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Abstract

During outbreaks of infectious diseases with high morbidity and mortality, individuals closely follow media reports of the
outbreak. Many will attempt to minimize contacts with other individuals in order to protect themselves from infection and
possibly death. This process is called social distancing. Social distancing strategies include restricting socializing and travel,
and using barrier protections. We use modeling to show that for short-term outbreaks, social distancing can have a large
influence on reducing outbreak morbidity and mortality. In particular, public health agencies working together with the
media can significantly reduce the severity of an outbreak by providing timely accounts of new infections and deaths. Our
models show that the most effective strategy to reduce infections is to provide this information as early as possible, though
providing it well into the course of the outbreak can still have a significant effect. However, our models for long-term
outbreaks indicate that reporting historic infection data can result in more infections than with no reporting at all. We
examine three types of media influence and we illustrate the media influence with a simulated outbreak of a generic
emerging infectious disease in a small city. Social distancing can never be complete; however, for a spectrum of outbreaks,
we show that leaving isolation (stopping applying social distancing measures) for up to 4 hours each day has modest effect
on the overall morbidity and mortality.
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Introduction be canceled (recommendation made March 17, 2003, reported by
The New York Times March 18, 2003 [4]), while in Chinatown,
! ] ' New York, a false internet rumor spread that a local restauranteur
how the media and public health agencies together can had died from SARS [5]. Both reports led some people to cease
significantly reduce the morbidity and mortality of outbreaks of travel to these arcas, though only one report was correct.

infectious diseases. In response to media reports of outbreaks, Our models elucidate the effect of the media on an individual’s

many individuals take steps, including social distance, to protect decision to employ social distancing measures and the implica-
themselves and their immediate families from severe infection and . . . - . o
tions to an emerging disease outbreak. Our goal is not to

significant chance of death. Social distancing refers to individuals construct predictive models but instead to lay a theoretical

attempting to minimize or eliminate contacts with others (those foundation to study the media’s influence. We derive formulas
outside of their immediate family), and can take many forms, for key epidemiological quantities that allow us to study their

including restricting or ending socializing and travel, and usin R . L,
g SHng 8 g ’ & dependence on the intensity of the media’s influence. We
barrier protections. For example, during the 2002-2003 severe . . . .
. < . . . carefully examine and illustrate three different scenarios for the
acute respiratory syndrome (SARS) outbreak, social distancing o . . . - .
L . . . media influence through a simulation of an outbreak of a generic
behavior included restricting local and long-distance travel, using . . . R . .
. . ‘ o . ‘ emerging infectious disease in a small city. Our models
face masks, and using extra disinfectants [1]. Social distancing for 2. . . .
. . . . . . definitively show that public health agencies working together
sexually transmitted diseases typically includes using barrier . . .. N oo
with the media can significantly decrease the severity of an

protections [2]. Both face masks and hand hygiene have been . X
. o1 . . outbreak by providing timely accounts of the numbers of new
shown to be effective social distancing measures for influenza [3]. . ) c
infections and deaths.

We use the term media in a broad sense to include any news o . .
. . Y We begin with the classical and widely used SR compartment
reports, ranging from public health agency announcements to . . . :
model [6,7] for the transmission of an infectious disease. To study

social media sites such as Facebook or Twitter. Any of these D . . ; .
. : . . the media influence and resulting social distancing, we add the
reports may contain false information and rumors. For example, in . . . <
following crucial assumption to the SIR model:

March 2003, the Center for Disease Control and Prevention
recommended that all non-essential travel to SARS infected areas

The goal of this paper is to provide a theoretical foundation for
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The rate at which individuals choose to employ social
distancing measures is an increasing function of the

number of current infections reported by the media

We implement the social distancing as a fourth compartment
(Q) in the SIR transmission model. Social distancing moves an
individual from the susceptible class directly to the social
distancing class and they play no role in the disease transmission.
However, it is clearly unrealistic for an individual to remain
completely isolated for weeks or months: individuals must venture
out into the public to buy food and some will require medial care.
Our long-lived models explicitly allow individuals to return from
the social distancing class to the susceptible class. Our simulations
show for a short-lived outbreak, that allowing individuals to return
from isolation (stop applying social distancing measures) has little
effect on the attack rate and maximal daily prevalence when
individuals are allowed to leave for up to 4 hours each day.
Therefore we focus on a short-lived outbreak with strict social
distance (no return from social distancing) where we can do
analytics. This seems to be the first study to address the question of
partial social distancing.

