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Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands

Abstract

When studying time courses of biological measurements and comparing these to other measurements eg. gene expression
and phenotypic endpoints, the analysis is complicated by the fact that although the associated elements may show the
same patterns of behaviour, the changes do not occur simultaneously. In these cases standard correlation-based measures
of similarity will fail to find significant associations. Dynamic time warping (DTW) is a technique which can be used in these
situations to find the optimal match between two time courses, which may then be assessed for its significance. We
implement DTW4Omics, a tool for performing DTW in R. This tool extends existing R scripts for DTW making them
applicable for ‘‘omics’’ datasets where thousands entities may need to be compared with a range of markers and endpoints.
It includes facilities to estimate the significance of the matches between the supplied data, and provides a set of plots to
enable the user to easily visualise the output. We illustrate the utility of this approach using a dataset linking the exposure
of the colon carcinoma Caco-2 cell line to oxidative stress by hydrogen peroxide (H2O2) and menadione across 9 timepoints
and show that on average 85% of the genes found are not obtained from a standard correlation analysis between the genes
and the measured phenotypic endpoints. We then show that when we analyse the genes identified by DTW4Omics as
significantly associated with a marker for oxidative DNA damage (8-oxodG), through over-representation, an Oxidative
Stress pathway is identified as the most over-represented pathway demonstrating that the genes found by DTW4Omics are
biologically relevant. In contrast, when the positively correlated genes were similarly analysed, no pathways were found. The
tool is implemented as an R Package and is available, along with a user guide from http://web.tgx.unimaas.nl/svn/public/
dtw/.
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Introduction

Time courses provide insight into patterns and sequential

biological events, and therefore temporal studies are an important

tool in biological research. The systems we study are not static, but

change dynamically over time. A large amount of ’omics research

is currently performed by taking samples at a single time point and

seeking the significantly changed genes, proteins and/or metab-

olites. However, given the dynamic features of biological systems

we know the chosen time point will strongly influence the

obtainable results. Therefore, studying the changes over time is

crucial to obtain a fuller understanding of the system as a whole.

However, when studying stressor-induced biological time

courses in pharmacology or toxicology one can face difficulties

with the interpretation of the results due to differences in the

kinetics of time courses between biological measurables. Even

when aspects of the system are related and therefore display

similar patterns of change over time, we expect to see delays and

differences in the speed of this change. Under these circumstances

standard correlation analysis can often fail to find any association

between the elements, and here DTW may be used.

DTW works by finding the optimal alignment between time

courses [1]. As shown in figure 1A, there are often measured

biological elements which follow similar patterns, but which start

at different times. By introducing delays into the time courses for

one or both elements (shown by dotted lines in the second panel),

DTW finds an optimal match, with a bias towards matches which

introduce fewer delays. In this case the delay was at the start of the

time course, however delays are also allowed mid-time course and

may also occur in both patterns being matched, for instance a

delay may be used towards the start in one time course and

another delay towards the end in the other time course. It should

be noted that DTW alone gives no information about the

probability of finding the matches, only on the distance between

the matched time courses and the delays introduced to obtain such

a match.

One common application of dynamic time warping is in speech

recognition where it can automatically allow adjustment of the

signal to cope with different speeds of speaking.

In the biological domain DTW has been previously used for

analysing gene expression data in several studies [2–7]. For

instance, in [3] they used it as an alternative to clustering

methodologies to look for clusters of genes in a drosphilia life cycle

transcriptomics dataset. They searched for clusters which showed

the same pattern of expression on different timescales and were

able to find clusters which were associated with different stages of

the life cycle. Conversely, Hermens and Tsiporkova [7], used

DTW to help them combine data from different periodic cell
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regulations studies in plants, where current methods to synchonise

do not cover the whole cell and synchronisation deterioates rapidly

meaning that later timepoints are compromised. They used DTW

to align the overlapping parts of multiple experiments and thus to

produce much longer datasets than it is possible to produce in a

single experiment. They demonstrate that this method improves

their estimates of gene-periodicity using data from arabidopsis and

yeast.

