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Abstract

During outbreaks of infectious diseases with high morbidity and mortality, individuals closely follow media reports of the
outbreak. Many will attempt to minimize contacts with other individuals in order to protect themselves from infection and
possibly death. This process is called social distancing. Social distancing strategies include restricting socializing and travel,
and using barrier protections. We use modeling to show that for short-term outbreaks, social distancing can have a large
influence on reducing outbreak morbidity and mortality. In particular, public health agencies working together with the
media can significantly reduce the severity of an outbreak by providing timely accounts of new infections and deaths. Our
models show that the most effective strategy to reduce infections is to provide this information as early as possible, though
providing it well into the course of the outbreak can still have a significant effect. However, our models for long-term
outbreaks indicate that reporting historic infection data can result in more infections than with no reporting at all. We
examine three types of media influence and we illustrate the media influence with a simulated outbreak of a generic
emerging infectious disease in a small city. Social distancing can never be complete; however, for a spectrum of outbreaks,
we show that leaving isolation (stopping applying social distancing measures) for up to 4 hours each day has modest effect
on the overall morbidity and mortality.
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Introduction

The goal of this paper is to provide a theoretical foundation for

how the media and public health agencies together can

significantly reduce the morbidity and mortality of outbreaks of

infectious diseases. In response to media reports of outbreaks,

many individuals take steps, including social distance, to protect

themselves and their immediate families from severe infection and

significant chance of death. Social distancing refers to individuals

attempting to minimize or eliminate contacts with others (those

outside of their immediate family), and can take many forms,

including restricting or ending socializing and travel, and using

barrier protections. For example, during the 2002–2003 severe

acute respiratory syndrome (SARS) outbreak, social distancing

behavior included restricting local and long-distance travel, using

face masks, and using extra disinfectants [1]. Social distancing for

sexually transmitted diseases typically includes using barrier

protections [2]. Both face masks and hand hygiene have been

shown to be effective social distancing measures for influenza [3].

We use the term media in a broad sense to include any news

reports, ranging from public health agency announcements to

social media sites such as Facebook or Twitter. Any of these

reports may contain false information and rumors. For example, in

March 2003, the Center for Disease Control and Prevention

recommended that all non-essential travel to SARS infected areas

be canceled (recommendation made March 17, 2003, reported by

The New York Times March 18, 2003 [4]), while in Chinatown,

New York, a false internet rumor spread that a local restauranteur

had died from SARS [5]. Both reports led some people to cease

travel to these areas, though only one report was correct.

Our models elucidate the effect of the media on an individual’s

decision to employ social distancing measures and the implica-

tions to an emerging disease outbreak. Our goal is not to

construct predictive models but instead to lay a theoretical

foundation to study the media’s influence. We derive formulas

for key epidemiological quantities that allow us to study their

dependence on the intensity of the media’s influence. We

carefully examine and illustrate three different scenarios for the

media influence through a simulation of an outbreak of a generic

emerging infectious disease in a small city. Our models

definitively show that public health agencies working together

with the media can significantly decrease the severity of an

outbreak by providing timely accounts of the numbers of new

infections and deaths.

We begin with the classical and widely used SIR compartment

model [6,7] for the transmission of an infectious disease. To study

the media influence and resulting social distancing, we add the

following crucial assumption to the SIR model:

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71692



The rate at which individuals choose to employ social
distancing measures is an increasing function of the
number of current infections reported by the media

We implement the social distancing as a fourth compartment

(Q) in the SIR transmission model. Social distancing moves an

individual from the susceptible class directly to the social

distancing class and they play no role in the disease transmission.

However, it is clearly unrealistic for an individual to remain

completely isolated for weeks or months: individuals must venture

out into the public to buy food and some will require medial care.

Our long-lived models explicitly allow individuals to return from

the social distancing class to the susceptible class. Our simulations

show for a short-lived outbreak, that allowing individuals to return

from isolation (stop applying social distancing measures) has little

effect on the attack rate and maximal daily prevalence when

individuals are allowed to leave for up to 4 hours each day.

Therefore we focus on a short-lived outbreak with strict social

distance (no return from social distancing) where we can do

analytics. This seems to be the first study to address the question of

partial social distancing.

