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Abstract

Background: Patients with ulcerative colitis (UC) are predisposed to colitis-associated colorectal cancer (CAC). However, the
transcriptional mechanism of the transformation from UC to CAC is not fully understood.

Methodology: Firstly, we showed that CAC and non-UC-associated CRC were very similar in gene expression. Secondly,
based on multiple datasets for UC and CRC, we extracted differentially expressed (DE) genes in UC and CRC versus normal
controls, respectively. Thirdly, we compared the dysregulation directions (upregulation or downregulation) between DE
genes of UC and CRC in CRC-related functions overrepresented with the DE genes of CRC, and proposed a regulatory model
to explain the CRC-like dysregulation of genes in UC. A case study for ‘‘positive regulation of immune system process’’ was
done to reveal the functional implication of DE genes with reversal dysregulations in these two diseases.

Principal Findings: In all the 44 detected CRC-related functions except for ‘‘viral transcription’’, the dysregulation directions
of DE genes in UC were significantly similar with their counterparts in CRC, and such CRC-like dysregulation in UC could be
regulated by transcription factors affected by pro-inflammatory stimuli for colitis. A small portion of genes in each CRC-
related function were dysregulated in opposite directions in the two diseases. The case study showed that genes related to
humoral immunity specifically expressed in B cells tended to be upregulated in UC but downregulated in CRC.

Conclusions: The CRC-like dysregulation of genes in CRC-related functions in UC patients provides hints for understanding
the transcriptional basis for UC to CRC transition. A small portion of genes with distinct dysregulation directions in each of
the CRC-related functions in the two diseases implicate that their reversal dysregulations might be critical for UC to CRC
transition. The cases study indicates that the humoral immune response might be inhibited during the transformation from
UC to CRC.
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Introduction

Ulcerative colitis (UC) is a chronic inflammatory disease caused

by persistent pro-inflammatory stimuli, such as microbial products

and autoimmune injury [1], and patients with UC are at increased

risk for development of colorectal cancer (CRC), specifically

referred to as colitis-associated colorectal cancer (CAC) [2].

Current evidence suggests that molecular alterations in patients

with UC may promote neoplastic transformation by disturbing

multiple cancer-related functions. For example, it has been found

that pro-inflammatory factors released from the innate and

adaptive immune systems in UC patients, such as nuclear factor

(NF)-kB [3], interleukin (IL)-6 [4], and tumor necrosis factor-alpha

[5], contribute to the development of colon neoplasia by

stimulating proliferation and angiogenesis [6,7], and by promoting

DNA damage to the intestinal epithelium cells [8]. As alterations

in gene expression largely reflect the functional disorders [9], it is

possible that genes involved in some cancer-related functions could

have similar expression dysregulations in UC with those in CAC.

On the other hand, it is known that the disturbance in some

critical cancer-related functions occurs in opposite directions in

UC and CAC. For examples, it has been found that Fas-mediated

apoptosis is promoted in UC [10] but inhibited in CAC [11] and

that some key pro-inflammatory mediators, such as IL-13,

upregulated in UC may contribute to the host defense against

malignancy [12,13]. Therefore, identifying genes with distinct

dysregulations in UC and CAC might provide hints for

understanding their critical roles in the transformation from UC

to CAC. As a specific type of CRC, CAC evolves through the

inflammation–dysplasia–carcinoma sequence, different from an-

other type of CRC, non-UC-associated CRC, that evolves through

the adenoma–carcinoma sequence CRC [14]. On the other hand,

UC-associated and non-UC-associated CRC could be very similar

in gene expression, as non-UC-associated CRC is also somehow
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driven by pathways involved in inflammation [15] with similar

inflammatory signature genes characteristic of CAC [16] and non-

UC-associated CRC and CAC are similar in most of the essential

stages of cancer development with similarly disturbed signaling

pathways [17].

Previous studies investigating the mechanism of the transfor-

mation from UC to CAC have mainly focused on a few candidate

genes or pathways using animal models [5,7]. Recently, based on

high-throughput microarrays, some studies have compared the

genome-wide expression profiles between UC and CRC (both

CAC and non-UC-associated CRC), focusing on identifying genes

that are differentially expressed between the two diseases mainly

for the purposes of distinguishing CRC from UC [18,19].

