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Abstract

There has been a rapid increase in the amount of mutational data due to, amongst other things, an increase in single
nucleotide polymorphism (SNP) data and the use of site-directed mutagenesis as a tool to help dissect out functional
properties of proteins. Many manually curated databases have been developed to index point mutations but they are not
sustainable with the ever-increasing volume of scientific literature. There have been considerable efforts in the automatic
extraction of mutation specific information from raw text involving use of various text-mining approaches. However, one of
the key problems is to link these mutations with its associated protein and to present this data in such a way that
researchers can immediately contextualize it within a structurally related family of proteins. To aid this process, we have
developed an application called MutationMapper. Point mutations are extracted from abstracts and are validated against
protein sequences in Uniprot as far as possible. Our methodology differs in a fundamental way from the usual text-mining
approach. Rather than start with abstracts, we start with protein sequences, which facilitates greatly the process of
validating a potential point mutation identified in an abstract. The results are displayed as mutations mapped on to the
protein sequence or a multiple sequence alignment. The latter enables one to readily pick up mutations performed at
equivalent positions in related proteins. We demonstrate the use of MutationMapper against several examples including a
single sequence and multiple sequence alignments. The application is available as a web-service at http://mutationmapper.
bioch.ox.ac.uk.
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Introduction

The amount of pharmacological and physiological literature

pertaining to proteins has increased enormously over recent years

[1]. Indeed, this is part of the so-called data-deluge and poses

several problems for researchers in terms of dealing with the huge

volumes of data [2]. As such it is becoming increasingly difficult, if

not impossible, for researchers to keep up to date with the

literature that may be relevant, either directly or indirectly, to their

particular area of research. In order to address these issues, much

effort has gone into the development of text-mining methodologies

to facilitate the extraction of data directly from the literature [2–5].

Such methods have the potential not only to aid researchers keep

pace with the literature but also to discover novel relationships

between aspects of proteins that may be important. Equally as

important as the data extraction itself is the presentation and

usability of the data that is mined.

A key tool in the arsenal of the molecular biologist to study

function is site-directed mutagenesis (SDM). The effect of a single

mutation can have a range of effects on protein function; from

completely non-functional to a slight change in affinity for a

known ligand. Additionally, point mutations are known to be

important in the appearance of many disease states. In addition to

mutations found/made for a particular protein, there is much

greater potential for scientific discovery if one can utilize

information about mutations found at similar positions from

related proteins (however that may be defined). Knowledge about

the impact of all mutations at a conserved position within a series

of related proteins would help our understanding of all of those

proteins and may reveal undiscovered relationships or suggest

structurally or functionally important positions.

Traditional keyword information searching performed in

PubMed is inefficient at retrieving mutational data; typically one

retrieves too many abstracts to be useful. The alternatives to

automatic retrieval are manually curated systems such as PMD

[6], but this requires huge effort that is probably not sustainable in

the longer term. Several algorithms [7–9] have been developed to

extract point mutations from the literature but the challenge is to

relate the mutation to the associated protein. To that end we have

developed an application called MutationMapper that uses an

integrated pipeline to extract point mutations from published text

and map them on to the associated protein. The process of

identifying a particular protein in the literature is a non-trivial task

because there is no standard way of naming them [10,11]. The

most common approach utilized in workflows in text-mining

applications is to search through a large amount of text-based

data. The first step before any mining can begin is to limit the size

of the data. This has traditionally been achieved by the use of

indexing terms or keywords. In the case of medically-related

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71711

http://mutationmapper.bioch.ox.ac.uk/
http://mutationmapper.bioch.ox.ac.uk/


Mutationmapper: Automatic Mapping of Mutations

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e71711



subjects, the medical subject heading (MESH) terms are often

used.

To help circumvent some of these problems we adopted a

different approach. Rather than depend directly on MESH terms

or keywords, the input is a sequence (or multiple sequence

alignment) identified by the Uniprot ID or Accession code. This

information is used to obtain information regarding protein names

and synonyms from Uniprot which is subsequently used to query

PubMed. Although the search terms will be similar to a

conventional search, we have the additional knowledge at this

point as to which proteins we are most interested in. Starting from

this perspective also has the advantage that the user can supply

their own multiple sequence alignment and make their own

judgment about the value of the data that comes back from the

query. Furthermore, it facilitates the discovery of new relationships

between sequences that might not normally be compared to each

other. Because we leave the final interpretation of the data to the

user, the issue of data accuracy, although important, becomes less

critical to the usefulness of the application.