There are other models incorporating the influence of human

behavior on epidemics of infectious diseases. A review is provided

by Funk, et. al [8], but there is a paucity of data. Several authors

[9–16] modify the transmission rate in response to some gained

information. Our models incorporate a different paradigm and

does not change the transmission rate; they instead reduce the

number of susceptible individuals. Other authors [10,17,18]

consider vaccination strategies, which can be considered as a

form of social distancing. Our models can be viewed as

vaccination models where the number vaccinated is proportional

to the number of infections and death reported by the media. In

addition, they also accounts for any other social distancing

measures.

Some governments are not always initially forthcoming with

timely and accurate news of infectious disease outbreaks. We

consider two types of time delays in the media reporting of an

outbreak. If the media reports current infection data, then even

starting to report well into the course of an outbreak can

significantly reduce the severity of the outbreak. However, the

long-term models indicate that reporting historic infection data

can result in more infections than with no reporting at all

(Figure S2).

In the body of the paper, we provide a non-technical description

of the models and present the main results for short-term

outbreaks. The precise statements and mathematical analysis are

all delegated to Text S1. We develop a parallel foundation for

long-term outbreaks (Figure S1), which is also in the Supporting

Information. Our goal for this organization is to make the results

of this paper accessible to non-modelers, while also developing and

presenting the mathematical details.

Results: A Short-Lived Outbreak

In this section, we study short-lived outbreaks and we delegate

the discussion of long-lived outbreaks to Text S1.

A key threshold characteristic of an infectious disease outbreak

is the basic reproduction number R0, which measures the number

of new infections caused by each infected individual at the

beginning of the outbreak. Assuming initially that the fraction S0

of the population is susceptible, we verify that the basic

reproduction number in all models is

R0~
bS0

nzd
:

Our mathematical analysis shows that the infection dynamics

are qualitatively similar for all three of the media influence

functions. More precisely, if R0w1, then the number of infections

initially starts to increase. The number reaches a maximum and

then decreases to 0. The classical SIR model exhibits the same

behavior. Though the behaviors of the models are qualitatively

similar, quantitatively they are different.

In the following, Sfinal denotes the final (limiting) fraction of the

susceptible population.

Media Influence Function 1. f (S,I)~kIS

We derive the following formulas for the key epidemiological

quantities.

Lemma 1 N The maximum daily prevalence (fraction) is

Imax~I0z
b

kzb
S0{

nzd

kzb
{

nzd

kzb
log

bS0

nzd

� �
:

N The attack rate (the total fraction of individuals who become infected) is

Itotal~
nzd

kzb

� �
log

S0

Sfinal

� �
:

Consequences for the outbreak. We compute the depen-

dence of these quantities on the media influence intensity, k. The

derivatives of Imax and Itotal are negative which implies that as the

media influence intensity increases these will decrease.

Simulations for an outbreak in a small city. Figure 1(a)

shows the fractions of individuals in each population compart-

ment during the disease outbreak. Figure 1(b) illustrates the effect

of increasing the media influence intensity, that is increasing k.

The resulting I(t) curves are compared with I(t) for the classical

SIR model. As can be seen, as the media influence intensity

increases, the fraction who become infected decreases due to

more and more individuals choosing to employ social distancing

measures , and the maximum daily prevalence, Imax, and the

time of Imax both decrease, which agrees with our mathematical

predictions.

Media Influence Function 2. f (S,I)~
kIS

2{I
We derive the following formula for the maximum daily disease

prevalence.

Lemma 2 N The maximum daily disease prevalence is

Imax~S0zI0{
nzd

b
log

bS0

nzd

� �
{

k

b
log

2{I0

2{Imax

� �

Due to the more complex form of the media influence function

it is not possible to derive a formula for Itotal .

Consequences for the outbreak. We compute the depen-

dence of the maximum fraction of infected individuals on the

media influence intensity, k. The derivative of Imax is negative

which implies that as the media influence intensity increases the

maximum fraction will decrease. The dependence of Itotal on the
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media influence intensity can be determined numerically for the

parameters corresponding to the 1918 H1N1 pandemic influenza

in the United States (Table 1). For the values in Table 1, we verify

numerically that Itotal is a decreasing function of k. Without a

formula, any other set of model parameters would need to be

checked individually.