However, an individual gene can be detected to be differentially

expressed between two diseases in different situations; for instance,

the gene may be dysregulated in only one of the diseases, but not

in the other, or it may be dysregulated in both diseases, in either

the same or the opposite direction (i.e. upregulated versus

downregulated cases shown in Figure S1). Thus, directly

comparing the expression profiles between two diseases cannot

discriminate the sources of the difference and thus may miss

critical information about the transcriptional relationship between

the two diseases. Therefore, it would be interesting to compare the

expression profiles between UC and CAC taking the normal

controls as the background. Notably, current microarray data for

CRC usually do not include explicit information about whether

the patients with CRC are developed from UC, possibly due to the

difficulty in determining such information for CRC patients.

Nevertheless, as UC-associated and non-UC-associated CRC

could be very similar in gene expression, comparing UC with

CRC including both UC-associated and non-UC-associated CRC

could still provide hints for understanding the transformation from

UC to CAC. It would be reasonable to assume that non-UC-

associated CRC would be unlikely to be more similar to UC than

CAC. Thus, if we can find a similar dysregulation pattern between

UC and CRC with mixed subtypes, the similarity would be kept

between UC and CAC, although there would be some uncertain-

ties for interpreting the observation on the transcriptional

difference between UC and CRC with mixed subtypes.

In this study, using a dataset consisting of gene expression

profiles of both CAC and non-UC-associated CRC, we firstly

showed that UC-associated and non-UC-associated CRC were

very similar in gene expression. Secondly, based on multiple

microarray datasets for each disease, we extracted differentially

expressed (DE) genes in patients with UC and CRC versus normal

controls, respectively. Thirdly, we assessed the functions overrep-

resented with the DE genes of CRC, termed CRC-related

functions, and showed that the dysregulation directions of the

DE genes of UC were significantly similar to the findings for CRC

in these CRC-related functions. Fourthly, we proposed a

regulatory model to explain the CRC-like dysregulation of genes

in UC, based on the assumption that the dysregulation of the

genes in UC could be regulated by transcription factors (TFs) that

are affected by pro-inflammatory stimuli for colitis. Finally, a case

analysis for a CRC-related function, ‘‘positive regulation of

immune system process’’, was done to reveal the functional

implication of the small portion of genes with the opposite

dysregulation directions in the two diseases for the transformation

from UC to CRC.

Materials and Methods

Microarray Data
The dataset GSE3629 was collected from the NCBI Gene

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/

[20]), which contained 62 non-UC-associated CRC samples, 6

CAC samples and 43 UC samples. Unfortunately, this dataset

contained no normal controls, so it is not suitable for comparing

the gene expression of UC and CAC taking the normal controls as

the background. We used this dataset to compare the expression

profiles of non-UC-associated CRC and CAC taking the UC as

the background.

Three UC datasets and four CRC datasets generated by the

Affymetrix Human Genome U133 Plus 2.0 Array were also

collected from the NCBI Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/ [20]), as described in Table 1.

The raw mRNA expression data was preprocessed using the

Robust Multi-array Average (RMA) algorithm [21]. We used the

SOURCE database [22] to map the ProbeIDs into GeneIDs. As

no dataset with explicit information of stage I CRC samples was

available, we analyzed these datasets including stage I-III CRC

samples, based on the assumption that stage II and III CRC

samples would be unlikely to be more similar to UC than stage I

samples. The logic behind this assumption is that if we can find a

similar dysregulation pattern between UC and CRC in different

stages, then this similarity should be kept between UC and early

UC-associated CRC.

Genes Participating in Immune Response
The Immunome database (http://bioinf.uta.fi/Immunome/)

[23] contains nine categories of immune genes, including humoral

immunity, cellular immunity, inflammation, and chemokines and

their receptors. Based on this database, we analyzed the

distribution of the DE genes whose dysregulation occurred in

opposite directions in UC and CRC in various immune responses.