Materials and Methods

As mentioned above, the design philosophy for MutationMap-

per differs from previous text-mining applications. The starting

point is the protein sequence(s) rather than the literature. The user

can provide a single sequence for which mutational data is

requested for, or the user can provide a multiple sequence

alignment (MSA) for which mutations will be searched for across

all the proteins and overlaid on top of the given alignment.

Provision of an alignment is only needed in order to visualize

mutations at equivalent positions. It does not effect retrieval or

mapping in any way and is not necessary in order to obtain

mutational data for a single protein sequence. The overall

workflow is illustrated in Figure 1.

The input to MutationMapper, via a web-interface, is a Uniprot

ID or a single protein sequence or an MSA in FASTA format with

Uniprot Id or Accession code as the sequence identifier. The

sequence identifier is used to retrieve protein information from

Uniprot, including protein names, gene names, commonly

recommended names and synonyms. This information is used to

query PubMed and retrieve abstracts. Once abstracts are retrieved

and converted to raw text, the next stage is to extract possible

mutation data. For that purpose we used the freely available

MutationFinder program [7]. It splits text at the sentence level and

applies sets of regular expressions to identify and extract

mutations. It reports the mutations in wNm format where ‘w’ is

the wild type residue, ‘m’ is the mutated residue and ‘N’ is the

residue position.

The critical step is to map a particular mutation that is found

within the text to the correct protein. In other words we need to

validate the position of the mutation with respect to a given

protein. Essentially, the wild type residue is looked for within the

amino acid sequence (as given by Uniprot). If a match is found, the

position is marked as ‘‘mapped’’. If the algorithm fails to identify

any protein name or is not able to map to the identified protein the

mutation is labeled as ‘‘non-mapped’’. If a mutation is mapped on

more than one protein sequence than the information is processed

further to map it down to one sequence [12]. The algorithm looks

for protein expressions (i.e. sections of text that pertain to proteins)

in one sentence above and one below, including the sentence with

the mutation expression in, and if it still maps on more than one

protein it is marked as ‘‘multi-mapped’’. The algorithm also maps

the mutations reported in Uniprot entries [13,14]. These

mutations are natural variants of the proteins and the mutagenesis

data. The natural variants include polymorphisms, variations

between strains, isolates or cultivars, disease-associated mutations

and RNA editing events. Information on disease-associated

mutations is however, mostly restricted to human proteins.

The results are presented as highlighted positions on the

sequence or the alignment provided by the user (see Figure 2 for

example screenshots), thus providing an easy way to instantly see

whether mutation data exists at a particular position within the

protein or for similar proteins at similar positions. One can browse

all the mutations in a particular sequence or at a particular

position or a particular abstract. The relevant text pertaining to

the mutation can also be viewed by the user.

Results and Discussion

Performance Evaluation
Clearly, such a tool is only useful if the user has knowledge of

how well the mutation-mining process performs in terms of

retrieving real mutation data that pertains to a protein sequence

and not just matching phrases that might be interpreted as such.

Within text-mining and related fields, one can make use of

additional indicators such as recall, precision, accuracy and the F-

measure. These can be defined in terms of true positive (tp), false

positive (fp), false negative (fn) and true negative (tn) as follows:-

recall~
tp

tpzfn
ð1Þ

precision~
tp

tpzfp
ð2Þ

accuracy~
tpztn

tpztnzfpzfn
ð3Þ

F~2
precision:recall

precisionzrecall
ð4Þ

We evaluated the efficiency of MutationMapper using various

single sequences and a few multiple sequence alignments as test

cases. The performance was measured in terms of recall, precision,

accuracy and F-measure. All the abstracts with mutations

determined by MutationFinder [8] were manually curated to

validate the mapping process in order to evaluate the performance

of the method.

Figure 1. Schematic flow chart of the process used in MutationMapper. The starting point is a single sequence or multiple sequence
alignment with the Uniprot ID or Accession code as the identifier. The identifier is used to query Uniprot to retrieve protein names, gene names and
synonyms which are then used to retrieve abstracts from PubMed. Abstracts are converted to raw text and then the program MutationFinder [8] is
used to extract possible mutations. These mutations are then mapped back to the protein sequence(s) with three possible outcomes: i) mapped, ii)
non-mapped and iii) multi-mapped. Only mapped and multi-mapped results are highlighted on the sequence (or multiple sequence alignment)
presented back to the user.
doi:10.1371/journal.pone.0071711.g001

Mutationmapper: Automatic Mapping of Mutations

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | e71711



Single Sequence
The performance of MutationMapper was first evaluated

against test cases involving a single sequence. We show here the

results for three examples; the human phosphatase and tensin

homologue (PTEN) protein [15], the human glycophorin protein

[16] and the chemotaxis protein CheY from E. coli [17]. The input

into the MutationMapper server was a Uniprot ID for that protein

or a single sequence with a Uniprot ID or Accession code as the

descriptor. Table 1 summarizes the mutations retrieved from

abstracts for these proteins. Recall was 100% in all three proteins.