There are other models incorporating the influence of human
behavior on epidemics of infectious diseases. A review is provided
by Funk, et. al [8], but there is a paucity of data. Several authors
[9-16] modify the transmission rate in response to some gained
information. Our models incorporate a different paradigm and
does not change the transmission rate; they instead reduce the
number of susceptible individuals. Other authors [10,17,18]
consider vaccination strategies, which can be considered as a
form of social distancing. Our models can be viewed as
vaccination models where the number vaccinated is proportional
to the number of infections and death reported by the media. In
addition, they also accounts for any other social distancing
measures.

Some governments are not always initially forthcoming with
timely and accurate news of infectious disease outbreaks. We
consider two types of time delays in the media reporting of an
outbreak. If the media reports current infection data, then even
starting to report well into the course of an outbreak can
significantly reduce the severity of the outbreak. However, the
long-term models indicate that reporting historic infection data
can result in more infections than with no reporting at all
(Figure S2).

In the body of the paper, we provide a non-technical description
of the models and present the main results for short-term
outbreaks. The precise statements and mathematical analysis are
all delegated to Text S1. We develop a parallel foundation for
long-term outbreaks (Figure S1), which is also in the Supporting
Information. Our goal for this organization is to make the results
of this paper accessible to non-modelers, while also developing and
presenting the mathematical details.

Results: A Short-Lived Outbreak

In this section, we study short-lived outbreaks and we delegate
the discussion of long-lived outbreaks to Text SI.

A key threshold characteristic of an infectious disease outbreak
is the basic reproduction number Ry, which measures the number
of new infections caused by each infected individual at the
beginning of the outbreak. Assuming initially that the fraction Sp
of the population is susceptible, we verify that the basic
reproduction number in all models is
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_ BSo

Ry= .
RN

Our mathematical analysis shows that the infection dynamics
are qualitatively similar for all three of the media influence
functions. More precisely, if Ro> 1, then the number of infections
initially starts to increase. The number reaches a maximum and
then decreases to 0. The classical STR model exhibits the same
behavior. Though the behaviors of the models are qualitatively
similar, quantitatively they are different.

In the following, Sy, denotes the final (limiting) fraction of the
susceptible population.

Media Influence Function 1. f(S,])=«IS

We derive the following formulas for the key epidemiological

quantities.
Lemma 1 ¢ The maximum daily prevalence (fraction) is
p v+0  v+0 pSo
Lax =1 So— — 1 .
e =0 T K B oS\ re

o The attack rate (the total fraction of individuals who become infected) is

J _(v+5)10 (So )
total = K+ﬁ g Sﬁnal .

Consequences for the outbreak. We compute the depen-
dence of these quantities on the media influence intensity, x. The
derivatives of 1,4 and Iypq are negative which implies that as the
media influence intensity increases these will decrease.

Simulations for an outbreak in a small city. Figure 1(a)
shows the fractions of individuals in each population compart-
ment during the disease outbreak. Figure 1(b) illustrates the effect
of increasing the media influence intensity, that is increasing K.
The resulting (#) curves are compared with I(¢) for the classical
SIR model. As can be seen, as the media influence intensity
increases, the fraction who become infected decreases due to
more and more individuals choosing to employ social distancing
measures , and the maximum daily prevalence, 4y, and the
time of [, both decrease, which agrees with our mathematical
predictions. IS

Media Influence Function 2. f(S,])=

We derive the following formula for the maxinium daily disease
prevalence.

Lemma 2

o The maximum daily disease prevalence is

V49 S K 2—1
Lyax =So+1Ip— Tlog(vl:_—o&) - Blog (ﬁ)

Due to the more complex form of the media influence function
it is not possible to derive a formula for .

Consequences for the outbreak. We compute the depen-
dence of the maximum fraction of infected individuals on the
media influence intensity, k. The derivative of Iy is negative
which implies that as the media influence intensity increases the
maximum fraction will decrease. The dependence of 1y on the
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Figure 1. Short-lived model, /(S.7)=xIS. (a) Graphs of S(?), 1(¢),
R(1), O(1); k=0.5; S(¢) solid blue; I(¢) dashed red; R(¢) solid yellow; O(¢)
dashed green. (b) Graphs of I(z) for five different intensities of media
influence. From the bottom up: xk=0.5,0.25,0.1,0.05. These are
compared with the classical SIR.
doi:10.1371/journal.pone.0071692.9001

media influence intensity can be determined numerically for the
parameters corresponding to the 1918 HIN1 pandemic influenza
in the United States (Table 1). For the values in Table 1, we verify
numerically that f; 18 a decreasing function of x. Without a
formula, any other set of model parameters would need to be
checked individually.