Simulations for an outbreak in a small city. Figure 2(a)

shows the fractions of individuals in each population compartment

during the disease outbreak. Figure 2(b) illustrates the effect of

increasing the media influence intensity, that is increasing k. The

resulting I(t) curves are compared with I(t) for the classical SIR

model. As can be seen, as the media influence intensity increases,

the fraction who become infected decreases due to more and more

individuals choosing to employ social distancing measures, and the

maximum daily prevalence, Imax, and the time of Imax both

decrease, which agrees with our mathematical predictions.

Media Influence Function 3.

f (S,I)~kI

We derive the following formulas for the key epidemiological

quantities.

Lemma 3 N The maximum daily disease prevalence is

Imax~1{
nzd

b
{

kznzd

b
log

kzbS0

kznzd

� �
:

N When k is less than the threshold k�, the attack rate is

Itotal~
nzd

b
log

kzbS0

kzbSfinal

� �
:

Due to the simplicity of the model, a pathology will occur if

the media influence intensity is too high. For sufficiently strong

media influence, that is for all k larger than some threshold k�,
so many people employ social distancing measures that the

number of susceptible individuals becomes zero in finite time.

Since perfect social distancing will not happen even for the most

frightening emerging diseases, this case is irrelevant for the

purposes of the model.

Consequences for the outbreak. We compute the depen-

dence of these quantities on the media influence intensity, k. The

derivatives of Imax and Itotal are negative which implies that as the

media influence intensity increases these will decrease.

Simulations for an outbreak in a small city. Figure 3(a)

shows the fractions of individuals in each population compartment

during the disease outbreak. Figure 3(b) illustrates the effect of

increasing the media influence intensity, that is increasing k.

Several intensities of media influence, both above and below the

threshold value k�~0:1082, are shown. The resulting I(t) curves

are compared with I(t) for the classical SIR model. As can be

seen, as the media influence intensity increases, the fraction who

become infected decreases due to more and more individuals

choosing to employ social distancing measures, and the maximum

daily prevalence, Imax, and the time of Imax both decrease as k
increases, which agrees with our mathematical predictions.

Figure 1. Short-lived model, f (S,I)~kIS. (a) Graphs of S(t), I(t),
R(t), Q(t); k~0:5; S(t) solid blue; I(t) dashed red; R(t) solid yellow; Q(t)
dashed green. (b) Graphs of I(t) for five different intensities of media
influence. From the bottom up: k~0:5,0:25,0:1,0:05. These are
compared with the classical SIR.
doi:10.1371/journal.pone.0071692.g001

Table 1. Parameter descriptions, units, and the values used in
model simulations.

ParameterDescription Units Value Source

S(0) initial fraction 0.9994 assumption

of susceptible

I(0) initial fraction 0.0006 assumption

of infected

R(0) initial fraction 0 assumption

of recovered

Q(0) initial fraction 0 assumption

of socially
distanced

b transmission rate day21 0.7 assumption, [19]

n recovery rate day21 1/5 assumption, [19]

d disease death rate day21 0.04 assumption, [19]

N total population people 50,000 assumption

k media influence
intensity

day21 variable assumption

doi:10.1371/journal.pone.0071692.t001
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Short-lived outbreak with non-strict social distancing
Up to now, we have assumed that social distancing is strict in

the sense that individuals and their families never leave their

isolation. Since this is not realistic, we use the model to study the

case where individuals are allowed to leave their isolation for some

number of hours per day to obtain food, supplies, and medical

care. As can be seen (Figure 4, Tables S1 and S2), for a large

range of parameters, R0 from 1.5 to 3.5 and k~0:1,0:5, allowing

individuals to return from isolation for 4 hours per day has modest

effect on the attack rate or maximal daily prevalence. According to

our simulations, in the worst case there is a 12% increase in

morbidity.

For the extended model that includes a return from isolation,

formulas for the attack rates cannot be determined. The attack

rates must be computed numerically using the formula

Itotal~Rfinal{R(0), where Rfinal denotes the final (limiting)

fraction of the recovered population.

