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Abstract

Despite the efficacy in reducing acute rejection events in organ transplanted subjects, long term therapy with cyclosporine
A is associated with increased atherosclerotic cardiovascular morbidity. We studied whether this drug affects the
antiatherogenic process of the reverse cholesterol transport from macrophages in vivo. Cyclosporine A 50 mg/kg/d was
administered to C57BL/6 mice by subcutaneous injection for 14 days. Macrophage reverse cholesterol transport was
assessed by following [3H]-cholesterol mobilization from pre-labeled intraperitoneally injected macrophages, expressing or
not apolipoprotein E, to plasma, liver and feces. The pharmacological treatment significantly reduced the amount of
radioactive sterols in the feces, independently on the expression of apolipoprotein E in the macrophages injected into
recipient mice and in absence of changes of plasma levels of high density lipoprotein-cholesterol. Gene expression analysis
revealed that cyclosporine A inhibited the hepatic levels of cholesterol 7-alpha-hydroxylase, concomitantly with the increase
in hepatic and intestinal expression of ATP Binding Cassette G5. However, the in vivo relevance of the last observation was
challenged by the demonstration that mice treated or not with cyclosporine A showed the same levels of circulating beta-
sitosterol. These results indicate that treatment of mice with cyclosporine A impaired the macrophage reverse cholesterol
transport by reducing fecal sterol excretion, possibly through the inhibition of cholesterol 7-alpha-hydroxylase expression.
The current observation may provide a potential mechanism for the high incidence of atherosclerotic coronary artery
disease following the immunosuppressant therapy in organ transplanted recipients.

Citation: Zanotti I, Greco D, Lusardi G, Zimetti F, Potı̀ F, et al. (2013) Cyclosporine A Impairs the Macrophage Reverse Cholesterol Transport in Mice by Reducing
Sterol Fecal Excretion. PLoS ONE 8(8): e71572. doi:10.1371/journal.pone.0071572

Editor: Partha Mukhopadhyay, National Institutes of Health, United States of America

Received October 23, 2012; Accepted July 3, 2013; Published August 9, 2013

Copyright: � 2013 Zanotti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Istituto per le Ricerche Cardiovascolari (INRC) and Consortium Tefarco Innova. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ilaria.zanotti@unipr.it

Introduction

Until the 1970s the high incidence of allograft loss as a result of

acute rejection represented a major concern for organ transplant-

ed patients. Since those years, the advances in immunosuppressive

therapy made this procedure safe and efficient, and moved the

outcome measures to long-term survival and morbidity. Death

with a functioning graft due to cardiovascular disease is currently

the leading cause of mortality in solid organ recipients [1].

Cyclosporine A (CsA) was the mainstay of immunosuppression

throughout the 1980s and early 1990s and is currently successfully

used in combination therapy in renal and liver transplantation [2].

Despite its therapeutic efficacy, CsA chronic use is associated with

well documented independent risk factors for atherosclerosis, such

as hypertension, diabetes and dyslipidemia [1].

The reverse cholesterol transport (RCT) is the process that may

counteract the pathogenic events leading to the formation of

atheroma. The promotion of cholesterol removal from peripheral

tissues occurs in 3 main steps: 1) cholesterol efflux: the rate limiting

step, consisting in the release of excess cholesterol from peripheral

cells; this process is driven by both cell capacity to remove

cholesterol and plasma capacity to act as lipid acceptor; 2) high

density lipoproteins (HDL) remodeling: occurring through several

reactions catalyzed by enzymes that induce structural modifica-

tions of HDL; 3) hepatic uptake: cholesterol is delivered by HDL

to the liver, where is partially converted into bile acids for the

ultimate excretion into the bile [3]. Based on macrophage primary

role in atherosclerotic lesion formation, macrophage-derived

cholesterol pool is considered the most important for atheroscle-

rosis development and progression. Thus, the RCT that specif-

ically involves macrophage-derived cholesterol becomes funda-

mental for atheroprotection. This process is termed macrophage

RCT [4] and is currently estimated in vivo with a radioisotope-

based assay. Several works established that macrophage RCT

inversely correlates with atherosclerosis in animal models (studies

summarized in Rader’s review [5]), and identified this process as a

significant predictor of cardiovascular disease.

