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Abstract

Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with TIDM, but its pathogenesis is
not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in
17 children with TIDM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured
cytokines/chemokines were elevated at 6-12 hours into treatment of DKA compared to values after DKA resolution. Eight
patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were
present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive
cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-
12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic
inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute
DKA.
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Introduction

Since being described four decades ago, diabetic cardiomyop-
athy (DCM) [1] has come to be recognized as an independent
phenotype of diabetic cardiac disease. DCM is characterized by an
abnormal myocardial performance unrelated to coronary athero-
sclerosis or hypertension [2—4]. There is convincing echocardio-
gram (ECHO) evidence of diastolic dysfunction in a significant
number of children, adolescents [5-8] and young adults with
T1DM [9-12]. These studies suggest that DCM, a major cause of
heart failure, has an early onset in some patients with TIDM. A
positive correlation has been reported between stable suboptimal
metabolic control and diastolic dysfunction [7,8,13]; however this
has not been a consistent finding [6,14,15].

Insulin deficiency in T1DM results in a complex metabolic
stress, including: hyperglycemia [16]; hyperlipidemia [17]; keto-
nemia [18]; and variable intermittent insulin resistance [19], each
being a metabolic risk factor in the pathogenesis of DCM. Altered
insulin signaling also perturbates cardiac metabolism, with
augmentation of free fatty acid (FFA) utilization and decrease in
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glucose consumption [20]. The metabolic instability in T1DM
leads to increased oxidative stress [21] and the oxidation of various
metabolites. Oxidation products such as oxidized lipoproteins
interact with innate immune receptors [22] causing a low-grade
systemic inflammation. Type 1 diabetes is marked by an increase
of inflammatory cytokines/chemokines, such as IL-6; sCD40L
[23,24]; IL-8 [25]; IL-1ay IL-2; IL-4; IL-5; IL-10; granulocyte-
macrophage colony-stimulating factor (GM-CSF); macrophage
inflammatory protein (MIP)-1o; MIP-1; and activation of normal
T cell expressed and secreted (RANTES) [24].

In this study we examine diabetic ketoacidosis (DKA) and the
occurrence of systemic inflammatory response (SIR) and the
presence of cardiac diastolic dysfunction. We have shown
previously that DKA and its treatment accentuates the systemic
immune inflammatory cytokines IL-1f, IL-6, TNF- o and IL-8 in
patients. In addition, we found an increased level of regulatory IL-
10 prior to treatment. With the initiation of treatment the
inflammatory cytokines increased and IL-10 decreased [26]. These
findings were recently confirmed by Karavanaki and colleagues
[27]. In addition to the increase of inflammatory cytokines, the
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inflammatory state of acute DKA is shown by findings of
complement active peptides [28]; acute phase proteins [29,30];
and T-lymphocyte activation [31,32]. We hypothesized that the
acute SIR during severe DKA and its treatment is a cause of acute
myocardial diastolic dysfunction. Reasons to study the association
of an immune insult on the myocardium in young patients with
DKA are: 1) to avoid the confounding interaction of the chronic
vascular complications of long-term T1DM; 2) to increase the
understanding of inflammatory cytokines in the pathogenesis of
clinical immune myocarditis/cardiomyopathy [33,34]; and 3) to
provide insight for timely intervention into the morbidity and
mortality of cardiovascular complications of T1DM [35]. We
addressed this question by assaying an array of systemic cytokines/
chemokines and performing echocardiograms (ECHO) during and
after correction of severe DKA using an established DKA
treatment protocol [36,37].

Materials and Methods

1. Study Sample

A total of twenty-two children and adolescents between the ages
of 9.5 and 17 years, presenting with diabetic ketoacidosis and total
COy =/<12 mmol/L were enrolled. The study was approved by
the IRB at East Carolina University Brody School of Medicine.
Informed consent was signed by the legal guardian and assent
from the patients over 7 years when not prohibited by severity of
illness. In such cases, patient assent was obtained when clinical
improvement permitted. Patients referred from outlying hospitals
were stabilized prior to transport after consultation with the
accepting attending physician in the Pediatric Intensive Care Unit.
Patients were managed according to previously published guide-
lines [36,37]. Pretreatment values were obtained for blood
pressure (BP), heart rate (HR), complete blood count (CBC),
glucose, electrolytes, urea nitrogen (BUN) and creatinine (Cr) at
the referring hospital. The start of therapy was defined as the
initiation of continuous intravenous insulin. In addition to a
pretreatment blood pressure (BP), BPs were recorded hourly based
on measurements with an automated oscillometric device and
appropriately sized BP cuff. BP determinations were available for
19 time periods including (612 hrs, during DKA treatment) (T'1),
discharge (48 hrs), baseline ECHO (24 wks post discharge) (T2)
and Dbaseline cytokines/chemokines (at 3 mons) (T3). Blood
glucose was obtained hourly and electrolytes, BUN and Cr were
measured every two to four hours. A repeat CBC with differential
was repeated at 24 hrs. None of the patients were known to have
hypertension, diabetic retinopathy, nephropathy or coronary
artery disease. Exclusion criteria were a history or physical
findings suggestive of an acute or chronic infection, emotional or
physical disability or autoimmune conditions other than chronic
lymphocytic thyroiditis.

