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Abstract

Although electrocardiogram (ECG) fluctuates over time and physical activity, some of its intrinsic measurements serve well
as biometric features. Considering its constant availability and difficulty in being faked, the ECG signal is becoming a
promising factor for biometric authentication. The majority of the currently available algorithms only work well on healthy
participants. A novel normalization and interpolation algorithm is proposed to convert an ECG signal into multiple template
cycles, which are comparable between any two ECGs, no matter the sampling rates or health status. The overall accuracies
reach 100% and 90.11% for healthy participants and cardiovascular disease (CVD) patients, respectively.
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Introduction

Biometric features have been widely used in multiple identity

authentication areas, e.g. access control system and communication

authentication, etc [1–5]. The biometric features used for

authentication include fingerprint, face and voice [6]. It was

demonstrated that the integration of multiple biometric features

could significantly increase the authentication accuracy [7,8].

However, these individualized features have the possibility to be

duplicated or faked to bypass the authentication system. So other

more secure individualized features are sought for the biometric

authentication problem. The electrocardiogram (ECG) signal is

individual-specific in the sense of amplitude, peak and other

characteristics, and difficult to be faked [9,10]. ECG also

represents a versatile factor that can derive a number of personal

health measurements, e.g. dynamic heart rate variation, and acts as

the diagnostic basis of various cardiovascular diseases (CVDs), e.g.

arrhythmia [11,12]. So it is becoming one of the major new

features for the biometric authentication problem [1,6,9,10,13].

The major problem of ECG-based biometric applications is the

dynamic temporal changes of ECG signals due to the physiological

activities of the human subject. The majority of currently available

algorithms extract measurements between the peaks and valleys of

ECG signals. Generally, ECG based biometric algorithms can be

categorized as fiducial point dependent or independent, according

to whether they detect the ECG sensor’s physical position on the

subject body [14,15]. The ECG-based biometric authentication

(EBA) problem for healthy persons can be satisfyingly solved with

accuracy. = 95%, but a much lower accuracy may be achieved

for CVD patients. A discrete wavelet transformation algorithm

achieved accuracies of 100% and 81% on 35 healthy persons and

10 arrhythmia samples, respectively [16]. The discrete cosine

transformation based algorithm achieved accuracies of 84.61%

and 100% on 13 healthy samples on the PTB and MIT-BIH

databases, respectively [10]. Another recent study applied the

cross correlation algorithm on the EBA problem, and achieved

80%, 70% and 80% in accuracies on the chosen 10 arrhythmia

samples from the databases AFPDB, SVDB and TWADB,

respectively [17]. Furthermore, most of the current algorithms

only work well when the training and testing data were detected by

the same experiment [18].

With the increased algorithm accuracy of the EBA problem, this

technique is becoming more of interest to industries in biomedical

engineering and mobile personal identification. Min et al filed

patents KR2006082677-A and KR750662-B1 in 2007 to recognize

different persons based on the limb lead III ECG signal [19]. Sun

et al proposed a biometrics information system to store and measure

biomedical signals including electrocardiograms in patent

KR2011099197-A in 2011 [20]. And Apple Inc recently also filed

a patent (20100113950) for an ECG-based biometrics application

[21].

We propose in this study a novel normalization and interpo-

lation algorithm to transform the ECG signal of any person

collected at any time into a comparable template ECG cycle

(TEC). The algorithm features a high similarity among the TECs

of the same person, either healthy or with cardiovascular disease,
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but a much lower similarity between two TECs of different

persons. This study also represents one of the most comprehensive

investigations of the EBA (ECG-based biometric authentication)

problem. A real-world EBA problem with no prior knowledge of

sample health status was also investigated in a mixture of healthy

persons and CVD patients. A consistently high accuracy suggests

that our algorithm could greatly facilitate the EBA model in

clinical cases. Finally we discussed two potential future directions

for improving our algorithm.

The major contributions of this study include a description of

the first biometric algorithm based on direct comparison of the

ECG curve itself, and the consistently high accuracies of this

algorithm on different data sources, which is a major problem

faced by the other algorithms.

Materials and Methods

Data sources and preprocessing
The ECG data of 52 healthy persons were downloaded from the

PTB database in the PhysioNet Diagnostic ECG Database [22].

Abnormal ECG data of 105 persons (including 14 healthy persons

and 91 patients with cardiovascular diseases (CVDs)) were

downloaded from the QT database in PhysioNet [23]. Database

QT mainly consists of ECG signals with varied QT or ST

intervals, including arrhythmia [23,24]. Both datasets were

downloaded on March 5, 2012. The list of sample IDs used in

this study can be found in Table S1. The ECG signals were de-

noised using a 0.5–45 Hz Butterworth Band-Pass (BBP) filter [25].