The aim of this work was to investigate whether CsA may exert

its well documented proatherosclerotic activity by affecting

macrophage RCT. To this purpose, we measured the process in

C57BL/6 mice, an animal model where CsA was previously

shown to accelerate atherosclerosis development [6].
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We provided the demonstration that CsA impairs the anti-

atherosclerotic process of macrophage RCT in vivo by reducing

fecal sterol excretion through the inhibition of cholesterol 7-alpha-

hydroxylase (Cyp7a) expression in the liver.

Methods

Materials and Cells
CsA was purchased from Sigma-Aldrich (Milano, Italy).

Organic solvents were purchased from Romil Ltd (Cambridge,

UK), Carlo Erba (Milano, Italy) and Merck (Darmstadt,

Germany). [3H]-cholesterol was from Perkin Elmer (Monza,

Italy). Tissue culture flasks and plates were from Corning

(Corning, NY, USA), transwell inserts from Greiner Bio-one

(Frickenhausen, Germany). Cell culture medium, fetal bovine

serum and PBS were from Lonza Ltd (Milano, Italy). Bovine

serum albumin and Brewer thioglycollate medium were purchased

from Sigma-Aldrich (Milano, Italy). T0901317 was from Alexis

Biochemicals (Lausen, Switzerland). Acetylated low density

lipoproteins (AcLDL) were prepared from human LDL by

reaction with acetic anhydride, as previously described [7].

J774 mouse macrophages, a cell type widely used in studies on

lipid metabolism [8], were kindly donated by Prof. George

Rothblat (Children’s Hospital of Philadelphia).

Ethic Statements on the use of Animals
Animal care and experimental procedures were performed with

the approval of the local Comitato Etico per la Sperimentazione

Animale, overseeing animal experiments at University of Parma.

No special permission for use of animals (mice) in such

pharmacological studies is required in Italy, as defined by the

legislative decree 116/92.

Drug Administration to Mice
Twelve week old male C57BL/6J mice were housed in a

controlled environment at 2562uC with alternating 12 h light and

dark cycles and received standard diet and water ad libitum. Since

CsA deleterious effects on cardiovascular risk factors in animal

models have been previously described both upon short term (few

days) and longer time periods (until 300 days) of administration, at

doses ranging from 20 mg/kg/d to 50 mg/kg/d [6], mice were

treated for 14 days by subcutaneous injection with CsA dissolved

in olive oil at the dose of 50 mg/kg (n = 5–7) or vehicle (n = 5–7),

once a day at 10 a.m. On day 14, 4 h after the last drug

administration, mice were sacrificed by excess anesthesia with

ethyl ether. Blood was collected by cardiac puncture and

recovered in plastic tubes containing sodium citrate 3.8%. Plasma

was isolated by low speed centrifugation and stored at280uC until

use, as described below. Livers were collected at the end of the

treatment period and immediately frozen in liquid nitrogen. The

bile was collected from the gall bladder and 5 ml of it was subjected
to liquid scintillation counting. Feces were collected on day 14 of

drug treatment. Samples of liver were extracted by the Bligh and

Dyer method [9], while aliquots of feces were extracted by a

method that allows to separate bile acid and neutral sterol fractions

[10]; radioactivity in the lipid extracts was measured by liquid

scintillation counting.

Evaluation of RCT in vivo
Measurement of RCT was performed as previously described

[11]. On day 11 of pharmacological treatment with CsA,

thioglycollate-elicited murine peritoneal (MPM) or J774 macro-

phages were cholesterol-enriched with 25 mg/mL AcLDL and

radiolabeled with 5 mCi/ml [3H]-cholesterol. On day 13, cells

were intraperitoneally injected into recipient mice (n = 14 in RCT

using MPM; n= 10 in RCT using J774). On day 14, mice were

sacrificed and samples were collected as described above.

Measurements of Plasma Lipids
Plasma total cholesterol, HDL- cholesterol and triglycerides

were measured with colorimetric assays, using commercially

available kits (Instrumentation Laboratory, Werfen Group, Milan,

Italy).