2. Echocardiograms

Standard two dimensional echocardiograms with Doppler
velocity flow were obtained at times T1 (6-12 hrs, during DKA
treatment) and T2 (24 wks post discharge, baseline ECHO).
Patients were studied in a 45 degree sitting position. Standard two
dimensional (2D) views were obtained and ventricular ejection
fractions were calculated from the two dimensional images using a
standard volume calculation package. Doppler flow profiles were
measured just distal to the tips of the valve leaflets for peak
velocities and mitral E to A filling ratio, mitral deceleration time
and mitral valve isovolumetric relaxation time by standard
technique and averaged from the three best Doppler profiles to
study left ventricular filling.
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Comparisons were made for ECHO derived measures of
systolic and diastolic performance at times T1 versus T2 (baseline
ECHO) for all 17 patients in aggregate. The individual patient
echocardiographic measures at T'1 were compared to individual
measures at T2 to determine if any subset of patients had a systolic
or diastolic abnormality (T'1). The echocardiograms and calcula-
tions were performed by one of the authors (DH), who was masked
with regard to the cytokine results.

3. Cytokines/chemokines and Troponin |

The first blood sample for cytokine/chemokine assay (T'1) was
obtained between 6-12 hrs after the start of treatment. This time
was chosen as T1 since the logistics of transfer from another
hospital precluded obtaining an earlier sample, and this time has
been used for sample collection as the second time point in
previous studies of DKA [26,38,39]. Subsequent samples were
obtained at 2-4 wks (T2) and at 3 mon post discharge (baseline
cytokine) (T'8). All samples were obtained from freely flowing
access sites, immediately placed in chilled EDTA tubes and
immediately centrifuged at 4°C at 2,000 RPM for 20 min. The
plasma was separated and stored at —80°C untl assayed.
Troponin I was obtained at 12 and 24 hrs.

The cytokines and chemokines were measured using Millipore
Map detection kit (Austin, TX), based on the Luminex xMAP
technology, that employs the use of fluorescent coated beads
coated with capture antibody. The plasma samples were thawed at
room temperature. A volume of 25 microliters was mixed with the
beads, incubated overnight, washed and then detected with the use
of a biotinylated detection antibody. The reaction mixture was
incubated with Strepavidin-PE conjugate to complete the reaction
on the surface of the microbeads. The microbeads were then
passed through a laser which excites the internal dye and a second
laser excites the PE fluorescent dye. The processor identifies each
microbead and quantifies the result of the bioassay based on the
fluorescent reporter signals. The outcome of the assay was read on
the Bio-Plex 200 system from Bio-Rad using the Bio-Plex
Manager 6.0 software. Troponin I was assayed using the Siemens
Centaur Tnl-Ultra assay (Deerfield, IL).

4. Statistical Analysis

The patients’ demographic characteristics are described as
group mean +/— standard deviation or as median values with
data range. Associations between demographic characteristics
were tested with Fisher’s Exact test or Chi-square. Blood
chemistries and cytokines/chemokines are represented as group
means +/— standard deviations. Correlation and regression
analyses were used to determine the strength of relationships
between cytokines/chemokines and blood chemistries, systolic(S)
and diastolic(D) BPs, as well as cytokines/chemokines and ECHO
values. Longitudinal differences between blood chemistries, BPs,
and ECHO variables were tested with repeated measures
ANOVA and T-tests. Comparable non-parametric analyses were
utilized when data sets did not meet parametric criteria. Two-
factor repeated measures ANOVA were used to investigate
mteractions between ECHO and cytokine/chemokine variables.
NCSS 8 Statistical Software (http://www.ncss.com) was used for
the statistical analyses.

Results

1. Patient Demographics

Four of the 22 patients were dropped from the study for various
non-medical reasons, and one was dropped because of pancrea-
titis. The study involved 17 patients with DKA and an average age
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of 13.76 yrs (range: 9.7-16.9). The mean (SD) duration of T1IDM
for the 11 previously diagnosed patients is 6.36 (4.02) yrs. Six
patients were newly diagnosed at the time of admission. The mean
(SD) T1DM duration for all 17 patients was 4.12 (4.29) yrs. There
were 10 females and 7 males, 6 Caucasian (C) and 11 African
American (AA) (Table 1). Sixteen of the patients were stabilized at
a referring hospital after consultation with staff at East Carolina
Medical Center, where the patients were then transferred to the
PICU for treatment of DKA by a published protocol [36,37].
Three patients received intravenous mannitol during the treat-
ment of DKA based on the assessment by the attending of clinical
signs suggesting early clinical cerebral edema, as previously
described [36,37]. All 17 patients had uneventful correction of
DKA, frequently within 12 hours after the initiation of the
treatment [37]. Laboratory results of the patients are depicted in
Table S1. All patients had one or more positive islet cell
autoantibodies (IAA, IA-2, and GADG65) (data not shown).
Troponin I was not increased in any patient at either T1 (6-
12 hrs) or at 24 hrs (data not shown).

2. Cardiac Assessment

To assess cardiac parameters of patients with DKA, ECHO was
performed at T'1 (6-12 hrs) vs T2 (2-3 wks/ECHO baseline). The
results are shown in Table 2. Heart rates (HRs) obtained during
ECHO examinations were significantly elevated (p<<0.0001) at T'l
(106 bpm) vs T2 (78 bpm). Two dimensional LV fractional
shortening was significantly higher at T1 compared with T2 but
within normal range at both studies, indicating increased systolic
performance with the increased adrenergic state. LV dimensions
and volumes were significantly lower at T'1 consistent with changes
from dehydration and sinus tachycardia associated with DKA.