Simulations for an outbreak in a small city. Figure 2(a)
shows the fractions of individuals in each population compartment
during the disease outbreak. Figure 2(b) illustrates the effect of
increasing the media influence intensity, that is increasing x. The
resulting /(#) curves are compared with I(#) for the classical SIR
model. As can be seen, as the media influence intensity increases,
the fraction who become infected decreases due to more and more
individuals choosing to employ social distancing measures, and the
maximum daily prevalence, 1,4y, and the time of I, both
decrease, which agrees with our mathematical predictions.

Media Influence Function 3.

1S, D)=«

We derive the following formulas for the key epidemiological
quantities.

Lemma 3« The maximum daily disease prevalence is
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Table 1. Parameter descriptions, units, and the values used in
model simulations.
ParameterDescription Units  Value Source
5(0) initial fraction 0.9994 assumption

of susceptible
1(0) initial fraction 0.0006 assumption

of infected
R(0) initial fraction 0 assumption

of recovered
Q(0) initial fraction 0 assumption

of socially

distanced
p transmission rate day™" 07 assumption, [19]
v recovery rate day™'  1/5 assumption, [19]
1) disease death rate day™" 0.04 assumption, [19]
N total population people 50,000 assumption
K media influence day™' variable assumption

intensity
doi:10.1371/journal.pone.0071692.t001

Io—1 v+ x+v+510g<x+ﬁ50).

B B K+v+0

o When K is less than the threshold K., the attack rate is

v+0 K+ BSo )
L= ——log| —— ).
rotel ﬁ (K+5S/il1al

Due to the simplicity of the model, a pathology will occur if
the media influence intensity is too high. For sufficiently strong
media influence, that is for all k larger than some threshold x,,
so many people employ social distancing measures that the
number of susceptible individuals becomes zero in finite time.
Since perfect social distancing will not happen even for the most
frightening emerging diseases, this case is irrelevant for the
purposes of the model.

Consequences for the outbreak. We compute the depen-
dence of these quantities on the media influence intensity, x. The
derivatives of 14y and Iy are negative which implies that as the
media influence intensity increases these will decrease.

Simulations for an outbreak in a small city. Figure 3(a)
shows the fractions of individuals in each population compartment
during the disease outbreak. Figure 3(b) illustrates the effect of
increasing the media influence intensity, that is increasing k.
Several intensities of media influence, both above and below the
threshold value k. =0.1082, are shown. The resulting /(#) curves
are compared with I(#) for the classical STR model. As can be
seen, as the media influence intensity increases, the fraction who
become infected decreases due to more and more individuals
choosing to employ social distancing measures, and the maximum
daily prevalence, [y, and the time of I,y both decrease as x
increases, which agrees with our mathematical predictions.
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Figure 2. Short-lived model, f(S./)=(xIS)/(2—1I). (a) Graphs of
S(1), 1(t), R(1), O(1); k=0.5; S(z) solid blue; I(¢) dashed red; R(?) solid
yellow; Q(7) dashed green. (b) Graphs of I(z) for five different intensities
of media influence. From the bottom up: k=0.5,0.25,0.1,0.05. These
are compared with the classical SIR model with no media influence,
k=0, (top black curve).

doi:10.1371/journal.pone.0071692.g002

Short-lived outbreak with non-strict social distancing

Up to now, we have assumed that social distancing is strict in
the sense that individuals and their families never leave their
isolation. Since this is not realistic, we use the model to study the
case where individuals are allowed to leave their isolation for some
number of hours per day to obtain food, supplies, and medical
care. As can be seen (Figure 4, Tables S1 and S2), for a large
range of parameters, Ry from 1.5 to 3.5 and k=0.1,0.5, allowing
individuals to return from isolation for 4 hours per day has modest
effect on the attack rate or maximal daily prevalence. According to
our simulations, in the worst case there is a 12% increase in
morbidity.

For the extended model that includes a return from isolation,
formulas for the attack rates cannot be determined. The attack
rates must be computed numerically using the formula
Liotal = Rfinat — R(0), where Rjiq denotes the final (limiting)
fraction of the recovered population.

The effects of reporting delays

We extend our previous models to consider delays in media
reporting. Including any such delay, creates a model that is infinite
dimensional and seems analytically intractable. We are forced to
rely on simulations to make any conclusions.