Given an ECG signal E, we detect the R waves using the So-

Chan method [13], and split E into ECG cycles between two

neighboring R waves. Although some studies generated the ECG

cycles with fixed-length flanking regions of R waves, it’s possible to

Figure 1. The ECG curves of the samples s0306lre and sel100 m, respectively. (a) The original curve and (b) the 10 representing training
and testing ECG cycles of s0306lre from the PTB database. And the same datasets (c) and (d) for sel100 m from the QT database. For (a) and (c), the
horizontal axis is in seconds, and the vertical axis is in mV.
doi:10.1371/journal.pone.0071523.g001
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include multiple neighboring R waves in one cycle, due to the

varying heart rates. Considering the high accuracy in detecting R

waves, this study considers the region between two R peaks as one

ECG cycle.

ECG cycle interpolation (ECI) algorithm
Two normalized ECG cycles are not comparable due to the

following two reasons. Firstly, the two cycles may be detected using

different sampling frequencies, which make them have different

numbers of data points. Secondly, even with the same sampling

frequency or within one ECG signal, the two cycles may have

different lengths due to various reasons, e.g. running or

arrhythmia. This also makes the two cycles have different numbers

of data points.

We interpolate the normalized ECG cycle by fitting it with a

cubic spline curve between any pair of neighboring data points , as

similar in [9]. Given the normalized ECG cycle with

X~½x0,x1, � � � ,xn�(x0~0, and xn~1 ) and Y~½y0,y1, � � � ,yn�),
the cubic spline curve S(x) is defined as:

S(x)~

S0(x), x0ƒxƒx1,

S1(x), x1ƒxƒx2,

..

.
..
.

Sn{1(x), xn{1ƒxƒxn,

8>>>>><
>>>>>:

ð1Þ

where Si(x)~Aix
3zBix

2zCixzDi(i[½0 : 1 : n�), S(xi)~yi

(i[½0 : 1 : n�), lim
x?x{

i

S(x)~ lim
x?xz

i

S(x), lim
x?x{

i

S’(x)~ lim
x?xz

i

S’(x),

and lim
x?x{

i

S’’(x)~ lim
x?xz

i

S’’(x) where i[½1 : 1 : n{1�.

The interpolation interval is X~½X0,X1, � � � ,Xn�~½0 : 0:01 : 1�,
and the interpolated ECG cycle is Yi~S(Xi), where

Xi[½0 : 0:01 : 1�. In this study, the difference between two ECG

cycles is measured by the Euclidean Distance (EucDist) [26] of their

normalized and interpolated vectors. The Euclidean Distance

between two vectors A~½a0,a1, � � � ,am�) and B~½b0,b1, � � � ,bm�) is

defined to be:

Figure 2. The heatmaps of TEC matching of 52 healthy persons. (a) The original heatmap and (b) the binary heatmap.
doi:10.1371/journal.pone.0071523.g002

Figure 3. The heatmaps of TEC matching of 91 CVD patients. (a) The original heatmap and (b) the binary heatmap.
doi:10.1371/journal.pone.0071523.g003
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EucDist(A,B)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a0{b0)2z(a1{b1)2z � � �z(am{bm)2

q
,

where the smaller the EucDist between two ECG cycles is, the

more similar the two ECG cycles are to each other.

ECG cycle normalization (ECN) algorithm
Given an ECG cycle EC~½v0,v1, � � � ,vn�) with the sampling

times T~½t0,t1, � � � ,tn�), let the minimum and maximum voltages

(in mV) of vi(i[½0 : 1 : n�) be vmin and vmax, respectively. EC is

linearly scaled by the following formula:

yi~
n{i

n
|

vi{vmin

v0{vmin

z
i

n
|

vi{vmin

v0{vmin

, where i[½0 : 1 : n� ð2Þ

The sampling times are also linearly scaled to be between 0 and

1, as follows:

xi~
ti{t0

tn{t0
, where i[½0 : 1 : n� ð3Þ

ECG cycle normalization and interpolation algorithm
(ECOIL)

ECG Cycle Normalization and Interpolation Algorithm

(ECOIL)

Input: an ECG signal E

Output: an ECG cycle M with its data points sampled at

½0 : 0:01 : 1� and the curve within ½0,1�|½0,1�.