Currently there is one tool for DTW, aimed specifically at

analysing ’omics data, in this case global gene expression. This

tool, GenTxWarper [8] provides a user interface to align sets of

genes giving visualisations of the original and the warped data.

However, GenTxWarper has no facility for estimating the

significance of a particular alignment and therefore in their

studies, comparisons between their tool and standard correlation

measures were performed by comparing the biological relevance

of the top 50 genes. However, in ’omics data analysis we should

not be interested in the top hits from a method, but in those hits

which have a significant probability of not occurring by chance. In

order to allow this evaluation we developed DTW4Omics, an R-

package which gives an estimate of alignment significance along

with further visualisations to obtain an overview of the significantly

associated entities and their warping.

Since our DTW4omics package can be generally applied to

time related omics data from any source, throughout this paper

and the DTW4Omics package we use the general terms ‘End-

points’ and ‘Entities’ to refer to the different time courses which

are undergoing DTW. How DTW4Omics uses endpoints and

entities is shown in figure 1B and explained further in the materials

and methods section. However, it is important to note that both

endpoints and entities could be anything which has been measured

repeatedly over a time course. For instance, if you were interested

in which of a large set of metabolites had a similar time course to

any of a small set of preselected genes, then the program would

run best if the genes were entered as the endpoints and the

metabolites as the entities. Conversely, in the case presented in this

paper we use cell cycle measurements among other things as

endpoints and look for sets of genes (entities) which follow these

patterns.

Materials and Methods

DTW4Omics is implemented as an R package, and utilises the

DTW package [9] to perform the warping. It contains two key

functions, which dictate the pairings which are examined for

associations as shown in figure 1B.

The function for endpoint related DTW takes 6 parameters, 4

of which are essential. A matrix of the entities measured (n*t,

where n = number of entities, t = number of time points), a

matrix of the endpoints (t*e, where e = number of endpoints), a

list of directory names where the results will be stored, a list of the

numerical values for the time points and then optionally the type

of scaling to apply to the data before DTW and a maximum q-

value allowed for an entity to be significant. The row names of the

entity matrix are used as labels in the results files and plots.

For each endpoint, the optimal matches for each entity are

calculated with DTW. The order of the time points are then

permuted (separately for entity and endpoint), to allow an

estimation of the p-value. The p-values obtained for each entity

are stored and Benjamini-Hochberg false discovery rate correction

is applied to produce a list of significant entities.

A set of jpeg image files is created storing plots of the original

and warped time courses for every significant entity (see Figure 2A).

Two other histograms are also produced. The first overlays two

histograms, one of the optimal warped-distances between entity

and endpoint generated from the real data, and the second of the

distances generated from the permuted data (Figure 2B). The

second histogram is similar, except it shows only the permuted

Figure 1. Dynamic time warping. Panel A shows how time series can be aligned using dynamic time warping from the original (left) to the
warped (right). Panel B shows the two varieties of DTW provided by DTW4Omics, showing the comparistons which are considered in case.
doi:10.1371/journal.pone.0071823.g001

DTW4Omics
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distances for the most significant entity, overlaid with an X to

mark the optimal distance found in the real data (Figure 2C).

Finally, there are two text files produced as output, one

containing a list of the significant entities found, and the other

containing a summary of the run, with details of the most

significant entity found (regardless of whether it reached the

specified q-value threshold).

A second function performs matched DTW which allows pairs

of profiles to be compared (see figure 1B). This function is

envisaged for situations where the same entities have been

measured under different stressors which are expected to produce

the same response but where it may occur at different delays, or

where the same stressor is under investigation in different systems.

In these cases, the package provides this function which compares,

for instance, gene A under condition 1, with gene A under

condition 2 and generates an optimal match, it then proceeds with

genes B, C etc.

Taking two matrices of measurements of dimensions, n1*t1 and

n2*t2, where t1 and t2 are the numbers of time points from two

experiments and n1 and n2 are the number of measured entities

with a significant time course. It is not necessary that the same

timepoints are measured in each system, or even that the same

Figure 2. Output plots. A – showing gene and endpoint before and after warping. B – Histogram of real and permuted distances obtained through
DTW. C – Histogram of the permuted distances obtained for the most significant gene, with the real distance marked by an X.
doi:10.1371/journal.pone.0071823.g002

Table 1. Comparing DTW4Omics selected genes with correlation analysis.