The precision was ,98% for PTEN_HUMAN and CHEY_E-

COLI and ,85% for GLPA_HUMAN. The accuracy and F-

measure was high (greater than 95%) in all three test cases (see

Figure S1 in File S1).

In PTEN_HUMAN, out of 6001 abstracts retrieved, 297 were

found to contain information concerning mutations with a total of

435 possible mutations. Out of the 435 mutations, we were able to

map 125 mutations. Thus, 310 were not mapped. There were 121

true positives (i.e. mutations mapped back to the correct protein)

and it mapped all the true positives with 100% recall. All the non-

mapped mutations were true negatives, as they were not reported

on PTEN_HUMAN, but for other proteins or other factors (see

below). The false positives (four in total) were mutations mapped

on the wrong protein. We had no false negatives. There was an

accuracy of 99% and an F-measure of 98.3%. The number of true

negatives was high and this reflects a number of issues surrounding

the identification of mutations from abstracts: 1) A large

proportion were gene mutations rather than protein mutations

(e.g. PubMed ID (PMID) 19665071 where a gene has a ‘‘point

mutation in exon 5 (A536G)’’, PMID 16009891 which has a

‘‘major pathogenic effect at mRNA level for the mutant C1366T’’

and PMID 11597326 which has ‘‘an intronic variant of p53–

G13964C’’); 2) some were on another protein that was not the

subject of the query. For example, PMID 16160475, where ‘‘six

different beta-catenin mutations were found in 7 of 13 cases (54%)

(G34E, G34V, S33C, D32Y, S33F, D32A) however, no mutations

of the PTEN or K-ras genes were identified’’. In this example the

mutation was performed on beta-catenin and not PTEN even

though the sequence being queried against was the human PTEN

sequence; 3) some were the names of cell lines. For example,

‘‘T47D cells’’ or ‘‘human glioblastoma cell line T98G’’ and 4) in

some cases there was no specific protein mentioned. Similar

performance was observed for other test cases (data not shown). In

the context of our methodology presented here, these true-

negatives are not a particular problem as we are able to trap them,

but it does highlight the difficulty in being able to reliably identify

genuine mutations with text-mining alone. In fact this exemplifies

the key challenge because mutations are often not described in

accordance with any standard nomenclature. For example, Wei

et al. [18] recently reported that less than 25% of mutations in

their corpus of abstracts used to evaluate tmVar were reported

using standard nomenclature. These authors also reported similar

problems to those identified above and others including the

identification of missense mutations such as V125X. Another

example we identified is where standard mutation nomenclature is

appended by some other text such as ‘‘Y1472F-KI’’, where the KI

means ‘‘knock in’’ mice [19].

The use of a short-hand nomenclature based on motifs is quite

common in the literature and creates difficulties for a solution that

attempts to be generic. Typically, authors then refer to a position

in a specific motif. For example, in NMDA receptors there is an

invariant SYTANLAAF motif that has been investigated by

mutational analysis. For convenience, these positions are some-

times referred to by their position with respect to the first S of this

Figure 2. Example screenshots from (A) Starting submission
screen, (B) multiple-sequence alignment for P2X proteins and
(C) detailed information screen from a mutation found for the
P2X7 protein.
doi:10.1371/journal.pone.0071711.g002
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motif, so a mutation of the second tyrosine to phenylalanine might

be described as Y2F (e.g. PMID 22891278 [20]) rather than the

full-length or mature protein numbering. In fact this problem is

possibly more widespread than first thought; a similar ‘‘shorthand’’

numbering scheme has been used previously in the cys-loop family

of receptors to describe positions along the pore-lining M2 helices

[21] (see for example PMID 15213309 [22]). As well as those cited

above, a further example would be the G-protein Coupled

Receptors (GPCRs) where the so-called Ballesteros and Weinstein

numbering scheme [23] is commonly used rather than the position

in the full length of mature sequences. Thus, one must temper user

expectations of what is possible within text mining and in some

cases it may well be more desirable to use an ‘‘entity-specific’’

method such as those created for ABC transporters [24] and Fabry

disease [25].

The false positives for the PTEN_HUMAN sequence are due to

1) mutations being reported on another protein but which map

onto the query due to a coincidental occurrence that the amino

acid found at that position was identical in both proteins and; 2)

mutations being reported on a closely related sequence. In

glycophorin, we observed mutations reported on type B but since

GLPA and GLPB are highly similar, it was mapped on type A

(which was the subject of our query). There were no false negatives

in the above examples. One of the reasons for false negatives is

when the commonly used protein names in published text are not

retrieved from Uniprot, hence the algorithm fails to identify the

protein names in the abstract and is consequently unable to map it.