Using the Immune Response in Silico database (IRIS) [24], we

analyzed the distribution of the DE genes with opposite

dysregulation directions specifically expressed in various immune

cells, including T cells, B cells, natural killer cells and dendritic

cells.

Selecting DE Genes from Multiple Datasets for a Disease
We created a DE gene list from multiple datasets for each

disease, as a dataset can usually capture only a certain number of

Table 1. The microarray datasets analyzed in this study.

Accession id Disease type Sample size (Disease VS Normal)

GSE16879 UC 24: 12

GSE10191 UC 8: 11

GSE10616 UC 10: 11

GSE9348 CRC 70: 12

GSE18105 CRC 17: 17

GSE20916 CRC 36: 24

GSE23878 CRC 35: 24

Notes: Patients with CRC from GSE9348 were at an early stage (Stage I/II),
patients with CRC from GSE18105 were at stage II and stage III, and patients
with CRC from GSE23878 and GSE20916 were metastasis-negative. In the
datasets GSE18105, we just used the 17 paired CRC and adjacent normal
samples to assure the clinical characteristics matching.
doi:10.1371/journal.pone.0071989.t001
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the DE genes, owing to small sample sizes, large biological

variations and technical limitations [25,26]. Firstly, we selected DE

genes from each dataset using the Significance Analysis of

Microarrays (SAM) method [27] at a false discovery rate (FDR)

control level of 1%. Then, we evaluated the reliability of DE genes

extracted from different datasets for each disease by applying the

binomial distribution model to evaluate the significance of the

percentage of the DE genes with the same dysregulation directions

in the DE genes commonly detected for every two datasets.

Finally, we integrated the DE genes from all datasets for each

disease according to the following criterion: DE genes selected in

at least one dataset were included in the list, after excluding those

DE genes in multiple datasets that had inconsistent dysregulation

directions across these datasets.

Finding CRC-related Functions
The Gene Ontology (GO) annotation data [28] were down-

loaded on October 1, 2011. We used the GO-function algorithm

[29] to select GO Biological Process (GO BP) terms that are

significantly enriched with CRC-related DE genes with FDR,1%

as assessed by the Benjamini–Hochberg procedure [30], which we

termed ‘‘CRC-related functions’’. In this study, we used the GO-

function algorithm to treat local redundancy [29]: when both an

ancestor term and an offspring term are detected as statistically

significant, the ancestor term will be extracted as biologically

relevant if there is evidence to suggest that the remaining genes are

still likely to be relevant to the disease after the removal of genes in

its significant offspring term(s); otherwise, only the offspring term is

kept [29].

Transcriptional Regulatory Model
From the Transcription Factor Database (TRANSFAC) [31]

and the Transcriptional Regulatory Element Database (TRED)

[32], we collected 363 TFs together with their target genes. We

defined the GO BP term ‘‘response to stimulus’’ and its offspring

terms as the stimulus-related terms, and found the stimulus-related

terms which significantly enriched with UC-related DE genes with

FDR,1%, termed as ‘‘UC-stimulus-functions’’.

If a DE TF in a UC-stimulus-function F1 can regulate a UC-

CRC consistent DE gene in a CRC-related function F2 in UC, we

defined them as a TF-target pair between F1 and F2. We assumed

that if there were significantly more TF-target pairs between F1

and F2, then CRC-related function F2 could be regulated by UC-

stimulus-function F1 associated with UC. We then calculated the

statistical significance of the number of TF-target pairs between F1

and F2, using the hypergeometric model as follows:

p(F1,F2)~1{
Xm{1

i~0

n

i

� �
N{n

M{i

� �

N

M

� �

where N is the total number of TF-target pairs in the TRANSFAC

and TRED databases; M is the number of the TF-target pairs

between DE TFs and their DE target genes in UC; and n and m

are the numbers of gene/DE TF-target pairs between TFs in F1

and their target genes in F2 after removing the overlapping genes

between F1 and F2. The P values were adjusted using the

Benjamini–Hochberg procedure [30].