For all three types of media influence, we simulate the effect of
the two types of delays in media reporting, using the model
parameters for the 1918 HIN1 pandemic influenza in the United
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Figure 3. Short-lived model, f(S,/)=xl. (a) Graphs of S(¢), 1(¢),
R(1), O(1); k=0.5; S(¢) solid blue; 1(¢) dashed red; R(¢) solid yellow; O(¢)
dashed green. (b) Graphs of I(z) for five different intensities of media
influence. From the bottom up: xk=0.5,0.25,0.1,0.05. These are
compared with the classical SIR model with no media influence,
k=0, (top black curve).

doi:10.1371/journal.pone.0071692.g003

States (Table 1) and k=0.5 (Figure 5). In every case, as the media
holds back information for longer periods of time, the attack rate
increases and the maximum fraction of infected individuals at any
one time, Iy, increases, as well as the corresponding time ¢ of
Lyax. Furthermore, the fraction who choose to employ social
distancing measures decreases.

Discussion

We have developed a theoretical foundation for studying how
the media and public health agencies together can influence the
morbidity and mortality of outbreaks of infectious diseases. We
begin with the standard compartment model for transmission and
include social distancing of immediate families according to three
different types of media influence. Our mathematical analyses
show qualitatively that the infection dynamics are the same for all
three media influence types. Both our theoretical analysis and our
simulations for a generic emerging infectious disease outbreak in a
small city show that increasing the media influence intensity will
reduce the severity of the outbreak. Since this conclusion is robust
for a large range of media influence types this provides confidence
in the models’ conclusions.

We use our models to study the effect of delays in media
reporting and we consider two different types of delays.
Simulations show that for all three models the infection dynamics
are qualitatively similar for each type of delay. We conclude from
our models that media influence can play a significant role in
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Figure 4. Short-lived model; x=0.5; graphs of /(¢) for different
lengths of time out of isolation. Graphs of /() with media influence
@ f(S.)=xIS (b) f(S.))=(kSDH/2—1) () f(S,])=xrl. From the
bottom up: time outside 0, 2, 4, 8 hours per day. These are compared
with the classical STR model with no media influence (top black curve).
doi:10.1371/journal.pone.0071692.g004

reducing disease prevalence. It will be most effective if started early
in the outbreak, but still will reduce prevalence if started late, even
if the peak of infection has already been reached. Our models
show that if reporting starts late, it is more advantageous to report
current data than historical data.

When the media influence intensity x is small in any of the
models, the media has little influence on the decision of immediate
families to employ social distancing measures during the course of
an outbreak, while when the media influence intensity is large the
media has a greater influence on the decision of immediate
families to employ social distancing measures. The smaller the
fraction of the population that does employ social distancing
measures, the smaller the media influence intensity x. For a
particular infectious disease outbreak, in locations where govern-
ments tightly control the media and decide to under-report the
number of infectious and deaths, the media influence intensity will
be small.

PLOS ONE | www.plosone.org
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Although it is not easy to measure x, it is always true that
maximal reporting will be the most effective in reducing the
severity of the outbreak. Our models establish that purposely with-
holding information on infections and deaths will lead to much
unnecessary morbidity and mortality.

Strict social distancing is unrealistic because individuals or
family members need to obtain food, supplies, and medial care.
Therefore, we extend our model to allow for return from isolation
for some number of hours each day. Our simulations of a generic
emerging infectious disease show that allowing individuals to leave
their isolation for up to 4 hours each day has at most a modest
effect on the morbidity, for a wide range of parameter values, Ry
from 1.5 to 3.5 and k=0.1,0.5. In all three models we observe that
the excess morbidity increases as Ry increases and as the media
influence intensity x increases. Thus, the outcomes of our models
with strict social distancing provide a good approximation to the
more realistic case of incomplete isolation. We know of no other
study of non-strict social distancing.

We stress that we did not attempt to construct a predictive
model, which likely does not exist. We followed Occum’s razor
and constructed a simple model which captures the desired
phenomena and is highly amenable to mathematical analysis. In
particular, the model does not include age structure or heteroge-
neous mixing, and all social distancing actions are combined into
one class. We derive explicit formulas for the dependence of the
attack rate and the maximum daily prevalence on the intensity of
the media’s influence. We do so for all parameter values, and thus
obtain a quite general understanding of the media influence on the
morbidity and mortality. We conclude that the best policy for
limiting infectious disease outbreaks is to get the news out loudly and
quickly!.

Methods

Here we describe the model for short-lived outbreaks, the media
influence types considered, the possible delays in media reporting,
and the simulation techniques.

Modeling a short-lived outbreak

We now describe the SIRQ model for a short-lived outbreak of
an emerging infectious disease. By short-lived we mean an
outbreak on the scale of less than one year, where natural births
and deaths have negligible effect on the disease dynamics.
Susceptible individuals become infected at a rate proportional to
the number of infected individuals. Infected individuals recover or
die at a constant rate. Susceptible individuals choose to employ
social distancing measures at a rate depending on the number of
infected and susceptible individuals. The model is illustrated in
Figure 6 and the model is a system of differential equations
presented in Text SI.