Multiple Sequence Alignment
Although mapping mutations to single sequences automatically

is useful in its own right, the real power of the methodology is to

map mutations to an alignment so that users can readily visualize

data at common positions. We evaluated the performance on

multiple sequence alignments using a set of P2X receptors and

ionotropic glutamate receptors (iGluR) from rat as two distinct test

cases (see Figures S2 and S3 in File S1). The sequence identifiers

within the multiple sequence alignments are used to query Uniprot

for protein names that are then used to query PubMed as

described for single sequences (see Figure 1 and Materials and

Methods).

For P2X receptors, 18070 abstracts were retrieved, 920

mutations were reported in 336 abstracts. Out of the 920

mutations, we were able to map 486 mutations (311 mutations

mapped more than once) and 434 were not mapped. Out of 486

mutations mapped, there were 482 true positives and 4 false

positives giving a precision of 99% (Figure S2 in File S1). All the

non-mapped mutations were true negatives with no false negatives,

so the recall was 100%. The number of multi-mapped mutations

very high in this case but they were mapped correctly. The

abstract data contained sequences from P2RX1, P2RX2, P2RX3,

P2RX4, P2RX5 P2RX6 and P2RX7 receptors from rat, mouse

and human. As the sequence similarity between these species is

high, the chances of the same residue being found at the same

position is also high, thus giving a high multi-mapped rate.

In the case of iGluRs, 45339 abstracts were retrieved and 1254

mutations were reported in 650 abstracts. We were able to map

239 mutations (with 13 mutations mapped more than once) and

1015 were not mapped. Out of 239 mutations mapped, there were

206 true positives and 33 false positives giving a precision of 86%.

Out of 1015 non-mapped mutations, there were 910 true

negatives and 105 false negatives, so the recall was 66% (Figure

S3 in File S1). Since the recall was quite low in this case, we

decided to implement variations to the algorithm to help improve

this aspect.

We call the variations "high precision" and "high recall". We

imagine that a small number of false positives could be tolerated

by users, but at the same time, users would want to be sure that as

many mutations as possible were mapped (recall). The trade off

between these two options cannot readily be predicted and thus

the simplest solution is to let the user explore the options for each

individual case. Thus, we give the user the ability to browse the

results of both algorithms. In high precision mode, the algorithm

Table 1. Information retrieval and mutation extraction in three test cases.

Sequence Keywords*
Abstracts
retrieved

Abstracts with
mutations

Number of
mutations

PTEN_HUMAN ‘‘PTEN’’, ‘‘PHOSPHATASE AND TENSIN HOMOLOG’’,
‘‘MMAC1’’, ‘‘TEP1’’

6001 297 435

GLPA_HUMAN ‘‘GLYCOPHORIN-A’’, ‘‘MN SIALOGLYCOPROTEIN’’,
‘‘SIALOGLYCOPROTEIN ALPHA’’, ‘‘GYPA’’, ‘‘GPA’’

8837 95 183

CHEY_ECOLI ‘‘CHEMOTAXIS PROTEIN CHEY’’,’’CHEY’’ 933 51 103

*These are the keywords that MutationMapper automatically extracted from Uniprot and used to search PubMed.
doi:10.1371/journal.pone.0071711.t001

Table 2. Information retrieval in NMDZ1_RAT with user input expressions.

MM Expressions User Input Expressions

Keywords "GLUTAMATE NMDA RECEPTOR SUBUNIT ZETA1",
"NMETHYLDASPARTATE RECEPTOR SUBUNIT NR1",
"NMDR1", "GRIN1", "NMDAR1"

"GLUTAMATE NMDA RECEPTOR SUBUNIT ZETA1",
"NMETHYLDASPARTATE RECEPTOR SUBUNIT NR1", "NMDR1", "GRIN1",
"NMDAR1", "NR1"

Abstracts retrieved 2179 3178

Abstracts with mutations 77 103

Number of Mutations 143 218

doi:10.1371/journal.pone.0071711.t002
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does an exact match for the protein expression. For example in the

case of the GRIK5_RAT sequence, one of the protein expressions

retrieved from Uniprot is ‘‘Glutamate receptor, ionotropic kainate

50. Only if all of the words in the expression are found is the

protein name used for mapping. In high recall mode, only two or

more words are required from the expression for the protein name

to be mapped. Using the high precision variant on the rat iGluR

MSA gave a recall of 70% and a precision of 90%. In high recall

mode, the recall was 99% and the precision was 33% (Figure S4 in

File S1).