Results

Similar DE Genes in UC and CRC
Firstly, using the SAM method with 10% FDR control, we

found no genes differentially expressed between non-UC associ-

ated CRC and CAC based on the dataset GSE3629. In this

dataset, with 10% FDR control, we selected 15174 DE genes

between non-UC-associated CRC and UC and 12113 DE genes

between CAC and UC. We found that 99.73% of the 10357

overlapped DE genes were consistent in dysregulation directions

for non-UC-associated CRC and CAC taking the UC as the

background, which was significantly higher than what expected by

chance (binomial test, P,1610–16). These results indicated that

non-UC-associated CRC and CAC were highly similar in gene

expression. Therefore, it would be largely reasonable to compare

the gene expression between UC and CRC with mixed subtypes

for studying the transitional mechanisms from UC to CAC.

Using the 1% FDR control, we extracted DE genes from each

of the four datasets for CRC. Comparing any two of the four CRC

datasets, as shown in Table 2, 98.47–99.73% of the DE genes

commonly detected were consistent in dysregulation directions for

both datasets, significantly higher than expected by chance

(binomial test, all P,1610–16). The non-random consistent signals

between the DE gene lists extracted from independent datasets

indicated that each of the DE gene lists was able to capture a

portion of the effective biological signals associated with CRC

[25,26]. Therefore, we integrated the DE genes from all of the four

CRC datasets (see Materials and Methods) and obtained a list of

11,038 CRC-related DE genes.

Then, using the GO-function algorithm, with FDR control of

1%, we selected 44 CRC-related terms located in different

branches of the directed acyclic graph of biological process, as

shown in Figure 1A. Some of these CRC-related terms had

ancestor-offspring relationships. For example, as shown in

Figure 1B, the ‘‘mitosis’’ and its three offspring terms ‘‘mitotic

prometaphase’’, ‘‘mitotic metaphase/anaphase transition’’ and

‘‘regulation of mitosis’’ were retained simultaneously. It is known

that the ‘‘mitosis’’ is related to cancer [33], whereas the three

offspring terms are important steps in the mitosis [34]. In general,

most of the 44 terms such as ‘‘apoptosis’’ and ‘‘cell proliferation’’

were well known cancer-associated functions, and many other

terms could also be explained. For example, as shown in

Figure 1C, the significant term ‘‘cellular component biogenesis

at cellular level’’ includes ‘‘membrane biogenesis’’ and ‘‘nucleo-

logenesis’’ as offspring terms which are necessary for mitosis whose

dysregulation is related to the abnormal proliferation of cancer

cells [35]. For another example, the significant term ‘‘macromol-

ecule modification’’ includes ‘‘DNA modification’’, ‘‘RNA mod-

ification’’, ‘‘protein modification process’’ and ‘‘macromolecule

methylation’’ as offspring terms, with the type of modification

being, besides others, methylation such as DNA methylation or

demethylation associated with carcinogenesis [36,37]. Similarly,

for the significant term ‘‘interspecies interaction between organ-

isms’’, accumulated evidences indicate that interaction between

intestinal bacteria and host is significantly related with the

occurrence and development of the CRC [38,39].

Similarly, we selected a list of DE genes from each of the three

datasets for UC. As shown in Table 3, 98.61–100% of the DE

genes commonly detected in any two of the three UC datasets

were consistent in the dysregulation direction for both datasets,

significantly higher than expected by chance (binomial test, all

P,1610–16). We therefore obtained a list of 6,557 UC-related DE

genes by integrating the DE genes from the three UC datasets (see

Materials and Methods). These 6,557 UC-related DE genes

An Expression Comparison Analysis
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overlapped with 4,764 of CRC-related DE genes, among which

72.33% had consistent dysregulation directions in the two diseases,

significantly higher than expected by chance (binomial test,

P,1610–16). DE genes overlapping between UC and CRC with

the consistent dysregulation direction in UC and CRC compared

with the normal controls were termed ‘‘UC-CRC consistent DE

genes’’, whereas genes that had the reverse dysregulation

directions in UC and CRC were termed ‘‘UC-CRC inconsistent

DE genes’’. In all of the 44 CRC-related functions, except for

‘‘viral transcription’’, the frequencies of the UC-CRC consistent

DE genes among the overlapping DE genes were .50%., and the

frequencies were significantly higher than expected by random

chance in 38 of these CRC-related functions (binomial test with

random frequency set at 0.5, FDR,5%). The genes consistently

and inconsistently dysregulated were listed in Table S1 and Table

S2.