Quantification of Beta-sitosterol in Plasma
120 ml of thawed plasma samples were hydrolyzed with 96%

ethanol-KOH 50% for 2 hours at 85uC in glass vials and

periodically stirred, after addition of 5 mg of 5-alpha cholestane as

internal standard. At the end of the reaction, ethanol, KOH 1 M

and petroleum ether (40/60uC) were added and samples

vigorously shaken and heated for 20 minutes. The organic phase

were then removed and the procedure repeated three times. The

extracts were dried in a flow of nitrogen and resuspended in

hexane, before being analyzed by a DANI 1000 gas-liquid

chromatographer (DANI Instruments, Milan, Italy) equipped with

a flame ionization detector and a 30 m, 0.32 mm, 0.25 m MEGA-

1 (Mega Columns, Legnano, Italy) fused silica column. The flow of

hydrogen was at a constant pressure of 1 bar, and the detector

temperature was 350uC. Oven temperature ranged from 240 to

300uC (total run 15 min). Chromatograms were recorded and the

amount of beta-sitosterol quantified by Clarity Software (Clarity,

Prague, Czech Republic), comparing the area of the beta-

sitosterol peak with that of 5 alpha-cholestane and correcting the

obtained value by 1.112, corresponding to the differences in

weight between the two sterols.

Cholesterol Efflux from Macrophages
After plating, murine macrophages J774 or MPM were labeled

for 48 h with 2 mCi/ml [3H]-cholesterol in medium in the

presence of 1% fetal calf serum. Cells were loaded with cholesterol

during the labeling period by the addition of 25 mg/ml AcLDL to

the medium. Cell monolayers were then equilibrated for 6 h in an

albumin containing medium. Cholesterol efflux was promoted by

incubation with pooled C57BL/6 mouse plasma diluted to 0.1–

0.5–1% in presence or absence of CsA 1–5 mM for 24 h. An Acyl-

coenzyme A: cholesterol O-Acyltransferase inhibitor (2 mg/ml,

Sandoz 58035) was added during labeling and equilibration period

to prevent cellular accumulation of cholesteryl ester [8]. The drug

concentration was selected according to previous studies assessing

CsA effect in cultured cells [12,13,14]. In our experience, 5 mM
was the highest concentration not affecting cell viability. Choles-

terol efflux has been calculated as a percentage of the radioactivity

released to the medium over the radioactivity incorporated by cells

before addition of plasma (Time zero). Every sample was analyzed

in triplicate and the average and standard deviation have been

obtained. Background efflux, evaluated in the absence of

acceptors, was subtracted from each sample value.

Plasma Cholesterol Efflux Capacity
Plasma samples from mice treated with CsA or vehicle as

described previously, were harvested and stored at 280uC; the
aliquots were slowly defrosted in ice just before addition to cells.

To assess plasma efflux capacity, MPM were radiolabeled with

cholesterol and cholesterol enriched by incubation with 25 mg/
ml of AcLDL in 1% fetal calf serum containing medium for

24 h. After a 18 h equilibration period in an albumin-

containing medium, cholesterol efflux was promoted to 0.5%
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(v/v) plasma from either vehicle and CsA-treated mice for 5 h.

Plasma cholesterol efflux capacity has been calculated as a

percentage of the radioactivity released to the medium in 5 h

over the radioactivity incorporated by cells before addition of

plasma (Time zero). Every plasma sample was analyzed in

triplicate and the average and standard deviation have been

obtained. A 0.5% of a serum pool from normolipidemic mice

was run to confirm the correct responsiveness of cells;

background efflux, evaluated in the absence of acceptors, was

subtracted from each sample value.

Analysis of Gene Expression by Real-time Quantitative
RT-PCR
Total RNA from liver samples was isolated by the RNeasy Mini

kit (Qiagen) according to the protocol provided by the manufac-

turer. Briefly, liver samples were lysed and homogenized by

Ultraturrax and then loaded onto the RNeasy silica membrane

spin column. RNA was then eluted in water and quantified by

spectrophotometry (Nanodrop ND-1000, Thermo Scientific).

cDNA was synthesized from 100 ng of total RNA using iScriptTM

cDNA Synthesis Kit (Bio-Rad Laboratories). mRNA levels were

quantitatively determined on an CFX96TM Real-Time PCR

Detection System using SsoFastTM EvaGreenH Supermix accord-

ing to manufacturer’s instructions (Bio-Rad Laboratories). PCR

primers were the same published in Ye et al. [15] (ATP Binding

Cassette G5 (Abcg5): forward primer 59–TGGCCCTGCTCAG-

CATCT–39; reverse primer 59–ATTTTTAAAGGAATGGG-

CATCTCTT–39; ATP Binding Cassette G8 (Abcg8): forward

primer 59–CCGTCGTCAGATTTCCAATGA–39; reverse prim-

er 59–GGCTTCCGACCCATGAATG–39; Hprt: forward primer

59–TTGCTCGAGATGTCATGAAGGA–39; reverse primer 59–

AGCAGGTCAGCAAAGAACTTATAG–39; b-actin: forward

primer 59–AACCGTGAAAAGATGACCCAGAT–39; reverse

primer 59–CACAGCCTGGATGGCTACGTA–39). Primer se-

quences for Cyp7a e Niemann-Pick C1 Like-1 (Npc1l1) were

specifically designed with Beacon Designer Software (Cyp7a:
forward primer 59–TAGATAGCATCATCAAGGA–39; reverse