The quantities S, I, R, and Q are the fraction of susceptible,
infected, removed, and socially distanced individuals, respectively,
in a population; f§ is the transmission rate; v is the removal rate
(1/v is the duration of infection); 0 is the disease death rate; and
f(S,I) is the media influence function.

In this model, we assume that individuals who employ social
distancing measures never return from their isolation (stop
applying the social distancing measures). A priori, this assumption
appears unrealistic. In the Results Section we illustrate (Figure 4)
the corresponding short-lived model with return from social
distancing. We show in our simulations that the severity of the
outbreak (e.g. attack rate) is barely effected when allowing
individuals to leave isolation for up to 4 hours each day. For this
reason, the outcome of our model without the ability to stop social
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Figure 5. Short-lived model; x=0.5; graphs of /(7) for different lengths and types of delays. Graphs of /(¢) with media influence (a,b)
f(S.)=xIS (c,d) f(S,])=SI)/2—1) (ef) f(S,])=xl. (a,ce) Delay Type 1. From the bottom up: delay 0, 2, 7, 12 days. (b,d,f) Delay Type 2. From the
bottom up: delay 0, 12, 15, 20 days. These are compared with the classical SIR model with no media influence (top black curve).

doi:10.1371/journal.pone.0071692.9005

distancing will provide a good approximation to the more realistic
case. In addition, we can determine formulas for key epidemio-
logical characteristics for the strict social distancing model, which
cannot be done with return from social distancing.

Figure 6. STRQ model schematic; short-lived outbreak.
doi:10.1371/journal.pone.0071692.9g006
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Quantifying media influence

We incorporate three different types of media influence into our
model. We derive explicit formulas for key epidemiological
quantities across the entire range of parameter values. Again,
determining these quantities formulaically, is a significant advan-
tage of a low-dimensional mathematical model.

Media Influence Type 1. Susceptible individuals employ
social distancing measures at a rate (heuristically probability)
proportional to the number of reported infected individuals [14].

Media Influence Type 2. If the number of reported
infections is small, then susceptible individuals employ social
distancing measures at a rate proportional to the number of
reported infections. As the number of reported infections
increases, the rate saturates [10].

Media Influence Type 3.
social distancing measures at a rate depending on both the number
of susceptible and infected individuals. A susceptible looks at how
many fellow citizens are susceptible. The fewer there are, the
higher the rate that he or she will choose to employ social
distancing measures. A mechanism of this type, where individuals
follow the behavior of others, is postulated in [13].

Susceptible individuals employ
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The strength of each type of media influence is controlled by the
parameter k, called the media influence intensity.

Effectiveness of social distancing strategies

Although individuals believe they are immune from infection
due to their social distancing actions, in reality they may not be.
Masks are not 100% effective in preventing respiratory infections
and aerosols can be transported through ducts in apartment
buildings. In the model, these and other defects in perfect
effectiveness are reflected by choosing a smaller media influence
intensity K.

Delays in media reporting

We use our models to examine the effect of a government or
media “holding-back™ news of an outbreak. We examine the
effects of two types of delays.

Delay Type 1. There is no reporting until some later time
when the media starts reporting the number of infections starting
at the beginning of the outbreak (historic data).

Delay Type 2. There is no reporting until some later time
when the media starts reporting the current number of infections.

Simulations

We illustrate our model with the different media influences by
simulating an outbreak of a generic emerging infectious disease in
a small city. We have in mind a virulent strain of avian influenza
that is well adapted for human-to-human transmission. We select
parameter values that mimic the outcome of the 1918 pandemic
influenza [19]. In particular, the transmission rate f§ and disease
related mortality, 6, are selected to ensure 15% mortality for
infected individuals and the basic reproduction number is Ry =2.9
(see the Results Section). Individuals are assumed to be infectious
for five days. We assume that the outbreak occurs in a small city
with a population of 50,000 and that the disease is first reported on
by health care workers and the media when there are 30 infected
individuals. All of the parameters used in the model simulations
are in Table 1.

Simulations for the non-strict social distancing were performed
with varying Ry values, with Ry from 1.5 to 3.5. The disease
related mortality and the length of the infectious period were
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those in Table 1, while the transmission rate was allowed to
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Mathematical analysis

Toward our goal of understanding the effects of social
distancing, we derive analytic expressions for several key
epidemiological characteristics of the models. We then analyze
the dependence of these characteristics on the strength of the
media influence intensity. These results are extremely general;
the formulas and dependencies hold for all parameter values.
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