The above results indicated that UC patients had CRC-like

expression dysregulation patterns in most of the CRC-related

functions. A potential explanation for this observation is that in

patients with UC TFs dysregulated by pro-inflammatory stimuli

could dysregulate genes in CRC-related functions, as analyzed in

the following section.

Table 2. The consistency of every two datasets for CRC.

Datasets GSE9348 GSE18105 GSE20916 GSE23878

GSE9348 100% (7251/7251)* 98.54% (4061/4121) 99.73% (4761/4774) 98.84% (3226/3264)

GSE18105 98.54% (4061/4121) 100% (6041/6041) 98.57% (3730/3784) 98.47% (2635/2676)

GSE20916 99.73% (4761/4774) 98.57% (3730/3784) 100% (6679/6679) 99.19% (3077/3102)

GSE23878 98.84% (3226/3264) 98.47% (2635/2676) 99.19% (3077/3102) 100% (4504/4504)

Notes: *(number1/number2) followed the percentage of the DE genes with consistent dysregulation direction in all commonly detected DE genes between two
datasets represent the number of the DE genes with consistent dysregulation direction and the number of all commonly detected DE genes, respectively.
doi:10.1371/journal.pone.0071989.t002

Figure 1. The CRC-related functions in the directed acyclic graph of Biological Process. A. All the CRC-related functions. B. A case for both
the ancestor and offspring terms retained simultaneously. C. A case for just one term retained in a biological process branch.
doi:10.1371/journal.pone.0071989.g001
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A Model for Pro-inflammatory Stimuli Regulating CRC-
related Functions in UC

In the ‘‘response to stimulus’’ branch of the GO BP, using the

GO-function algorithm with FDR control of 1%, we detected 14

UC-stimulus-functions, including ‘‘inflammatory response’’, ‘‘re-

sponse to extracellular stimulus’’, ‘‘response to oxidative stress’’,

etc. Using the hypergeometric test with FDR,10%, we found that

25 CRC-related functions could be significantly regulated by

dysregulated TFs in at least one of the UC-stimulus-functions (see

Materials and Methods), as shown in Figure 2A. For example, as

shown in Figure 2B, seven DE TFs dysregulated in the UC-

stimulus-function ‘‘response to oxidative stress’’ could regulate 40

target genes, which were similarly dysregulated in both UC and

CRC, in the CRC-associated function ‘‘cell proliferation’’.

Specifically, the TF ETS1 in ‘‘response to oxidative stress’’ was

upregulated in UC, which could upregulate its target gene MET

tyrosine kinase receptor to trigger mitogen-activated protein kinase

(MAPK) cascades to promote cell proliferation in UC [40], in a

similar way to CRC [41]. Similarly, the TF FOS was also

upregulated in UC, and this could repress transcription of its target

gene SMAD4 [42] to promote cell proliferation and lymph-node

metastases [43], which again is similar to CRC [44]. These results

indicated that ‘‘cell proliferation’’ could be accelerated by the

dysregulated TF genes in the UC-stimulus-function ‘‘response to

oxidative stress’’ to promote tumorigenesis.

For another example, as shown in Figure 2C, eight DE TFs

dysregulated in the UC-stimulus-function ‘‘inflammatory re-

sponse’’ could regulate 32 target genes, which were similarly

dysregulated in both UC and CRC, in the CRC-associated

function ‘‘apoptosis’’. Specifically, IL-6 in the ‘‘inflammatory

response’’ was upregulated in UC, which could enhance the

proliferation of intestinal epithelial cells and increases their

resistance to apoptosis in UC [6], meanwhile the proliferative

and survival effects of IL-6 were mediated by STAT3 in colitis

associated cancer [6]. However, despite many genes related with

apoptosis were similarly dysregulated in both UC and CRC, the

apoptosis is promoted in active UC but inhibited in colon cancer

[10]. These results indicated that a few genes with different

dysregulation patterns between UC and CRC may play key roles

in determining the final apoptosis signals for the two diseases.