Oxidant G1 S 8-oxo-dG Time

Mena-dione No. of genes with positive correlation 34 53 51 127

No. of genes with DTW 99 102 141 145

Overlap with correlated genes 13 18 22 86

Percentage of DTW genes not found by correlation 87% 82% 84% 41%

Percentage of positive correlation genes found by DTW 38% 34% 43% 68%

H2O2 No. of genes with DTW 14 0 17 13

Percentage of DTW genes not found by correlation 100% – 100% 100%

G2 is not shown as it gave no correlated genes under any conditions and with H2O2 no genes were found with correlation so these rows are omitted.
doi:10.1371/journal.pone.0071823.t001

DTW4Omics
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number of time points is measured, and similarly it may be that a

different overall set of entities has been measured, however the

analysis will only be performed on the overlap as determined by

the row labels. This is shown in figure 1B, where the list of

measured entities for situation A contains element 2a, but there is

no corresponding element 2b, so no DTW comparison is

performed. For each entity the probability of obtaining such a

match is estimated as before using perturbations of the order of the

data points. Once all optimal matches are generated and the

probabilities thereof are estimated a false discovery rate criterion is

applied and the significant genes are reported with figures plotted

per gene as per Figure 1A.

Results and Discussion

We used data from [10] (GSE15327) on the effects of oxidative

stress caused by H2O2 or menadione exposure on gene expression

in human colon carcinoma cell line Caco-2. This set was

Figure 3. Results from the simulated data for matched DTW. Both panels show the results of the different levels of noise (low noise at top,
high noise at bottom) and different amounts of time shift between the sequences (0 shift on left, 9 units shift on right). All time series were 20 units
long. Panel A shows the percentage of elements which were (correctly) recognised as matches using an FDR of 5% and the matched DTW function.
Panel B shows the percentage of matches where the matched pattern exactly matched the intended differences in the time courses.
doi:10.1371/journal.pone.0071823.g003

DTW4Omics
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generated to investigate reactive oxygen species-induced oxidative

stress in the colon, which is involved in inflammatory bowel

diseases and suggested to be associated with colorectal cancer risk.

This set includes changes in cell cycle parameters and measure-

ments of 8-oxo-dG (8-oxo-2-deoxyguanosine), a marker for

oxidative DNA damage at each of 9 time points spread over

24 hours. First we filtered the genes to select those with no missing

values and showing a significant time course, using a threshold of

at least one time point having an average expression value of at

least 2 standard deviations from the mean. This resulted in 1391

genes from the menadione treatment and 1292 genes from

hydrogen peroxide exposure. We used the DTW4Omics tool, with

unit variance scaling to rescale the genes and endpoints so that

values would be comparable.

We compared the lists of significant genes generated by

DTW4Omics with those genes with a significant Pearson

correlation to the endpoints (Table 1). This table shows that on

average 85% of genes found by DTW4Omics are not found by the

standard correlation analysis and conversely it does find an

average of 46% of those genes found by correlation analysis. This

suggests that whilst correlation analysis is more sensitive to those

genes where the time courses run in parallel, DTW4Omics can

give a very significant amount of extra genes whose time courses

are significantly associated with an endpoint, but which do not

correlate strongly due to delays or differences in speed.

In order to validate the biological relevance of the genes found

by DTW we took the genes significantly associated by DTW

between menadione exposure and 8-oxo-dG and input them into

ConsensusPathDB [11] for over-representation analysis. We

selected this endpoint, as we know that 8-oxo-dG is a biomarker

for oxidative stress induced DNA damage, and therefore we expect

that if the DTW4Omics package is working the selected genes for

this endpoint will be associated with these pathways. The

background list used for the over-representation analysis contained

all the genes with a significant time-course and which therefore

were assessed by DTW for association with 8-oxo-dG. The most

significant pathway from this analysis was the Oxidative Stress

pathway from wikipathways (p = 0.000555). In contrast when the

positively correlated genes were input into ConsensusPathDB, no

significantly associated pathways were found.