primer 59–AAGGTGTAGAGTGAAGTC–39; Npc1l1: forward

primer 59–TAGCAGCCAACATCACAG–39; reverse primer 59–

ATCGTGTAAGGGAAGACC–39). Relative gene expression

numbers were calculated by applying the 22DDCt method [16].

Briefly, the threshold cycle number (Ct) of the target gene was

subtracted from the average Ct of Hprt and b-actin (Ct housekeeping)

and raised 2 to the power of this difference. The average

(geometric mean) of two housekeeping genes was used to exclude

the possibility that changes in relative expression were caused by

variations in the expression of separate housekeeping genes.

Western Blotting
Liver samples from mice treated with CsA or vehicle as

described above were lysed in RIPA buffer containing aprotinin

10 mg/ml, leupeptin 1 mg/ml, pepstatin 1 mg/ml, phenylmetha-

nesulfonyl fluoride 0.2 mM and homogenized by Ultraturrax.

Equal amounts of protein (50 mg) were separated on 10%

acrylamide gels and transferred to nitrocellulose membranes.

ABCG5 and ABCG8 were detected with rabbit primary

antibodies (Santa Cruz, Santa Cruz, California) and a secondary

antibody, anti-rabbit IgG conjugated to horseradish peroxidase,

with visualization by enhanced chemioluminescence (ECL Plus)

(both from GE Healthcare, Little Chalfont, Buckinghamshire,

UK), according to the manufacturer’s conditions.

Statistical Analysis
The statistical analyses were performed with Prism 5 software.

(GraphPad Software, San Diego, California). Experimental data

sets were tested for normality by D’Agostino Pearson’s test.

Comparisons between two groups were done with Mann Whitney

test or unpaired two-tailed Student t-test. Comparisons between

more than two groups were made by one-way or two-way

ANOVA for independent samples. Pairwise comparisons of

sample means were performed with Bonferroni post-hoc test. A

level of p,0.05 was considered significant.

Results

Evaluation of CsA Effect on Plasma Lipids and
Macrophage RCT in vivo
In order to investigate whether CsA proatherosclerotic effect

could be associated with the impairment of macrophage RCT, we

treated C57BL/6 mice with CsA 50 mg/kg/d for 14 days. During

this period, mice displayed normal food intake and no significant

changes in body or liver weight compared to vehicle-treated

animals (Table S1 and S2). CsA did not affect plasma lipid levels:

whereas HDL-cholesterol and triglyceride levels were unchanged,

a small, not significant trend for increased total cholesterol was

observed, attributable to increased non HDL-cholesterol (Figure 1).

The pharmacological treatment did not influence the radioactive

cholesterol appearance in plasma or liver (Figure 2A), but caused
a reduction of [3H]-sterol excretion into the bile (Figure 2B) and

the feces, both as bile acids and neutral sterols (Figure 2C).

Evaluation of CsA Effect on Macrophage RCT in vivo from
J774
To evaluate whether CsA-mediated block of apolipoprotein

(apoE) secretion from macrophages may account for the observed

impairment of RCT in vivo, the drug effect was evaluated by

measuring the process in mice receiving [3H]-cholesterol-loaded

J774, a type of macrophages not expressing apoE [17]. In this

experimental conditions, we confirmed that CsA did not affect

neither body, nor liver weight (Table S3 and S4). Moreover,

plasma lipid levels was not significantly affected, even if a trend for

increased total and non-HDL cholesterol was still observed (Figure

S1). More importantly, CsA inhibited radioactive cholesterol

Figure 1. CsA treatment effect on plasma lipid levels in mice.
C57BL/6 mice were treated with CsA 50 mg/kg/d (black bar) or vehicle
(white bar) for 14 days. Total cholesterol (TC), HDL-cholesterol (HDL-C)
and triglycerides (TG) were measured by an enzymatic assay. Non HDL-
cholesterol (non HDL-C) is calculated as the difference between TC and
HDL-C. Data are expressed as mean 6 SD (values are mean of 7
animals).
doi:10.1371/journal.pone.0071572.g001
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excretion similarly to the previous experiment using MPM

(Figure 3).