The Issue of Multiple-mapping Events
The original objective was to accurately map a mutation

mentioned in the text back to a single protein sequence, thus

giving the user confidence that the mutation discussed really does

correspond to the protein of interest. However, in certain

scenarios, and as a consequence of the methodology, it may not

be possible to map the mutation to a single protein sequence. For

example if there are two closely related sequences in the alignment

and there is a mutation performed at a certain position in one of

the sequences and that position has the same amino acid at that

position in two (or more) sequences, then the method cannot

disambiguate them. One would expect this to occur more

frequently the higher the percentage identity. However, in the

context of the envisaged usage (i.e. looking for mutations

performed across related proteins), we argue that this is in fact

not a problem, because ultimately it is the reporting of a mutation

at that position in the alignment that is of interest.

User Input Expressions
To aid retrieval we also provide the option of including protein

name expressions. As well as helping with ambiguity, it can also be

useful if Uniprot does not include protein expressions that are

commonly found in the published text. When a user runs a job,

they are able to download the protein expression file that was used

to search PubMed. The user can then modify the file to include

additional expressions and rerun the job with those new

expressions.

An illustrative example is the case of the NMDZ1_RAT entry

from Uniprot. The expression "NR1" is commonly used in the

literature but this is not present as an expression in Uniprot. When

this expression is included manually, the number of abstracts

retrieved can be significantly increased (Table 2) with a

concomitant rise in true positives (Figure S5 in File S1).

Another example is PEPT1, where the single Uniprot protein

expression ‘‘Macrophage oligopeptide transporter PEPT1’’ re-

trieves only one abstract when queried against PubMed. But if we

add an additional expression consisting of just ‘‘PEPT1’’, 630

abstracts with 60 mutations are retrieved. Hence the addition of a

user-informed expression can be particularly effective in such

cases.

Some protein expressions are similar to commonly used words

or may only be a few letters long. The result is that the number of

irrelevant abstracts retrieved is too large to be manageable. For

example, for the matrix protein from influenza B (Uniprot entry

BM2_INBMP), the gene name is ‘M’. This results in an enormous

number of abstracts most of which are irrelevant. To avoid such

problems and to increase the efficiency of the searches, we apply a

filter. Words with two or less characters are ignored. Words with

three characters are checked for the presence of a number. If a

number is found, that string is used, otherwise it is discarded.

Words with greater than three characters are used in the search.

Mining for Mutations from Full-text
A commonly perceived view is that the most complete retrieval

of mutation data can only be accomplished by searching the full

text of articles. The retrieval of full-text presents additional

problems [26], not least of which is the availability of that text

online. Nevertheless, we were interested to see to what extent the

inclusion of full text articles would have on the performance of

MutationMapper. Thus, we retrieved as many full-text articles

pertaining to ionotropic glutamate receptors as our institutional

access allowed. Out of 3170 articles retrieved, 1511 mutations

were reported in 376 articles, 579 were single-mapped whereas

405 were multi-mapped. However we found that the performance

in terms of accuracy was substantially reduced (as assessed by

manual inspection). The reduction in accuracy was rather

unexpected. However, on manual reading of the extracted texts

there appears to be more scope for ambiguity. Another potential

problem is when mutations are referred to in figure legends, which

tend to be written as briefly as possible, making association with

the correct protein difficult. An even worse scenario is when

mutations are referred to within figures (e.g. Mejias et al. [27]),

which is almost impossible to accurately extract and map back to

effectively. We suggest that this probably reflects author’s tendency

to discuss other proteins within the more general discussions of a

complete paper rather than the more focused confines of the

abstract as has been discussed before [28].

Conclusions
We have developed a pipeline that can aid researchers in

discovering literature pertaining to mutation data. The novel

aspect of this pipeline is that it allows mutations to be analyzed in

the context of a sequence alignment. Quite often a mutation is

performed on one member of a protein family that might have

structural meaning in the context of another. The searches against

full-text were less informative than against abstracts only. Searches

are likely to improve as textual data becomes more annotated.

Although there is progress in this area [29–32], this is a separate

and complex issue in its own right. Nevertheless, such annotation

should improve the prospects for greater accuracy. Although there

is still a long way to go with accuracy concerning mutation mining,

the system here provides a quick first pass method to ascertain

mutational data that might be of relevance. The methodology is

available as a web service at http://mutationmapper.bioch.ox.ac.

uk.

Supporting Information

File S1 A single file containing five supporting informa-
tion figures.

(PDF)
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