The effects of reporting delays
We extend our previous models to consider delays in media

reporting. Including any such delay, creates a model that is infinite

dimensional and seems analytically intractable. We are forced to

rely on simulations to make any conclusions.

For all three types of media influence, we simulate the effect of

the two types of delays in media reporting, using the model

parameters for the 1918 H1N1 pandemic influenza in the United

States (Table 1) and k~0:5 (Figure 5). In every case, as the media

holds back information for longer periods of time, the attack rate

increases and the maximum fraction of infected individuals at any

one time, Imax, increases, as well as the corresponding time t of

Imax. Furthermore, the fraction who choose to employ social

distancing measures decreases.

Discussion

We have developed a theoretical foundation for studying how

the media and public health agencies together can influence the

morbidity and mortality of outbreaks of infectious diseases. We

begin with the standard compartment model for transmission and

include social distancing of immediate families according to three

different types of media influence. Our mathematical analyses

show qualitatively that the infection dynamics are the same for all

three media influence types. Both our theoretical analysis and our

simulations for a generic emerging infectious disease outbreak in a

small city show that increasing the media influence intensity will

reduce the severity of the outbreak. Since this conclusion is robust

for a large range of media influence types this provides confidence

in the models’ conclusions.

We use our models to study the effect of delays in media

reporting and we consider two different types of delays.

Simulations show that for all three models the infection dynamics

are qualitatively similar for each type of delay. We conclude from

our models that media influence can play a significant role in

Figure 2. Short-lived model, f (S,I)~(kIS)=(2{I). (a) Graphs of
S(t), I(t), R(t), Q(t); k~0:5; S(t) solid blue; I(t) dashed red; R(t) solid
yellow; Q(t) dashed green. (b) Graphs of I(t) for five different intensities
of media influence. From the bottom up: k~0:5,0:25,0:1,0:05. These
are compared with the classical SIR model with no media influence,
k~0, (top black curve).
doi:10.1371/journal.pone.0071692.g002

Figure 3. Short-lived model, f (S,I)~kI . (a) Graphs of S(t), I(t),
R(t), Q(t); k~0:5; S(t) solid blue; I(t) dashed red; R(t) solid yellow; Q(t)
dashed green. (b) Graphs of I(t) for five different intensities of media
influence. From the bottom up: k~0:5,0:25,0:1,0:05. These are
compared with the classical SIR model with no media influence,
k~0, (top black curve).
doi:10.1371/journal.pone.0071692.g003
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reducing disease prevalence. It will be most effective if started early

in the outbreak, but still will reduce prevalence if started late, even

if the peak of infection has already been reached. Our models

show that if reporting starts late, it is more advantageous to report

current data than historical data.

When the media influence intensity k is small in any of the

models, the media has little influence on the decision of immediate

families to employ social distancing measures during the course of

an outbreak, while when the media influence intensity is large the

media has a greater influence on the decision of immediate

families to employ social distancing measures. The smaller the

fraction of the population that does employ social distancing

measures, the smaller the media influence intensity k. For a

particular infectious disease outbreak, in locations where govern-

ments tightly control the media and decide to under-report the

number of infectious and deaths, the media influence intensity will

be small.

Although it is not easy to measure k, it is always true that

maximal reporting will be the most effective in reducing the

severity of the outbreak. Our models establish that purposely with-

holding information on infections and deaths will lead to much

unnecessary morbidity and mortality.

Strict social distancing is unrealistic because individuals or

family members need to obtain food, supplies, and medial care.

Therefore, we extend our model to allow for return from isolation

for some number of hours each day. Our simulations of a generic

emerging infectious disease show that allowing individuals to leave

their isolation for up to 4 hours each day has at most a modest

effect on the morbidity, for a wide range of parameter values, R0

from 1.5 to 3.5 and k~0:1,0:5. In all three models we observe that

the excess morbidity increases as R0 increases and as the media

influence intensity k increases. Thus, the outcomes of our models

with strict social distancing provide a good approximation to the

more realistic case of incomplete isolation. We know of no other

study of non-strict social distancing.