Similar analyses could be done for the other CRC-related

functions. The transcriptional regulatory model could provide

hints for analyzing the tumor-promoting effect of stimulus-related

TFs in inflammatory environment. In fact, many of the DE TFs

dysregulated in the UC-stimulus-functions have been reported to

function as a tumor promoter in inflammation-associated cancer,

including all of the seven TFs shown in Figure 2B, which were

FOSL1 [45], ETS1 [46], FOS [47], HIF1A [48], RELA [49],

NFE2L2 [50] and HNF1A [51]. Different from most of previous

studies which focused on individual candidate TF, our study could

provide a new angle to reveal the combination of several TFs in

one UC-stimulus-function for dysregulating a CRC-related

function in patients with UC which could contribute to the

development from UC to CRC.

UC-CRC Inconsistent DE Genes in the CRC-related
Functions

For each of the CRC-related functions in which UC patients

showed a significantly similar dysregulation pattern, there were

also a certain percentage of genes with reverse dysregulations in

the two diseases. In the ‘‘positive regulation of immune system

process’’ of these 38 significantly consistent CRC-related func-

tions, the frequency of the UC-CRC inconsistent DE genes was

the highest (42.26%). Thus, we took it as a case to further analyze

the UC-CRC inconsistent DE genes between UC and CRC.

Using the Immunome database, we found that the UC-CRC

inconsistent DE genes in the ‘‘positive regulation of immune

system process’’ were significantly enriched in the category of

‘‘humoral immunity’’ mediated by antibodies secreted by B

lymphocytes (P = 0.048). Using the IRIS database, we also found

that the UC-CRC inconsistent DE genes were enriched in genes

specifically expressed in B cells (P = 0.016). All of the 22 UC-CRC

inconsistent DE genes in the ‘‘humoral immunity’’, including Iga,

CD53 and CD27 which play key roles in regulating B-cell

activation and immunoglobulin synthesis to mediated humoral

immunity [52–54], were upregulated in UC but downregulated in

CRC, in accordance with the observation that the immune system

is hyperactive in UC [55], and that resting B cells can suppress T-

cell-mediated anti-tumor immunity in tumors to promote tumor

development [56]. Notably, in the ‘‘humoral immunity’’, there

were several DE genes, such as surface receptor CD81 and

transmembrane protein LEU13 localizated on B cell membrane

surface, that were up-regulated in CRC in comparison with the

normal control. This indicated that the downregulation of a large

fraction of genes in B cells could not be simply explained by the

possibility that the amount of B cells in cancer tissues may be

reduced. Cancer cells could express ‘non-self’ antigens which

might recruit lots of B cells and other immune cells such as T cells

and macrophages [57]. In fact, we found that the genes

consistently differentially expressed in UC and CRC were

significantly enriched with T cells and macrophages specifically

expressed genes (by hypergeometric model, p = 0.0099 and

p = 0.00059). In addition, we found that most of the consistent

DE genes in T cells (20 out of the 23 consistent DE genes) as well

as in macrophages (25 out of the 28 consistent DE genes) were up-

regulated in both UC and CRC in comparison with the normal

controls. It is known that the activated macrophages and T cells

can release TNF-alpha which binds to the receptor TNF-receptor

(TNF-R) and could promote colitis-associated cancer [7].

These results showed that the DE genes with reversal

dysregulations in UC and CRC might be crucial for the different

immune responses in these two diseases. It suggested that critical

genetic and epigenetic alterations could occur during the

transformation from UC to CRC, which could reverse the

dysregulation of genes in the ‘‘positive regulation of immune

system process’’ in UC to the opposite dysregulations which could

induce CRC. For example, for the 22 UC-CRC inconsistent DE

genes involving in humoral immunity, 15 genes were detected

exome sequence, DNA copy number and promoter methylation in

208 patients with CRC in the Cancer Genome Atlas (TCGA)

database [58], simultaneously. All of these 15 genes mutated in

significantly more CRC samples than what expected by chance

given the background mutation rate of 1.2610–6 (Binomial

distribution model, FDR,1%) [59] and 11 of these 15 genes also

had copy number deletions in significantly more CRC samples

than what expected by random chance given the background copy

Table 3. The consistency of every two datasets for UC.