Procedure:

1. Denoise E with the BBP filter;

2. Detect the R waves in E;

3. Split E into ECG cycles between neighboring R waves;

4. Interpolate the ECG cycles using the algorithm ECI;

5. Normalize the ECG cycles using the algorithm ECN;

6. Cluster the cycles into two clusters based on the pair-wise

Euclidean distances, using the k-means clustering algorithm;

7. Randomly choose 10 cycles Cj(j[½0 : 1 : 10�) from the larger

cluster;

8. For each Xi[½0 : 0:01 : 1�, calculate the medium value

M(Xi)~Medium(Cj(Xi)), w h e r e Xi[½0 : 0:01 : 1� a n d

j[½0 : 1 : 10�.
9. Output the ECG cycle M~M(Xi), where Xi[½0 : 0:01 : 1�.

We derive a template ECG cycle (TEC) from an ECG signal by

the above procedure. The random choice of 10 representative

TECs is based on the observation that the majority of the

generated TECs are highly individual-specific, as shown in

Figure 1 (b) and (d). The classification performance of the 10-

TEC based biometric algorithm also suggests that the choice of a

limited number of TECs is both consistently accurate and

calculation efficient, as shown in Figures 2, 3 and 4.

Performance evaluation strategies
We investigated the ECOIL algorithm on solving the biometric

authentication problem, which seeks a differentiating measure-

ment of two biometric data, so that the data from the same person

are more similar to each other than to those from different ones.

We measured the difference between two ECG signals by the

Euclidean Distance (EucDist) of their TECs. The function

EucDist is defined in the above section of ECG Cycle Interpolation

(ECI) algorithm. The larger the EucDist(TEC1,TEC2) is, the less

similar the two ECG signals are to each other.

An ECG signal was split into two halves with equal lengths, and

the training and testing TEC data of this ECG signal were

generated on the first minute of each of the two halves. There were

denoted as fTEC(k) and sTEC(k), respectively , where

k[½1 : 1 : K�. Some ECG data in the PTB database are shorter

than two minutes, and the training and testing TECs were

generated from the full first and second halves of the data. Next we

built the template library LibTEC~ fTEC(k)f g, where

k[½1 : 1 : K�. The identity of a testing data sTEC(a) is defined as:

Figure 4. The heatmaps of TEC matching of 52+14 = 66 healthy persons and 91 CVD patients. (a) The original heatmap and (b) the binary
heatmap.
doi:10.1371/journal.pone.0071523.g004
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P(a)~b, if EucDist(sTEC(a), LbTEC(b))

~ min
1ƒkƒK

EucDist(sTEC(a), bTEC(k))
ð4Þ

The numbers of both training and testing datasets are K , and

the number of persons with correct identity predictions is TP. The

testing dataset can be regarded as an independent test set, because

the training and testing data of the same persons were collected at

different times. The algorithm performance was evaluated by the

accuracy Acc~TP=K . The ECG-based biometric authentication

(EBA) problem consists of the training dataset LibTEC~

fTEC(k)f g, and testing dataset TestTEC~ sTEC(k)f g. A

prediction of sTEC(i)~fTEC(j) is correct, only if both TECs

come from the same person, i.e. the label of host

Person(sTEC(i))~Person(fTEC(j)). The label of each person

represents a class, and there are 52 and 105 classes for the EBA

problem on the PTB and QT databases, respectively. Since

classification measurements, sensitivity and specificity, can only be

calculated on a binary classification problem, only recognition

accuracy is investigated in this study.

Due to the fact that the ECG-based biometric authentication

problem determines which sample in the training dataset a query

signal belongs to, we did not train on one dataset, and test on

another, with no overlapping samples between the two datasets.

Results and Discussion

Self similarity of the processed ECG cycles
We investigated the self similarity of the ECG cycles before and

after the processing of the ECN and ECI algorithms, using the

samples s0306lre and sel100 m from the PTB and QT databases,

respectively. For sample s0306lre, the voltage of the ECG cycle

baselines varies with sampling time, as shown in Figure 1 (a). The

10 representative training ECG cycles after the ECN and ECI

algorithms perfectly fit each other, as in the top part of Figure 1

(b). The 10 representative testing ECG cycles fit with each other,

Figure 5. The ECG signal and processed ECG cycles of two samples. (a)–(b) sel39 m, and (c)–(d) sele0136 m. The ECG cycles in the first
10 seconds of the two signals were plotted, to make a clearer curve of the two signals. For (a) and (c), the horizontal axis is in seconds, and the
vertical axis is in mV.
doi:10.1371/journal.pone.0071523.g005
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too, as in the bottom part of Figure 1 (b). And there is also a very

high similarity between the 10 training and 10 testing ECG cycles.