SIR and Diastolic Dysfunction during DKA

3. Diastolic Abnormality

Diastolic function by mitral valve Doppler E/A filling ratio
showed a significantly lower mean mitral E/A filling ratio at T'1
compared with T2 for all 17 patients (Table 2). This is a normal
finding since mitral diastolic E/A ratio shortens progressively with
faster HRs [40,41] and all patients had sinus tachycardia at T1. A
comparison of the difference in the E/A ratio between T2 and T1
indicates that in five patients there was not a normal shortening
(decrease) of the E/A ratio during T1 compared with the baseline
at T2. This lack of normal diastolic adaptation to sinus tachycardia
identified this subgroup to have an acute diastolic abnormality
(DA) during DKA (Figure 1).

Mean mitral deceleration time (MDT) was shorter at Tl
(mean = 154 msec) compared with T2 (mean =166 msec) in the
group as a whole. This is also consistent with a normal response to
the shortening in diastolic filling time during sinus tachycardia.
However, in six patients the MDT was not shorter at T1
compared with T2, despite the significantly higher HR at T'1. This
represents a significant association for abnormal MDT adaptation
to sinus tachycardia at T1 for these 6 patients (p=0.0345).
Analysis of the difference between MD'T at T1 and T2 indicated
that the magnitude of the difference was statistically smaller MDT
did not shorten at T1 compared with T2) in these six patients
(p=0. 0011). This relationship is depicted in Figure 2. Three
patients showed this abnormal response to an increased HR in
both of these diastolic parameters: mitral E/A ratio and mitral
DT. Therefore eight (8) patients had one or both of these
abnormal diastolic changes with sinus tachycardia and were
identified as having diastolic dysfunction or diastolic abnormality
(DA) compared with the other 9 patients with no demonstrable
acute DA (non-DA) at T'1. No significant difference in HR values
were present at T'l between the 8 DA patients versus the 9 non-
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Table 1. Demographic data for 17 patients in data set.
Age at First Data Set Disease Duration at First
Patient No. (years) Data Set Gender Race Diastolic Abnormality Group
1 13.25 1d M C No
2 14.42 5y F AA Yes
3 13.58 9y F C Yes
4 16.92 3y M AA Yes
5 11.42 3y M AA No
6 10.08 1d F C No
7 16.92 1y M AA No
8 16.33 1d F AA Yes
9 13.08 1d M C No
10 14.33 12y F AA Yes
1 11.58 1d F AA Yes
12 16.25 6y M AA Yes
13 15.25 7y F C No
14 9.67 1d F AA No
15 15.5 13y F AA Yes
16 10.75 5y M AA No
17 14.58 6y F C No
Average Age (SD) in Mean (SD) Duration in TOTAL 7 Male: 10 FemaleTOTAL 11 AA*: 6C TOTAL 8 DA Group: 9 Non-DA
years 13.76 (2.37) years 4.12 (4.29) Group
*Fisher’s Exact chi-square analysis indicates a significant association between the Diastolic Abnormality and the African American race (p=0.0319).
doi:10.1371/journal.pone.0071905.t001
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Table 2. Comparative analysis for ECHO variables that had significant differences for all patients at T1 (6-12 hours post admission)
vs T2 (2-3 weeks/ECHO baseline), (N=17 patients).
ECHO Variable Echo T1 DKA Mean(SD) Echo T2 Baseline Mean(SD) Test Result * T (p)
RR Interval (msec) 566.47 (68.67) 771.47 (159.19) —5.48 (<0.0001)
Mitral Valve E/A Ratio 1.49 (0.27) 2.15 (0.36) —6.29 (<0.0001)
2D LV diameter Diastolic (cm) 3.98 (0.61) 444 (0.52) —4.38 (0.0002)
2D LV diameter Systolic (cm) 2.38 (0.40) 2.81 (0.45) —5.25 (<0.0001)
LV Area Diastolic (cm?) 13.12 (2.67) 16.23 (3.23) —5.33 (<0.0001)
LV Area Systolic (cm?) 5.94 (1.60) 7.11 (2.05) —2.88 (0.0054)
LV Volume Diastolic (cm?) 36.08 (10.54) 48.91 (14.91) —4.70 (0.0001)
LV Volum Systolic (cm?) 10.93 (3.98) 14.28 (5.94) —2.93 (0.0049)
2D SF% 39.88 (5.79) 36.91 (5.28) 1.80 (0.0452)
2D LV Wall thickness Diastolic (cm) 0.77 (0.12) 0.71 (0.13) 1.88 (0.0305)
2D Septum thickness (cm) 0.74 (0.12) 0.69 (0.12) 1.75 (0.0398)
LA diameter (cm) 2.31 (0.47) 2.80 (0.43) —5.11 (<0.0001)
Aorta diameter (cm) 2.42 (0.34) 2.18 (0.33) 3.14 (0.0031)
*Statistically significant results p<<0.05.
doi:10.1371/journal.pone.0071905.t002
DA patients supporting that a true diastolic HR adaptation 80 —

abnormality was present during DKA in the DA patients.