Datasets GSE16879 GSE10191 GSE10616

GSE16879 100% (5041/5041) 98.61% (1634/1657) 98.93% (1382/1397)

GSE10191 98.61% (1634/1657) 100% (3171/3171) 100% (2327/2327)

GSE10616 98.93% (1382/1397) 100% (2327/2327) 100% (2367/2367)

doi:10.1371/journal.pone.0071989.t003

An Expression Comparison Analysis
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number alternation rate of 1.2610–2 (Binomial distribution model,

FDR,1%) [60]. For example, CD53 and CD27 for B cell

activation [52,61] were altered in a total of 45 and 15 CRC

patients with somatic mutations or copy number deletions,

respectively. Several reverse DE genes, such as CD27, LTF and

DOCK2, were also found to be significantly hypermethylated in

CRC. As no such data were available for UC for comparison,

these results could be regarded as partial evidence to support the

above-mentioned hypothesis.

Notably, in all the 44 identified CRC-related functions, only in

the ‘‘viral transcription’’ function the frequency of the UC-CRC

inconsistent DE genes was above 50%. For this function, among

the 12 DE genes dysregulated in both UC and CRC, eight genes

(POLR2F, POLR2H, POLR2J, RPL15, RPL34, SUPT4H1,

RDBP, and MDFIC) were dysregulated in opposite directions in

the two diseases compared with normal controls. Seven of the

eight UC-CRC inconsistent DE genes (except MDFIC) were

upregulated in CRC but downregulated in UC. The enhancement

of the viral transcription could result in stimulation of NF-kB

transcriptional activity to promote cell proliferation, suppress

apoptosis [62], and promote cell migration in cancer [63].

Similarly, this result suggested that critical genetic and epigenetic

alterations could occur during the transformation from UC to

CRC to reverse the dysregulation of these genes in UC to induce

CRC.

Figure 2. The significant regulatory links between UC-stimulus-functions and CRC-related functions in UC. A. The significant
regulatory relationships between functions. The gray nodes represent the stimulus-related functions in UC, whereas the other nodes in each color
represent functions that are located in the same branch of the Gene Ontology Biological Process (GO BP) tree. Edges represent the significant links
between transcription factors (TFs) dysregulated in stimulus-related functions and their differentially expressed (DE) target genes in CRC-related
functions in UC (see details in Materials and Methods), and its thickness is proportional to the significance level (-log10[P value]). B. A case for the
significant regulatory links from ‘‘response to oxidative stress’’ to ‘‘cell proliferation’’. C. Another case for the significant regulatory links from
‘‘inflammatory response’’ to ‘‘apoptosis’’. These pink and green diamond nodes, in ‘‘response to oxidative stress’’ and ‘‘inflammatory response’’,
represent upregulated and downregulated DE genes in UC, respectively. In ‘‘cell proliferation’’ and ‘‘apoptosis’’, the pink and green diamond nodes,
respectively, represent genes consistently upregulated or downregulated in UC and CRC. An arrow represents the regulation relationship between a
TF and one of its targets.
doi:10.1371/journal.pone.0071989.g002
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Discussion

In this study, we showed that in most of the CRC-related

functions, the genes dysregulated in both UC and CRC were

significantly consistent in dysregulation direction and that genes

with CRC-like dysregulation in CRC-related functions in UC

could be regulated by TFs affected by pro-inflammatory stimuli in

UC. This global similarity could provide hints for understanding

the transcriptional basis for the development from UC to CRC.