As for QT sample sel100 m, the voltage of the QRS waves varies

with sampling time, but similar consistency can still be observed in

the ECG cycles processed by the ECN and ECI algorithms, as

shown in Figure 1 (c) and (d). The same pattern holds for all the

other samples in the PTB and QT databases.

ECG-based biometric authentication of healthy persons
Firstly, we studied the similarities of the TECs from the testing

dataset to the training dataset of 52 healthy persons in the PTB

database. As shown in Figure 2, the colors blue and red represent

the smallest and largest EucDist between two TECs. The heatmap

shows a consistently matching TEC from the testing dataset to that

of the same person in the training dataset. To make the illustration

clearer, we changed all the values but the smallest one in each

column to 1, and the smallest value in each column to 0, which

makes the heatmap have two colors, called a binary heatmap, as

shown in Figure 2 (b). Figure 2 (b) clearly shows the accuracy is

100% for the PTB database using the ECG signals of 52 healthy

persons.

ECG-based biometric authentication of CVD patients
We further evaluated the similarities of the TECs from the

testing dataset to the training dataset of 91 CVD patients in the

QT database. As shown in Figure 3 (a), there is a consistent self

similarity between the training and testing TECs of the same

patient. The accuracy 90.11% (,82/91) suggests that our

algorithm outperforms the others on the CVD patients by at least

10%, as shown in the binary heatmap in Figure 3 (b) [16,17]. The

incorrect predictions for some samples could be due to the

significant shifting of P and T waves between different cycles of

ECGs, as shown in Figure 5 (a)–(d).

Combined performance of both healthy persons and
CVD patients

We also produced one dataset from the ECGs of all the 52

healthy persons in the PTB database, and 14 healthy persons and

91 CVD patients in the QT database. Since the two databases, i.e.

PTB [22] and QT [23], were independently collected and curated,

we believe that this dataset of mixed samples well represents a

practical ECG-based biometric authentication problem. Next, we

investigated the biometric authentication accuracy of the 157

persons, with no prior knowledge about the diseases of the persons

for the algorithm. Only the same 9 CVD patients received

incorrect predictions, and our algorithm produced a satisfying

accuracy of 94.27% (,(157–9)/157). Hence our algorithm works

reasonably well on independently collected datasets, and does not

produce confused results among different datasets.

Longer signal duration increases authentication accuracy
We further investigated whether a shorter ECG signal duration

produces a reasonable biometric authentication accuracy, based

on the PTB database. As illustrated in Figure 6, when the ECG

signal duration is 5, 10 and 20 seconds, the numbers of incorrect

authentication cases are 3, 2 and 1, respectively. Overall

authentication accuracies are 94.23%, 96.15% and 98.07%,

respectively. The data in Figures 2 and 6 suggests that a longer

ECG signal detection time leads to better ECG-based biometric

authentication accuracy. Considering that the rest ECG signal is

usually taken for a period of 10 seconds, e.g. in an office visit

during an annual physical examination, the overall accuracy of

96.15% is acceptable.

Conclusions

Our experimental data shows that the TECs of the same

persons are highly similar to each other, irrespective of ECG

Figure 6. The heatmaps of TEC matching of 52 healthy persons in PTB database. (a) The original heatmap with 5 s and (b) binary heatmap
with 5 s. (c) The original heatmap with 10 s and (d) binary heatmap with 10 s. (e) The original heatmap with 20 s and (f) binary heatmap with 20 s.
doi:10.1371/journal.pone.0071523.g006
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variations induced by the factors such as health status and the

ECG electrode placement. The TECs of different persons also

show significant differences to each other, compared to self

similarity. This feature merits the TEC a good biometric signal for

the purpose of authentication. Our algorithm works very well on

both datasets of the same health status, and the real-world dataset

with no prior knowledge of the health status, by comprehensive

evaluations in this study.

Further exploration of our algorithm in a larger and more

genetically diversified population [27,28] will be conducted. The

algorithm will also be revised to accommodate the 9 CVD patient

samples in Figures 4 and 5 and the 3 healthy individuals in Figure 6

with incorrect predictions in this study.

Supplementary materials
The algorithm source code and the supplementary materials

can be found in the Supplements section of http://www.

HealthInformaticsLab.org/supp/. The ECG data may be ob-

tained from the MIT PhysioNet database.

Supporting Information

Table S1 Sample IDs used in this study.

(PDF)
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