4. Diastolic Abnormality vs No Abnormality

The 8 DA patients versus the 9 non-DA patients showed slightly
greater mean HR values (DA at 107 bpm; non-DA at 104 bpm),
but no significant difference at T1. Mean echocardiographic
changes for the patients after grouping by the presence of DA or
non-DA are summarized in Table S2. At T1, the DA patient
group had significantly thicker left ventricular wall and septum,
larger left atrial volumes and longer mitral deceleration time
corrected for HR (MDT HRc) compared to the non-DA group. In
addition, the mean mitral E/A ratio for the DA group was lower at

1.6 4
o
3]
c
E T
£ 1.1
=
2
1
< 0.6
wi
] e e
S 014
0
o~
[
-0.4 = T
Abnormality No Abnormality
Group Group

Figure 1. Figure 1 shows that the difference in mitral E/A at T2
(Baseline) minus E/A at T1 (DKA) was significantly less
(Z=-3.1115, p=0.0019) for the group of 5 patients with DA
at T1 compared to the other 12 patients. HRs were not different in
these 5 patients compared to the other 12 patients at T1 or T2.
doi:10.1371/journal.pone.0071905.g001
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Figure 2. Figure 2 shows that the difference in MDT at T2
minus T1 for the patients identified with mitral DA. The
magnitude of the difference was statistically smaller (Z=—3.2684;
p=0.0011: T1 not shorter than T2) in the DA group patients implying
abnormal adaptation to sinus tachycardia at T1.
doi:10.1371/journal.pone.0071905.g002

T2 compared to the non-DA group, with no significant differences
at T1.

Although gender, age and duration of diabetes had no
statistically significant relationship with DA, there was a significant
association between the AA race and DA group (p =0.0319). Also,
a significant percentage of AA patients presented with DA having
a shorter duration of TIDM (p = 0.0228). There was no significant
race or DA group differentiation with HbAlc at T1 or T3.

5. Inflammatory Cytokines

To examine levels of chemokines/cytokines, blood samples were
collected at: T1 at 6-12 hrs; T2 at 2-3 wks; and T3 at 3 mon
(cytokine/chemokine baseline). Twenty seven of the thirty nine
cytokines had the highest value at T1 (p=.0014). Ten of the
cytokines/chemokines (26%) had a statistically significant variation
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in mean values across time (Table 3). In addition we observed
statistically significant correlations between admission chemistries
and cytokines at T'1 and T3 (Table S3). ANOVA comparisons of
cytokines/chemokines levels sorted by duration of TI1DM
indicated no significant differences in concentrations between
newly diagnosed and those with longer duration (data not shown).

6. Diastolic Abnormality and Cytokine Interactions

A two factor ANOVA with repeated measures on time indicated
that nine of the 27 measured cytokine/chemokines displayed
mean values that were significantly different across time depending
on whether the patients displayed an ECHO diastolic abnormality
(DA group) or did not (non-DA group) at T1 (Figures 3a—i). The
mean GCSF, IL-1a, CCL7 (MCP3), CX3CL1 (Fractalkine), IL-
17, GM-CSF, IL-12p40 and sCD40L concentrations were

Table 3. Repeated Measures ANOVA results (F-ratio and
probability) for cytokines with significant differences across
time. T1 (6-12 hours post admission); T2 (2-3 weeks); T3 (3
months).
Sample
Cytokine F-Ratio Probability Time: Mean (SE)
EOTAXIN 7.73 0.0018 T 5247 (4.94) **
T2 43.17 (4.19)
T3 38.54 (4.52)
GM-CSF 6.00 0.0064 T 77.68 (14.26)* **
T2 48.32 (10.60)
T3 43,93 (11.14)
IFN-gamma  5.85 0.0071 T 4243 (12.81)* **
T2 30.22 (10.15)
T3 24.99 (8.50)
IL-6 5.45 0.0092 T 2629 (11.14) **
T2 20.43 (8.79)
T3 17.57 (8.91)
IL-8 13.21 <0.0001 T 16.12 (4.16)**
T2 9.38 (3.46)
T3 6.40 (2.73)
IL-17 5.45 0.0096 T 17.05 (6.09) **
T2 10.81 (4.95)
T3 9.71 (4.10)
CCL7 (MCP-3) 5.16 0.0119 T 19.18 (2.78) **
T2 15.65 (2.47)
T3 12.80 (2.17)
MDC 11.92 0.0001 T 1034.45(81.19)**"
T2 1456.85 (106.93)
T3 1303.77 (123.44)
slL-2ra 4.08 0.0271 T 25.19 (11.12)**
T2 2,97 (2.41)
T3 1.38 (1.22)
VEGF 3.38 0.0473 T 262.57 (62.51)""
T2 209.20 (66.48)
T3 181.62 (43.48)
*- Mean (T1) significantly different (p<<0.05) from (T2) mean; ++ - Mean (T1)
different (p<<0.05) from mean cytokine baseline measurement (T3). N=17
subjects.
doi:10.1371/journal.pone.0071905.t003
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increased at T'1 in the DA group compared to the non-DA group.
Conversely, the mean CXCL10 (Interferon gamma-induced
protein 10, IP-10) concentration was decreased in the DA group
at T1. At T3 there was no difference in 6 of the cytokine/
chemokines GCSF, CCL7(MCP3), CX3CL1 (Fractalkine), IL-17,
CXCLI10 (IP10), sCD40L between the DA and non-DA group.
IL-1a remained higher in the DA than in the non-DA group. GM-
CSF and IL12p40 values were lower in the DA than in the non-
DA group. Additionally, at T1 (6-12 hrs), we observed statistically
significant correlations between the DA group determinant
ECHO variables of MDT or mitral E/A ratio and the cytokines
IL-12p40, sCD40L, CXCL10 (IP10), IL17, and GMCSF (Table 4).

