.

We suggest that much more training data are necessary for the

prediction of motions involving various postures such as those in

the data of patient 3.

Joint angle q1 could not be predicted precisely, in contrast to

q2,q4 (Figure 7A and 6C). The range of abduction/adduction for

q1 was the narrowest among all angles, as shown in the left column

of Figure 6. We presume that it was difficult to extract the faint

component correlating with this small fluctuation from ECoG as a

summation of various signals.

The high frequency band c2 (50,90 Hz) had relatively high

CC values (Figure 8). Several papers also reported that high

frequency bands of ECoG were important for prediction, such as

40,80 Hz for cursor trajectory prediction in humans [37],

80,150 Hz for the classification of human hand movements

[31], 40,90 Hz for 3D hand trajectory prediction in monkeys

[43], and 50,90 Hz for EMG prediction in monkeys [44]. The

low frequency band d (,4 Hz) had the highest values among the

seven bands in this study. This was also supported by previous

works [32,37] which reported that the low frequency band ECoG

(2,6 Hz; with band-pass filter) and low frequency component

(LFC) (,5 Hz; with Savitzky-Golay smoothing filter) were

important for classifying different grasp types [32].

We verified that 3D arm trajectories in patients of different

pathology could be predicted with our proposed method using a

sparse linear regression. We foresee this method contributing to

further studies and further improvements in neuroprostheses and

neurorehabilitation.

Supporting Information

Figure S1 Actual position at the wrist joint for patient 1.

Coordinates x, y, and z of all 20 trials are shown. Motion of patient

1 was non-uniform, with duration and timing differing between

trials.

(EPS)

Video S1 Examples of the predicted arm positions of patient 1.

Blue and red lines are actual and predicted arm positions in the

10th trial of session 2, respectively.

(MOV)
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