We stress that we did not attempt to construct a predictive

model, which likely does not exist. We followed Occum’s razor

and constructed a simple model which captures the desired

phenomena and is highly amenable to mathematical analysis. In

particular, the model does not include age structure or heteroge-

neous mixing, and all social distancing actions are combined into

one class. We derive explicit formulas for the dependence of the

attack rate and the maximum daily prevalence on the intensity of

the media’s influence. We do so for all parameter values, and thus

obtain a quite general understanding of the media influence on the

morbidity and mortality. We conclude that the best policy for

limiting infectious disease outbreaks is to get the news out loudly and

quickly!.

Methods

Here we describe the model for short-lived outbreaks, the media

influence types considered, the possible delays in media reporting,

and the simulation techniques.

Modeling a short-lived outbreak
We now describe the SIRQ model for a short-lived outbreak of

an emerging infectious disease. By short-lived we mean an

outbreak on the scale of less than one year, where natural births

and deaths have negligible effect on the disease dynamics.

Susceptible individuals become infected at a rate proportional to

the number of infected individuals. Infected individuals recover or

die at a constant rate. Susceptible individuals choose to employ

social distancing measures at a rate depending on the number of

infected and susceptible individuals. The model is illustrated in

Figure 6 and the model is a system of differential equations

presented in Text S1.

The quantities S, I , R, and Q are the fraction of susceptible,

infected, removed, and socially distanced individuals, respectively,

in a population; b is the transmission rate; n is the removal rate

(1=n is the duration of infection); d is the disease death rate; and

f (S,I) is the media influence function.

In this model, we assume that individuals who employ social

distancing measures never return from their isolation (stop

applying the social distancing measures). A priori, this assumption

appears unrealistic. In the Results Section we illustrate (Figure 4)

the corresponding short-lived model with return from social

distancing. We show in our simulations that the severity of the

outbreak (e.g. attack rate) is barely effected when allowing

individuals to leave isolation for up to 4 hours each day. For this

reason, the outcome of our model without the ability to stop social

Figure 4. Short-lived model; k~0:5; graphs of I(t) for different
lengths of time out of isolation. Graphs of I(t) with media influence
(a) f (S,I)~kIS (b) f (S,I)~(kSI)=(2{I) (c) f (S,I)~kI . From the
bottom up: time outside 0, 2, 4, 8 hours per day. These are compared
with the classical SIR model with no media influence (top black curve).
doi:10.1371/journal.pone.0071692.g004
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distancing will provide a good approximation to the more realistic

case. In addition, we can determine formulas for key epidemio-

logical characteristics for the strict social distancing model, which

cannot be done with return from social distancing.

Quantifying media influence
We incorporate three different types of media influence into our

model. We derive explicit formulas for key epidemiological

quantities across the entire range of parameter values. Again,

determining these quantities formulaically, is a significant advan-

tage of a low-dimensional mathematical model.

Media Influence Type 1. Susceptible individuals employ

social distancing measures at a rate (heuristically probability)

proportional to the number of reported infected individuals [14].

Media Influence Type 2. If the number of reported

infections is small, then susceptible individuals employ social

distancing measures at a rate proportional to the number of

reported infections. As the number of reported infections

increases, the rate saturates [10].

Media Influence Type 3. Susceptible individuals employ

social distancing measures at a rate depending on both the number

of susceptible and infected individuals. A susceptible looks at how

many fellow citizens are susceptible. The fewer there are, the

higher the rate that he or she will choose to employ social

distancing measures. A mechanism of this type, where individuals

follow the behavior of others, is postulated in [13].

Figure 5. Short-lived model; k~0:5; graphs of I(t) for different lengths and types of delays. Graphs of I(t) with media influence (a,b)
f (S,I)~kIS (c,d) f (S,I)~(kSI)=(2{I) (e,f) f (S,I)~kI . (a,c,e) Delay Type 1. From the bottom up: delay 0, 2, 7, 12 days. (b,d,f) Delay Type 2. From the
bottom up: delay 0, 12, 15, 20 days. These are compared with the classical SIR model with no media influence (top black curve).
doi:10.1371/journal.pone.0071692.g005

Figure 6. SIRQ model schematic; short-lived outbreak.
doi:10.1371/journal.pone.0071692.g006
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The strength of each type of media influence is controlled by the

parameter k, called the media influence intensity.