7. Hypertension

Blood pressures were recorded for the 17 patients at 19 time
points that included 16 measurements over the first 24 hrs of
treatment; at discharge (48 hrs); at 2-3 wks (baseline ECHO) (T2);
and at 3 mon (baseline cytokine/chemokine) (1'3). An elevated BP
was present on admission for 15 of the 17 patients (p =0.0023). A
direct correlation between mean SBP and DBP was established
with a correlation coefficient r=0.8799, (p<<0.0001). Figure 4
depicts the linear regression line relating mean SBP and DBP
using the 19 points with the mean normal SBP and DBP value
plotted as it relates to the elevated patient mean SBP and DBP
values. The regression equation is DBP = (5.2363)+(0.5690) x SBP.
There were no statistically significant correlations between
duration of T1DM and either SBP or DBP.

Statistically significant differences in mean SBP, DBP across the
BP time frame were established with repeated measures ANOVA
(SBP  Mean=120 mm Hg; F=4.73, p<0.0001; DBP
Mean =73 mm Hg; F=3.29, p<0.0001). Comparison of the
mean SBP and DBP measures indicate significant differences
(p<<0.05) for early sample times compared to later times, as well as
the mean age related normal BP measurements (Figure 5). The
initial, T2 and T3 SBP and DBP were all significantly greater than
normal reference BPs [42] (indicating these patients were
hypertensive during the study). Intravenous mannitol for three
patients had no statistical effect on the group BP measurements

(p=0.7322).

8. Diastolic Abnormality and BP Relationships

Grouping the 19 BP time points according to ECHO evidence
of DA resulted in the following observations based on linear
regression/correlation analyses using the variables SBP-DA or
DBP-DA and SBP-non-DA or DBP-non-DA. Figure 6 relates the
mean SBP-DA to the DBP-DA, with the mean normal SBP-DA
and DBP-DA value plotted as it related to the elevated patient
mean values. The direct correlation between mean SBP-DA and
DBP-DA is 0.9025, (p<<0.0001). The value of R? the proportion
of the variation in DBP-DA that is accounted for by variation in
SBP-DA, is 0.8146 or 82%. The regression equation is DBP-
DA =(2.0366)+(0.5963) x SBP-DA. Figure 7 relates the mean SBP-
non-DA to the DBP-non-DA, with the mean normal SBP-non-DA
and DBP-non -DA value plotted as it related to the elevated
patient mean values. The correlation between mean DBP-non-DA
and SBP-non-DA is 0.5882, (p=0.0064). The value of R?, the
proportion of the variation in DBP-non-DA that can be accounted
for by variation in SBP-non-DA, is 0.3460 or 35%. DBP-non-
DA =(28.9868)+(0.3649) x SBP-non-DA. Figures 6 and 7 indicate
that the two regression lines are different, in variability, slope and
intercept. The non-DA regression in Figure 7 is more variable
(S.E. Reg. =3.488) than the DA regression (S.E. Reg. =2.425) in
Figure 6. A general linear test (GLT) comparing the intercepts and
slopes of the non-DA regression line to the DA regression line was
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A. CX3CL1 Response over Time

B. GCSF Response over Time
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C. GMCSF Response over Time
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doi:10.1371/journal.pone.0071905.9g003

significant (p =0.033), indicating a significant difference between
the DA group and the non-DA group SBP/DBP relationships.
The DBP of the DA group is strongly related to the SBP
(R?=0.8146), clevated SBP is related to elevated DBP. However,
the SBP and DBP of the non-DA group are less related to each
other (R?=10.3460), with strong relationships between SBP and
DBP at the highest measures of SBP.

Examination of the 19 BP time periods grouped according to
ECHO evidence of DA resulted in the following observations
based on repeated measures ANOVA analysis, and depicted in
Figures 8 & 9. Although the SBP trend identified for all 17 patients
collectively did not change from early measures of SBP being
significantly greater than later measures of SBP, differences
became evident after grouping the subjects by DA or non-DA
group. During hrs 4, 5, 6, 7, and 8, the mean DA group SBP was
significantly greater (p<<0.05) than the non-DA group SBP
(Figure 8). The DBP trend established for all 17 patients also did
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not change from higher values early to lower values later. However
with grouping, the significant differences between the DA group
and the non-DA group were evidenced earlier specifically during
the initial measurement through hour 5 (DA range: 84-78 mmHg;
non-DA range: 76-68 mmHg), followed by a close agreement for
the remaining time measures (Figure 9).