This example clearly demonstrates the ability of DTW4Omics to

highlight relevant genes through the alignment of time series data,

in this case between genes and phenotypical markers, thus achieving

a phenotypic anchoring of ’omics responses to oxidative stress.

To test the matched entities functions we generated a set of

simulated data. First we generated random time series for

11,000 entities, these time series were designed to be smooth, as

opposed to a series of random values. The first 10,000 entities in

the second set were generated by adding noise and time shifts to

the first set. 10 levels of time shifting were used ranging from 0–

9 units of shift and 10 levels of noise. The final 1,000 entities in

the second set were generated at random in the same manner as

those in the first set. For a full description of the generation of

these data, including matlab code see Data S1.

The results of these simulations were measured in two ways,

firstly in how many cases would the entities appear as significantly

associated, given a standard FDR of 5% and secondly, how often

would the correct pattern of time shifts be detected. These results,

shown in figure 3 clearly show the expected pattern, that as more

noise is added and the time shift increased it becomes less likely

that the DTW algorithm will recognise the pair of entities as a

match and discover the correct pattern of time shifts. However,

this also shows that with no time shift the match will often still be

made even in the presence of high levels of noise, and with small

time shifts of 1 or 2 units the detection power decreases, but is still

good. This may also be important to consider when designing

experiments for analysis by DTW, since a set of time points

sampled too closely together in time may inhibit the ability of the

algorithm to find matching pairs, since the expected shift between

two elements may extend to be greater than 2 time points.

The high level of similarity detection when comparing

two random series can be explained by the fact that the time

series were generated to be smooth, and therefore are more likely

to be matched to each other than when the time points are

randomly permuted in the significance estimation process. This

could indicate that when longer and smoother time series from

real data are analysed through this tool, the p-values may be over-

estimating the significance of the matches, although it will still

serve to rank the entities. Therefore, we suggest that with longer,

smoother time series a stricter FDR of, for instance 1% may be

applied to take into account these false positive results.

Finally, it is interesting to compare the two plots in figure 3A

and 3B. 3A shows a much higher detection of similarity when

there is a low amount of time shift, whereas 3B shows that the

correct pattern of shift can be best detected when there are low

levels of noise. This would suggest that in the presence of a

reasonable level of noise entities are often correctly associated, but

the wrong pattern of time shifts is assigned. Similarly in a low noise

environment, the right time pattern may be determined, but the

match may not be statistically significant. Since in biology we are

generally working in high noise environments, either through

biological reproducibility or limitations of technical reproducibil-

ity, we can conclude that the lists of selected entities are likely to be

more robust than the time shift patterns generated.

We also used the matched function on the oxidative stress dataset

to find if there is a set of genes which exhibited the same response

pattern (perhaps at different delays) after exposure to each

compound. Here we might expect to find genes linked to a

common mechanism of toxicity. We found that no genes had

significantly associated time courses between their expression after

H2O2 and after menadione treatments. This matches the conclu-

sions of the original paper [10] where it was found that the different

oxidants induced oxidative stress through different mechanisms.

Conclusions

We introduced a new tool for analysing time-course data,

DTW4Omics which uses DTW to generate a list of genes whose

time course may be minimally adjusted to obtain an optimal

match to that of an endpoint. Many of the genes found in our test

were not significant using correlation analysis, and thus this tool is

complementary to such an analysis and we recommend applying

both approaches in combination. Further the gene list generated

through DTW was then able to be associated with biologically

relevant pathways, in contrast to the list generated from positively

correlated genes alone.

Through the presentation of simulated data we have seen that

DTW can also be applied to recognise time courses which are

matched between two elements in different datasets, and through

exploring the consequences of adding noise and time shifts to this

simulated data we have found that in high noise environments

(such as those found when measuring biological systems) the

detection of paired elements is likely to be more robust than the

detection of the ‘‘correct’’ pattern of time shifts.

Whilst we have presented transcriptomics data combined with

phenotypic endpoints from non-omics technologies, this approach

can clearly be applied much more widely as a method for

integrating data from different sources.

DTW4Omics
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