Effectiveness of social distancing strategies
Although individuals believe they are immune from infection

due to their social distancing actions, in reality they may not be.

Masks are not 100% effective in preventing respiratory infections

and aerosols can be transported through ducts in apartment

buildings. In the model, these and other defects in perfect

effectiveness are reflected by choosing a smaller media influence

intensity k.

Delays in media reporting
We use our models to examine the effect of a government or

media ‘‘holding-back’’ news of an outbreak. We examine the

effects of two types of delays.
Delay Type 1. There is no reporting until some later time

when the media starts reporting the number of infections starting

at the beginning of the outbreak (historic data).
Delay Type 2. There is no reporting until some later time

when the media starts reporting the current number of infections.

Simulations
We illustrate our model with the different media influences by

simulating an outbreak of a generic emerging infectious disease in

a small city. We have in mind a virulent strain of avian influenza

that is well adapted for human-to-human transmission. We select

parameter values that mimic the outcome of the 1918 pandemic

influenza [19]. In particular, the transmission rate b and disease

related mortality, d, are selected to ensure 15% mortality for

infected individuals and the basic reproduction number is R0~2:9
(see the Results Section). Individuals are assumed to be infectious

for five days. We assume that the outbreak occurs in a small city

with a population of 50,000 and that the disease is first reported on

by health care workers and the media when there are 30 infected

individuals. All of the parameters used in the model simulations

are in Table 1.

Simulations for the non-strict social distancing were performed

with varying R0 values, with R0 from 1.5 to 3.5. The disease

related mortality and the length of the infectious period were

those in Table 1, while the transmission rate was allowed to

change.

Mathematical analysis
Toward our goal of understanding the effects of social

distancing, we derive analytic expressions for several key

epidemiological characteristics of the models. We then analyze

the dependence of these characteristics on the strength of the

media influence intensity. These results are extremely general;

the formulas and dependencies hold for all parameter values.

Supporting Information

Figure S1 SIRQ model schematic; long-lived outbreak.

(TIF)

Figure S2 Long-lived model; k~5; graphs of I(t) of
different lengths of delays of Type 1. Graphs of I(t) with

media influence (a) f (S,I)~kIS (b) f (S,I)~(kSI)=(2{I) (c)

f (S,I)~kI . From the bottom up (at t~15): delay 0, 2, 7, 12 days.

These are compared with the classical SIR model with no media

influence (‘‘top’’ black curve).

(TIF)

Table S1 Excess morbidity caused by leaving social
distancing for varying time outside of isolation and
varying R0 (by varying b); k~0:5.

(PDF)

Table S2 Excess morbidity caused by leaving social
distancing for varying time outside of isolation and
varying R0 (by varying b); k~0:1.

(PDF)

Text S1 Supporting information.

(PDF)

Author Contributions

Conceived and designed the experiments: AM HW. Performed the

experiments: AM HW. Analyzed the data: AM HW. Contributed

reagents/materials/analysis tools: AM HW. Wrote the paper: AM HW.

References

1. Blendon RJ, Benson JM, DesRoches CM, Raleigh E, Taylor-Clark K (2004)

The public’s response to severe acute respiratory syndrome in Toronto and the

United States. Clinical Infectious Diseases 38: 925–931.

2. Center for Disease Control and Prevention. Condoms and STDs: Fact Sheet for

Public Health Personnel. CS124752. Available: http://www.cdc.gov/

condomeffectiveness/latex.htm. Last updated September 13, 2011.

3. Aiello AE, Murray GF, Perez V, Coulborn RM, Davis BM, et al. (2010) Mask

use, hand hygiene, and seasonal inuenza-like illness among young adults: a

randomized intervention trial. Journal of Infectious Diseases 201: 491–498.

4. Altman LK, Rosenthal E (2003) Health organization stepping up efforts to find

cause of mysterious pneumonia. The New York Times .

5. Eichelberger L (2007) SARS and New York’s Chinatown: The politics of risk

and blame during an epidemic of fear. Social Science & Medicine 65: 1284–

1295.

6. Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and

control. Oxford University Press, USA.

7. Weiss H (2009) A Mathematical Introduction to Population Dynamics. IMPA

Publicacões Matemáticas. IMPA.
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