In summary, ECHO and cytokine/chemokine comparisons
indicated significant differences over time in patients with DKA.
Further, the ECHO analysis identified a group of patients
displaying a DA. Grouping patients according to the presence or
absence of a DA and testing for interaction effects with cytokines/
chemokines indicated that 9 of the cytokines/chemokines
responded differently over time. Blood pressure analysis also
indicated significant differences over time as well as a differential
response depending on the presence of the DA. There is a
significant association between both AA race and duration of
T1DM with DA.
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Table 4. Significant Spearman correlations between
cytokines displaying association effects and DA determinant
ECHO variable Mitral E/A and Mitral Deceleration Time (MDT).

Spearman Correlation

Relationship @ T1 Coefficient p value*
MDT: IL12P40 r.=—0.7233 p=0.0078
MDT: sCD40L r.=0.5360 p=0.0323
Mitral E/A: IP10 (CXCL10) r.=—0.6158 p=0.0111
Mitral E/A: IL12P40 r.=0.5440 p=0.0293
Mitral E/A: IL17 r.=0.5068 p=0.0451
Mitral E/A: GMCSF r.=0.6135 p=0.0196

Relationships for the DA group determinant ECHO variables and cytokines were
calculated.

*Only statistically significant (p<<0.05) correlations are tabulated. All
comparisons are at T1. An inverse relationship (—r value) implies higher
cyotikine concentrations at shorter/normal mitral deceleration time (MDT) and
mitral E/A times. Direct relationship (+r value) implies higher cytokine
concentrations at longer/abnormal MDT and mitral E/A ratios. The strongest
correlation is IL12p40 and MDT (r.= —0.7233), accounting for 52% of the
variation noted between the two variables.
doi:10.1371/journal.pone.0071905.t004

Discussion

Previous ECHO studies in young T1DM patients focused on
assessing diastolic function during a stable metabolic state at one
time and were comparing them with age-matched controls
[6,7,43,44]. The most common abnormality of diastolic function
found in the prior studies of children with T1IDM was a lower
mitral E/A ratio; that is the comparison of the ECHO Doppler
rapid LV filling (E) to the velocity of the late atrial component of
LV filling (A). In contrast, our ECHO studies were performed
during the acute metabolic crisis and immunologic dysregulation
of DKA, and were then compared with the ECHO following
correction of DKA in the same patient. The mitral E/A ratios
have predictably been shown to decrease as HR increases [41].
Mitral deceleration time (MDT), another common measure of
diastolic LV function, is a measure of the decay slope of the LV
rate, and also decreases with the rapid filling velocity of the
increased HR. Eight of our patients lacked these normal responses
to sinus tachycardia in one or both of these parameters when
compared with their (baseline) ECHO at 2-4 weeks after DKA
(T2). Since the sinus tachycardia during DKA was no different in
these 8 patients than in the other 9 patients, the 8 patients were
considered to have an abnormal diastolic (DA) response to sinus
tachycardia and were studied in relation to the systemic
inflammatory cytokines/chemokines (6-12 hrs, during DKA
treatment) T1, (2—4 wks post discharge) T2, and (at 3 mons after
DKA) T3. Consistent with these diastolic changes, the DA group
had larger LA volumes than the non-DA group at T1 consistent
with impaired diastolic relaxation/filling. The Doppler flow
abnormalities we identified during DKA (T1) indicated an
abnormal diastolic function in relation to the baseline ECHO
study (T2).

Although our initial goal was to study diastolic function during
DKA, we also found lower baseline mitral E/A ratios in the DA
patients at T2, compared to the non-DA patients. This is
consistent with prior studies of diastolic function in children and
adolescents with stable T1DM [7,44]. Importantly, Wojcik et al.,
reported correlations between ECHO abnormalities and HbAlc
values from the two years prior to the ECHO [44]. As in our
study, no correlation was found with the HbAlc at the time of the
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Figure 4. Figure 4 shows the linear regression plot for SBP and
DBP over time. Mean age related normal value is plotted in relation to
patient SBP/DBP values for comparison.
doi:10.1371/journal.pone.0071905.9004

ECHO. The correlations of diastolic dysfunction with: 1) HbAlc
values considerably prior to the ECHO; 2) the longer durations of
diabetes associated with diastolic dysfunction [7]; and 3) the
improvement of the DA following correction of DKA suggest a
diastolic adaptation prior to the development of clinical dilated
cardiomyopathy, possibly as the result of a subclinical chronic
inflammatory pattern in a subset of genetically predisposed
patients.

Markers of oxidative stress and the duration of T1DM in rodent
models support early abnormal diastolic function prior to
contractile abnormalities [45,46]. However, previous ECHO
studies in children with T1DM and stable metabolic control differ
as to the effect of metabolic control on diastolic function [6—
8,43,44]. Although both hyperglycemia and ketoacidosis were
considered sources of oxidative and inflammatory stress [16,47],
we found no correlation between the admission BG, HbAlc and
pCO2, nor between the (T'l) BG and pCO2 and the DA. This
supports the view that the metabolic risk factors for DCM require
a longer interval to impact diastolic function, as suggested by
Wojcik’s et al., study [44]. This finding does not rule out an acute
additive effect of SIR.