Notably, because non-UC-associated CRC also has inflammatory

component [16], a sensible hypothesis is that a fraction of genes

similarly differentially expressed in UC and CRC might be just

common inflammatory genes whose roles playing in UC to CAC

transition should be interpreted with caution. Indeed, inflamma-

tory cells and mediators are present in the microenvironment of

most, if not all, tumors [64] but the chronological order between

cancer and inflammation is still unclear [65]. Nevertheless, given

that accumulated evidences suggest that genes involved in

inflammatory responses, such as IL-6 and TNFa [66], may play

decisive roles in tumor initiation and development [67,68], the

similar dysregulation pattern of many inflammatory genes in UC

and CRC, including genes involved in cell proliferation and

regeneration which are required for tumor initiation and

development [41], indicated that these genes are likely to play

roles in promoting the transition from UC to CAC.

We also found that a certain percentage of genes in each of the

CRC-related functions were dysregulated in the opposite direc-

tions in the two diseases, indicating that their reversal dysregula-

tions might be critical for the transformation from UC to CRC. In

particular, for humoral immunity response, all of the 22 UC-CRC

inconsistent DE genes were upregulated in UC, but downregulat-

ed in CRC, indicating enhanced response of humoral immunity in

UC and repressed response in CRC. However, caution should be

taken in interpreting the effects of UC-CRC inconsistent DE

genes, as most of the CRC samples in the datasets could be non-

UC-associated, given that CRC caused by UC accounts for only a

small portion of all cases of CRC [69]. There are two possible

explanations for a gene found to be with reverse dysregulation

directions in the two diseases in each CRC-related function.

Firstly, the expression dysregulation is similar in UC-associated

CRC and non-UC-associated CRC. Hence, the result implies that

the dysregulations of the gene might be reversed during the

transformation from UC to CRC, which could be caused by

genetic and/or epigenetic alterations in UC genomes because

persistent inflammatory stimuli can induce genomic instability

[67,70,71]. Obviously, it would be interesting to identify the

genetic and epigenetic alterations that occur during the transfor-

mation from UC to CRC, which could reverse the dysregulation

of genes in UC to the opposite direction and play critical roles

during this transformation. Secondly, the expression dysregulation

of a gene is different in UC-associated CRC and non-UC-

associated CRC, implying that this gene might be similarly

dysregulated in UC and UC-associated CRC, and therefore might

play tumor-promoting roles in UC. To clarify the roles of the

observed UC-CRC inconsistent DE genes in UC and CRC, we

need to discriminate the expression difference between UC-

associated CRC and non-UC-associated CRC; however, currently

the data for such a comparison are limited.

In conclusion, the globally similar gene dysregulation and the

locally distinct gene dysregulations may provide hints for

understanding the transcriptional mechanism of the transforma-

tion from UC to CRC. It may also indicate why some anti-

inflammatory drugs such as mesalamine [72] and aspirin [73] are

effective preventive agents for CRC [15]. One reasonable

assumption is that an anti-inflammatory drug could be effective

for the prevention of CRC if the genes targeted by the drug affect

CRC-related functions which are dysregulated similarly in UC

and CRC. For example, we found that three genes (MAPK3,

prostaglandin-endoperoxide synthase (PTGS)2, and G protein-

coupled receptor (GPR)44) targeted by sulindac, a non-steroidal

anti-inflammatory drug that is effective for the prevention of

cancer [74], were dysregulated in the same directions in both UC

and CRC in 13 CRC-related functions. Based on the above

assumption, it would be interesting future work to design methods

for selecting effective chemopreventive agents for CRC from anti-

inflammatory drugs.

Supporting Information

Figure S1 Cases for the DE genes between two diseases.
Gene1 and Gene3 are both upregulated in Disease1 compared

with Disease2. Gene1 is downregulated both in Disease1 and

Disease2 compared with normal controls, but Gene3 is upregu-

lated in Disease1 and downregulated in Disease2. Similarly,

Gene2 and Gene4 are both downregulated in Disease1 compared

with Disease2. But, they shown different dysregulation directions

in Disease1 and Disease2 compared with normal controls.

(TIF)

Table S1 The consistently DE genes between UC and
CRC in each CRC-related function.

(XLS)

Table S2 The inconsistently DE genes between UC and
CRC in each CRC-related function.

(XLS)
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