Evaluation of CsA Effect on Cell Cholesterol Efflux from
Macrophages
To investigate the mechanism by which CsA caused the

reduction of radioactive accumulation in the feces, we assessed the

drug effect on the single steps of the RCT process. First, we

focused on cholesterol efflux from macrophages, the first, rate-

limiting step of the process. An in vitro assay was carried out, using

the following experimental conditions: cholesterol-loaded MPM or

J774, the same cell types injected in the peritoneum of recipient

mice for RCT measurement, were incubated with CsA in presence

of murine plasma as cholesterol acceptor for 24 hours. The

addition of two different concentrations of CsA did not produce

alterations of cholesterol efflux compared to cells receiving no drug

neither in MPM (Figure 4A), nor in J774 (Figure 4B).

Next, we hypothesized that CsA administration to mice may

have promoted lipoprotein remodeling, leading to modifications of

their capacity to promote cholesterol efflux. To test this hypothesis,

plasma from vehicle or CsA-treated mice was used as lipid

acceptor in cholesterol efflux assays from cholesterol-loaded

macrophages, the same cell type injected in the peritoneum of

recipient mice for RCT measurement. As shown in Figure 5,

plasma from vehicle and CsA-treated mice showed similar

capacity to promote cholesterol efflux from foam cells.

Evaluation of CsA Effect on ABCG5/ABCG8 Expression
and Function
Next, we investigated whether the drug may impair the sterol

fecal excretion by affecting ABCG5/ABCG8 expression and/or

activity. These proteins play a pivotal role in cholesterol

elimination from the body, being responsible for neutral sterol

excretion into the bile and the intestinal lumen [18]. RT-PCR

analysis on hepatic expression of both transporters revealed that

CsA treatment in vivo produced a slight, but significant increase in

Abcg5 mRNA expression, whereas the increase in Abcg8 mRNA did

not reach the statistical significance (p = 0.0745) (Figure 6A and

6B). Differently, the protein content of both transporters did not

change (Figure 6G and 6H). The same trend was observed when

we evaluated CsA impact on Abcg5 and Abcg8 expression in the

intestine: surprisingly the drug produced a significant raise of the

Abcg5 mRNA, whereas no effect were observed in Abcg8 mRNA

(Figure 6D and 6E ). CsA effect on ABCG5/ABCG8 activity was

first evaluated in an in vitro system, using Caco-2 cells and

assessing the drug capacity to affect cell cholesterol efflux.

Following Liver X Receptor stimulation, these cells express the

ABCG5/ABCG8 heterodimer on the apical membrane, resulting

in cholesterol secretion into the apical medium [19]. Consistently,

we observed a significant increase in cholesterol efflux to either cell

medium or taurocholate-containing micelles upon addition of the

synthetic Liver X Receptor agonist, T0901317 (Figures S2A and

S2B). In absence of cholesterol acceptor, CsA incubated in the

efflux, but not in the equilibration period, significantly reduced

cholesterol release (Figure S2A). Interestingly, the drug reduced

cholesterol efflux even in the absence of Liver X Receptor

stimulation, despite less profoundly (Figure S2A and S2B). A clear

trend for reduced cholesterol efflux was observed also in cells

treated with CsA and exposed to micelles, although a statistical

significance was not reached.

Taken together these results suggest that CsA may affect

ABCG5/ABCG8 activity. The in vivo relevance of this observa-

tion was assessed by measuring circulating beta-sitosterol in

plasma of mice treated or not with the drug. In fact, functional

impairment of these transporters in vivo may result in accumu-

lation of phytosterols in plasma [20]. However, no differences were

detected in the two groups (Figure 7).