The present study extends observations of the activation of the
immune system resulting in a SIR that involves upregulation of
inflammatory cytokines during the treatment of DKA [26-28,30].
Nine of the cytokine/chemokines that were increased at the time
of the DA 6-12 hours into treatment (T'l) are involved in the
pathogenesis of EAM [48] and cardiomyopathy [49,50]. Four of
these nine interactive cytokines (GM-CSF, G-CSF, IL12p40,
IL17) are associated with Thl7 cell response. Autoimmune
disorders, including T1DM, were thought to be primarily driven
by a Th1 response. This was challenged by the discovery of Th17
cells and their implication in the pathogenesis of multiple
autoimmune diseases [51]. IL-6 and IL-1f induce retinoic acid
receptor-related orphan receptor C2 (RORC2) and IL-17
activation in memory T cells, whereas TGF-B and IL-21 in
combination induce differentiation of Th17 cells from naive T cells
[52]. Both IL-6 and IL-1P were increased in our previous DKA
study when samples were collected prior to treatment [26].
Children with TIDM had increased IL17 transcript in their
memory T cells. In addition, RORC2 and IL22 were produced by
activated as well as memory T cells from T1DM children [53].
There are conflicting results about role of IL17 in the pathogenesis
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Figure 5. Figure 5 shows the mean SBP (mmHg) and DBP
measurements are included as the last measurement on the X-axis.
doi:10.1371/journal.pone.0071905.9005

of diabetes in the NOD mouse model. IL-17A deficient NOD
mice do not develop diabetes, while blocking IL-17 with
monoclonal antibodies protected young NOD mice from diabetes
development [54,55]. The potential explanation of this discrep-
ancy 13 an additive effect of IL17F to diabetes pathogenesis, since
the blocking antibodies were not specific to IL17A. Diabetes can
be also transferred by Thl7 cells injected into NOD SCID
recipients [56]. New onset T1DM patients have an increased
proportion of IL-17A secreting T cells in their blood [57],
although we did not find any correlation of increased Thl7
cytokines during DA with the new onset of T1IDM compared to
previously diagnosed T1DM patients. IL17A is essential for
progression to dilated cardiomyopathy [58] and 1s also involved in
the pathogenesis of acute and chronic vasculitis and angiotensin II-
induced hypertension [59-61].

84 L4

79

DBP DA=(2.0366)+(0.5963)xSBP DA;
r=0.9025; (p<0.0001)

LMean Normal Value

64 Q T T T T T ]
110 115 120 125 130 135 140
SBP DA

Figure 6. Figure 6 shows the linear regression plot for SBP-DA
and DBP-DA over time. Mean age related normal valued is plotted in
relation to patient SBP-DA/DBP-DA values for comparison.
doi:10.1371/journal.pone.0071905.g006
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(mmHg) across 19 time points. For comparison, age specific normal

GM-CSF, key hematopoietic factor, has recently been connect-
ed with the IL23-IL17A inflammatory pathway. Recent evidence
suggests that many of the inflammatory functions of Th17 cells are
actually attributable to GM-CSF [62]. Levels of G-CSF are
increased in myocarditis/cardiomyopathy and acute myocardial
infarction [63]; G-CSF has been described as another major
component of Th17 host defenses. The control of granulocytic
responses comprises a major effector arm of Th17 immunity by
expanding the neutrophil compartment and chemotactic recruit-
ment of neutrophils by CXCL1/KC and CXCL8/IL8 [64]. IL-
12p40 functions as a bioactive and regulatory component of IL-12,
a chemoattractant for macrophages, and provides negative
feedback by competitively binding to the IL-12 receptor [65]. Of
greatest importance in DKA, the IL-12p40 subunit combines with
the p19 protein to form IL-23 [66], driver of Th17 cell expansion
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Figure 7. Figure 7 shows the linear regression plot for SBP-Non
DA and DBP-Non DA over time. Mean age related normal valued is
plotted in relation to patient SBP-Non DA/DBP-Non DA values for
comparison.

doi:10.1371/journal.pone.0071905.g007
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Figure 8. Figure 8 shows mean SBP (mmHg) for groups DA and Non-DA across 19 time points. Age specific normal measurements are

included as the last measurement in on the X-axis.
doi:10.1371/journal.pone.0071905.9008

and maintenance [67,68]. IL-23 is involved in the pathogenesis of
autoimmune myocarditis [69] via the expression of Thl7 cells
[70]. Two of the nine interactive cytokines/chemokines (Fractalk-
ine and MCP3) that we found to be associated with diastolic
dysfunction in DCA are related to monocyte trafficking, an
important step in the pathogenesis of experimental autoimmune
myocarditis (EAM) [71]. Fractalkine is a highly expressed
adipochemokine of monocytes and non-cardiomyocytic non-
inflammatory cells in human inflammatory cardiomyopathy
[72,73]. MCP3, one of three members of a subfamily of beta-
chemokines, activates a range of cell types [74] and is an attractant
for human CD4" and CD8" T lymphocytes [75]. Reduced
degradation of MCP-3 increases myocardial inflammation in
experimental myocarditis [76,77]. Each of the other three

interactive cytokines (IL-1o, sCD40L, and IP-10) is also involved
in experimental and/or clinical cardiovascular disease [78-82].
Further studies are warranted to determine if these nine cytokine/
chemokines are candidate biomarkers for DCM. The importance
of such markers in diabetic cardiovascular disease has been
reported by Schram et al. [83].