Figure 2. CsA treatment effect on macrophage RCT fromMPM in vivo. C57BL/6 mice were treated with CsA as described in Figure 1. On day
13 of pharmacological treatment, animals were intraperitoneally injected with [3H]-cholesterol loaded MPM. After 24 h, mice were sacrificed and
macrophage-derived [3H]-cholesterol distribution was quantified in plasma, liver and feces as described in the Methods section. A: [3H]-cholesterol in
plasma and liver; B: [3H]-sterols in the bile; C: [3H]-neutral sterols and [3H]-bile acids in the feces. Results are expressed as mean 6 SD (n = 7 mice per
group). *p,0.05 vs. vehicle.
doi:10.1371/journal.pone.0071572.g002

Figure 3. CsA effect on macrophage RCT from J774. C57BL/
6 mice were treated with CsA and RCT was measured as described in
Figure 1, upon injection with [3H]-cholesterol loaded J774 foam cells.
Results are expressed as mean6 SD (n = 5 mice per group). *p,0.05 vs.
vehicle.
doi:10.1371/journal.pone.0071572.g003
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Evaluation of CsA Effect on Cyp7a and Npc1l1 Expression
To investigate whether the observed reduction of radioactive

cholesterol fecal excretion in CsA-treated mice could be attributed

to the drug influence on cholesterol conversion into bile acids and/

or promotion of cholesterol intestinal absorption, hepatic and

intestinal expression of Cyp7a and Npc1l1 respectively was

evaluated. As reported in Figure 6C and 6F, CsA significantly

reduced Cyp7a, but not Npc1l1 mRNA.

Discussion

The increased cardiovascular morbidity and mortality following

CsA treatment represents a serious concern for long-term therapy

of organ transplanted patients [1]. Given the well documented role

of macrophage RCT in the protection of atherosclerosis [5], we

hypothesized that CsA may impair this process. Indeed, a short

term administration of CsA to mice resulted in reduced

elimination of macrophage-derived cholesterol from the body. In

particular, we reported the inhibition of sterol accumulation in the

bile and feces, suggesting the drug interference with the last step of

RCT, cholesterol excretion. This effect could be the result of

multiple mechanisms, including the modulation of the activity of

proteins involved in bile acid synthesis, such as CYP7a and

cholesterol 27-alpha-hydroxylase, or proteins responsible for

cholesterol intestinal absorption and excretion, such as NPC1L1

and ABCG5-ABCG8 respectively. Our initial hypothesis was that

CsA could affect the activity of ABCG5-ABCG8, the half

transporters expressed on the apical membrane of hepatic and

intestinal cells, responsible for the excretion of neutral sterols into

the bile and intestinal lumen [21]. The in vitro evaluation of CsA

effect on ABCG5/ABCG8 activity was likely to support our

hypothesis, since the drug impaired sterol efflux from cultured

intestinal cells. However, when we assessed the relevance of this

result in vivo, we failed to definitely confirm the involvement of

these genes. First of all, gene/protein expression analysis on the

livers and intestines of vehicle and CsA-treated mice revealed that

the pharmacological treatment did not result in the reduction of

gene/protein expression, but rather in the increase or no changes.

Moreover, mice treated with CsA showed the same amount of

beta-sitosterol of untreated animals, suggesting that ABCG5/

ABCG8 activity was not affected in vivo. The inhibition of

ABCG5/ABCG8 is expected to cause alterations in the balance of

cholesterol and phytosterols, resulting in dramatic increase of

circulating levels of the latter. This is the case of subjects affected

by sitosterolemia [20] or mice with deletions of Abcg5/Abcg8 genes

[22]. Taken together these evidences rule out the involvement of

ABCG5/ABCG8 in CsA-mediated impairment of macrophage

RCT.

Successively, CsA-mediated modulation of intestinal cholesterol

absorption via NPC1L1 was considered. In this case, the reduced

fecal excretion could be attributed to improved activity of this

protein, leading to augmented availability of cholesterol in the

intestinal lumen for the final elimination. However, gene

expression analysis clearly revealed no modulation of Npc1l1

mRNA in CsA-treated mice, thus ruling out this potential

mechanism of action. Finally, we evaluated whether the observed

reduction of radioactivity fecal excretion could be related to

inhibition of Cyp7a expression, the enzyme driving the rate

Figure 4. CsA effect on cholesterol efflux from macrophages. A: MPM and B: J774 were cholesterol enriched with AcLDL 25 mg/ml and
radiolabeled with [3H]-cholesterol 2 mCi/ml for 48 hours. After an equilibration period of 6 hours, cells were exposed to increasing concentrations of
plasma from wild type mice in presence or absence of CsA 1–5 mM for 24 hours. Efflux is expressed as cpm in medium/cpm time zero x100 (mean of
triplicates 6 SD).
doi:10.1371/journal.pone.0071572.g004

Figure 5. CsA treatment effect on plasma cholesterol efflux
capacity. MPM were cholesterol enriched with 25 mg/ml AcLDL and
radiolabeled with [3H]-cholesterol 2 mCi/ml. After an equilibration
period of 18 hours, cells were exposed for 5 hours to 0.5% plasma
from mice treated with CsA or vehicle as described in Figure 1. Efflux is
expressed as cpm in medium/cpm of time zero x100 (values are mean
of 7 animals per group 6 SD).
doi:10.1371/journal.pone.0071572.g005
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limiting step of cholesterol conversion into bile acids. The

observed, significant reduction of hepatic expression upon the

pharmacological treatment with CsA is consistent with previous

reports [23] and apparently suggest that the drug may impair

macrophage RCT through the inhibition of this key enzyme in

cholesterol catabolism. Although the impairment of CYP7A is

sufficient to explain the reduced neutral sterol excretion in the bile

and intestine, we can not exclude that CsA may affect other

Figure 6. CsA treatment effect on sterol transporters expression in vivo. C57BL/6 mice were treated with CsA as described in Methods.
After the sacrifice, liver and small intestine were collected to isolate RNA. Abcg5, Abcg8, Cyp7a and Npc1l1 mRNA was quantified by qRT-PCR in liver
(A,B,C) and intestine (D,E,F) respectively. Results were normalized against Hprt (shown); normalization against b-actin, or the average of them gave
similar results (not shown). G, H: Western blotting analysis was performed on hepatic lysates prepared as described in the Methods section. Lanes (–):
mice treated with vehicle. Lanes (+): mice treated with CsA. Data are presented as means 6 SD. *p,0.05 and ***p,0.001 vs vehicle.
doi:10.1371/journal.pone.0071572.g006
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mechanisms accounting for this effect, including the inhibition of

cholesterol 27-alpha-hydroxylase activity [24] or the interference

with trans intestinal cholesterol efflux [25]. Further studies will be

necessary to support these hypothesis and are beyond the scope of

the present work.

A possible interference of CsA on cholesterol efflux, the first step

of RCT, was also investigated. CsA influence on this process could

lead to a defective mobilization of cholesterol from cells either by

impairing cell capacity to promote cholesterol release or reducing

plasma ability to accept cellular cholesterol. In vivo treatment with

CsA was shown to inhibit apolipoprotein A-I expression [12], and

to reduce HDL levels [14], two effects that are expected to

negatively impact macrophage RCT efficiency by producing a

proatherogenic lipoprotein profile. However, in our experimental

setting, CsA treatment did not produce significant alterations in

plasma lipid levels: HDL-cholesterol levels were unchanged and

only a small trend to increased non HDL-cholesterol was

observed. Whereas its impact on RCT extent can not be fully

ruled out, we believe that it can not account for relevant effect. In

previous works, an increase in non HDL-cholesterol was

associated to modulation of RCT only when accompanied by

increase in HDL-cholesterol [26,27]. The lack of apparent

dyslipidemia upon CsA treatment is not surprising, since the

administration of this drug in animals is not always associated with

increase in plasma lipid levels, even in presence of proathero-

sclerotic effects [6,12]. It is also noteworthy that the effects of

pharmacological interventions on macrophage RCT are often

independent on variations of lipoprotein profile [5]. Importantly,

the capacity of plasma from vehicle- and CsA-treated mice to

promote cholesterol release from foam cells was similar, ruling out

the drug impact on both HDL structure and function. CsA effect

on cell capacity to promote cholesterol efflux could be related to

the drug interference with ATP Binding Cassette A1 or apoE. The

impact of CsA on ATP Binding Cassette A1, a lipid transporter

associated with atheroprotective activity in relation to the role in

HDL biogenesis [28], in the promotion of cholesterol efflux from

macrophages [29] and in macrophage RCT [30], was recently

reported [14]. However, our results indicate that CsA effect on

macrophage RCT in our experimental conditions does not involve

this protein. In fact, when we tested CsA effect in cultured

cholesterol-enriched macrophage foam cells, that express signifi-

cant levels of ATP Binding Cassette A1 [31], the drug did not

show to affect cholesterol efflux. In this experiment we choose to

treat cells with CsA for a long incubation time in order to better

reproduce the in vivo RCT experiment, in which cells are

continuously exposed to either CsA and plasma. Finally, the lack

of CsA impact on HDL plasma levels definitely rules out the drug

interference with ATP Binding Cassette A1 in vivo. Recently, we

demonstrated that apoE expressed in macrophages is essential for

functional macrophage RCT efficiency in vivo by promoting cell

cholesterol efflux [32], whereas Kritharides’s group demonstrated

that CsA reduced apoE secretion from cultured macrophages [13].