Suys et al. reported significant ECHO changes in female
children in comparison to males with T1DM [6]; however, we
found no association between gender, age or duration of TIDM
with DA. We did identify a significant association between race
(AA) and DA (p=0.0319), suggesting a genetic predilection and
possible differences in cardiac response. The study by Ness et al.
(2004) [84] is important relative to the association between AA
children and the cytokines associated with DA. They reported the
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Figure 9. Figure 9 shows mean DBP (mmHg) for groups DA or Non-DA across 19 time points. Age specific normal measurements are

included as the last measurement on the X-axis.
doi:10.1371/journal.pone.0071905.9009
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differential distribution of allelic variants in cytokine genes among
non-diabetic AA and Caucasians, specifically that AA females are
significantly more likely to carry allelic variants that up-regulate
pro-inflammatory cytokines, and also to have genotypes known to
down-regulate the anti-inflammatory IL-10.The lack of a pre-
treatment sample prevented the correlation of the anti-inflamma-
tory cytokine IL-10, which protects against EAM [83], with DA.
Both our previous DKA study [26] and that of Karavanaki et al.
[27], reported pre-treatment elevations of IL-10 and decreasing
concentrations with the initiation of treatment.

Based on no difference between the HR of DA and non-DA
groups at T1, and considering HR as a marker of hydration,
dehydration does not appear to be a factor in the DA. A statistical
difference did exist between the degree of hypertension of the DA
group and the non-DA group through the first 8 hours of
treatment, after which a difference in the BPs of the two groups
remained but was not statistically significant. It is important to
note that the mean BPs for DA and non-DA at T2 and T3 were
statistically elevated in relation to age-matched normal control
values [86]. Our prospective findings are in keeping with the
retrospective study by Deeter et al. [87] of a slight but sustained
BP elevation following correction of DKA. Linear regression plots
between the SBPs and DBPs and also between SBPs-DA and
DBPs-DA have strong correlations, and thus agree with Deeter et
al. [87] of no increases in DBP without increases in SBP. Even
though there was no significant difference in the BPs between DA
and non-DA patients at T1, the uncertain duration of BP elevation
prior to admission precludes determining an impact of BP on
mitral E/A and/or MDT. In a canine study of methoxamine-
induced acute systolic BP elevation of 30 mm or greater, there was
no acute effect on E/A ratio, when heart rate was kept constant by
pacing, and a decrease in MDT suggesting that our observed
changes in these parameters in the DA patients were not due to BP
elevation [88].

Our study was not intended to evaluate the relationship
between acute changes in cytokines/chemokines and BP. Howev-
er, in addition to the increased secretion of counter-regulatory
hormones in DKA [89] several other perturbations are candidates
for mediating pre-treatment hypertension: 1) insulin resistance and
endothelial dysfunction; 2) the increased oxidative stress caused by
hyperglycemia [90,91]; 3) and the ability of acetoacetate to
increase the expression of the vasoactive peptide ET1 from
capillary endothelial cells [92]. The literature also supports a role
for inflammatory cytokine stimulation of the hypothalamic-
pituitary-adrenal axis [93,94] and adrenal medullary chromaffin
cells [95]. In contrast to the recognized anti-inflammatory effect of
msulin on endothelium in critical illnesses [96-98], our results
confirm observations of increased inflammatory cytokines/che-
mokines during intravenous insulin [26,27,30]. Regarding the
relationship of the SIR and the possible pathogenesis of
myocarditis [99], it is important to note that two metabolites of
poorly controlled diabetes-hyperglycemia [100] and free fatty
acids (FFA) [101] amplify toll-like receptors (TLR) in monocytes
and results in the potential for: TLR-4-mediated myocardial
apoptosis and DCM [102]; and the enhancement of the expression
of anaphylatoxin Cba [103] and other complement peptides that
are increased systemically during DKA and its treatment [28].
Cba, in turn, could increase IL-17 and other inflammatory
cytokines [104]. The involvement of IL-17 in the pathogenesis of
EAM and dilated cardiomyopathy [58] and its potential involve-
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ment in DCM would be analogous to the insult of acute burn that
activates leukocyte TLRs, and the resulting production of
numerous cytokines/chemokines, including effectors in burn
cardiomyopathy [105-108].

Finally, transient cardiogenic compromise has been suggested as
an explanation for the subclinical interstitial pulmonary edema
(IPE) that occurs prior to treatment of DKA, is accentuated during
treatment [109-111] and corresponds to the time interval of SIR
[26,27]. The diastolic abnormality with increased LA volume and
increased pulmonary venous pressure could contribute to subclin-
ical IPE. The logistical limitation of obtaining a pretreatment
ECHO and a cytokine/chemokine sample precludes determining
the onset of DA and thus certainty of a relationship between DA
and IPE. Based on the SIR during the same time interval in the
treatment of DKA [26-28,30] as the increase in IPE [111],
inflammatory cytokines/chemokines could be independent candi-
dates for pulmonary epithelial perturbation and IPE.

Conclusions

This study is the first to report an acute DA associated with the
systemic inflammatory cytokines/chemokine response in a subset
of young TIDM patients during the acute metabolic and
immunologic stress of DKA. This does not rule out the role for
a metabolic insult in the pathogenesis of DCM. Further studies are
required to determine whether the acute SIR of severe DKA
produces a subclinical autoimmune myocardial insult as the result
of individual cytokines, or a particular cytokine pattern, which
could progresses asymptomatically to DCM [112].
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