However, we could rule out that the observed inhibition of RCT is

related to CsA-mediated reduction of apoE secretion from

macrophages. In fact, the drug did not influence cholesterol efflux

in cultured macrophages and similarly impaired the process

in vivo both when mice were injected with apoE expressing

(MPM)- and not expressing (J774)-macrophages.

In conclusion, this study provided the evidence that CsA inhibits

the antiatherosclerotic process of macrophage RCT in vivo. We

propose that this effect is associated with the inhibition of CYP7A-

mediated elimination of cholesterol from the body. The current

work suggests that the increase of cardiovascular risk in CsA-

treated subjects may be associated, at least in part, with the

impairment of macrophage RCT.

Supporting Information

Figure S1 CsA treatment effect on plasma lipid levels in mice

receiving J774. C57BL/6 mice were treated with CsA 50 mg/kg/

d (black bar) or vehicle (white bar) for 14 days. The day before the

sacrifice, mice were intraperitoneally injected with [3H]-cholester-

ol-loaded J774, in order to quantify macrophage RCT in vivo.

Total cholesterol (TC), HDL-cholesterol (HDL-C) and triglycer-

ides (TG) were measured by an enzymatic assay on plasma

samples, as described in the Methods section. Non HDL-

cholesterol (non HDL-C) is calculated as the difference between

TC and HDL-C. Data are expressed as mean 6 SD (values are

mean of 5 animals).

(TIF)

Figure S2 CsA effect on cholesterol efflux from Caco-2 cells.

Caco-2 cells were cultured on membranes transwell plates for 2

weeks. After the differentiation period, cells were labeled with

[3H]-cholesterol 2 mCi/ml for 24 h and successively equilibrated

in presence or absence of T0901317 10 mM for 24 h. A:

Cholesterol efflux was promoted to cell medium for 24 h. CsA

5 mM was added during the equilibration (eq.) or the efflux (eff.)

period. B: Cholesterol efflux was promoted in presence or absence

of taurocholate (TA)-containing micelles (5 mM) and CsA (5 mM),

for 24 h. [3H]-cholesterol released into the apical medium was

measured by liquid scintillation counting. Efflux is expressed as

cpm in medium/cpm time zero x100 (mean of triplicates 6 SD).

A: ## p,0.01 vs untreated cells; *p,0.05 vs T0901317-treated

cells. B: *p,0.05, **p,0.01, *** p,0.0001 vs untreated cells;

#p,0.05, ## p,0.01 vs T0901317-treated cells.

(TIF)

Table S1 Effect of 14 day treatment with CsA on body weight in

mice injected with MPM. C57BL/6 mice were treated with CsA

as described in Figure 1. Body weight was measured at baseline,

on day 7 and on day 14 of the pharmacological treatment. Data

are presented as mean 6 SD (n= 7).

(DOCX)

Table S2 Effect of 14 day treatment with CsA on liver weight in

mice injected with MPM. C57BL/6 mice were treated with CsA

as described in Figure 1. On day 14 of the pharmacological

treatment, mice were sacrificed and liver was collected after

Figure 7. CsA treatment effect on plasma levels of beta-
sitosterol. C57BL/6 mice were treated with CsA as described in
Figure 1. The plasma content of beta-sitosterol was measured by gas
chromatography, as described in the Method section. Data are
presented as means 6 SD (n = 6).
doi:10.1371/journal.pone.0071572.g007
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perfusion with a saline solution. Data are presented as mean 6 SD

of the wet weight. (n = 7).

(DOCX)

Table S3 Effect of 14 day treatment with CsA on body weight in

mice injected with J774. C57BL/6 mice were treated with CsA as

described in Figure 1. Body weight was measured at baseline, on

day 7 and on day 14 of the pharmacological treatment. Data are

presented as mean 6 SD (n= 5).

(DOCX)

Table S4 Effect of 14 day treatment with CsA on liver weight in

mice injected with J774. C57BL/6 mice were treated with CsA as

described in Figure 1. Body weight was measured at baseline, on

day 7 and on day 14 of the pharmacological treatment. Data are

presented as mean 6 SD (n= 5).

(DOCX)

File S1.

(DOCX)
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