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Abstract

The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases:
induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the brain
of P. annectens during the induction (6 days) and maintenance (6 months) phases of aestivation as compared with the
freshwater control using suppression subtractive hybridization. During the induction phase of aestivation, the mRNA
expression of prolactin (prl) and growth hormone were up-regulated in the brain of P. annectens, which indicate for the first
time the possible induction role of these two hormones in aestivation. Also, the up-regulation of mRNA expression of
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein c polypeptide and the down-regulation of
phosphatidylethanolamine binding protein, suggest that there could be a reduction in biological and neuronal activities in
the brain. The mRNA expression of cold inducible RNA-binding protein and glucose regulated protein 58 were also up-
regulated in the brain, probably to enhance their cytoprotective effects. Furthermore, the down-regulation of prothymosin a
expression suggests that there could be a suppression of transcription and cell proliferation in preparation for the
maintenance phase. In general, the induction phase appeared to be characterized by reduction in glycolytic capacity and
metabolic activity, suppression of protein synthesis and degradation, and an increase in defense against ammonia toxicity.
In contrast, there was a down-regulation in the mRNA expression of prl in the brain of P. annectens during the maintenance
phase of aestivation. In addition, there could be an increase in oxidative defense capacity, and up-regulation of
transcription, translation, and glycolytic capacities in preparation for arousal. Overall, our results signify the importance of
reconstruction of protein structures and regulation of energy expenditure during the induction phase, and the needs to
suppress protein degradation and conserve metabolic fuel stores during the maintenance phase of aestivation.
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Introduction

Lungfishes are an archaic group of sarcopterygian fishes

characterized by the possession of a lung opening off the ventral

side of the esophagus. Sarcopterygians are recognized as ‘‘living

fossils’’ whose evolutionary history dates back to the early

Devonian period, some 390 million years ago. They hold an

important position in the evolutionary tree with respect to water-

land transition and their close phylogenetic relationships with

tetrapods. There are six species of extant lungfishes, four of which

(Protopterus aethiopicus, Protopterus amphibius, Protopterus annectens and

Protopterus dolloi) can be found in Africa. African lungfishes are

obligatory air-breathers; they typically inhabit fringing weedy

areas of lakes and rivers where dissolved oxygen levels are low,

daytime temperatures are high, and seasonal drying is common.

During extended periods of drought, they enter into aestivation in

mud cocoons [1,2]. Aestivation involves corporal torpor at high

environmental temperature with absolutely no intake of food and

water for an extended period. Among the four African species,

P. annectens is known to be the most dependent on aestivation; it

normally aestivates for periods of 7–8 months in the wild, and a

captive lungfish has emerged from its cocoon after periods of up to

seven years [3,4,5,6]. Recently, it has been reported that African

lungfishes can be induced to aestivate in completely dried mucus

cocoon in plastic boxes or in mud cocoon in the laboratory

[7,8,9,10,11,12].

There are three phases of aestivation: induction, maintenance

and arousal [1]. As water dries up, the fish hyperventilates and

secretes large amounts of mucus which turns into a dry mucus

cocoon within 6–8 days. This period constitutes the induction

phase of aestivation, during which, the African lungfish has to

detect environmental cues and turn them into some sort of internal

signals that would instill the necessary changes at the behavioral,

structural, physiological and biochemical levels in preparation for

the maintenance phase of aestivation. After entering the mainte-

nance phase, the fish has to prevent cell death and degradation of

biological structures. At the same time, it has to suppress the

utilization of internal energy stores, and to sustain a slow rate of
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waste production in order to minimize pollution of the internal

environment. Upon the return of favorable environmental

conditions, the fish must arouse from aestivation, excrete the

accumulated waste products, and feed for repair and growth. It

can therefore be deduced that metabolic changes would vary in

different phases of aestivation.

However, past research focused predominantly on the mainte-

nance phase of aestivation, and there is a dearth of knowledge

concerning molecular, biochemical and physiological mechanisms

that are called into play during the induction phase. Only until

very recently, did Loong et al. [11,12] report on the differential

gene expression, and the up-regulation of mRNA expression of

carbamoyl phosphate synthetase III and ornithine-urea cycle

capacity, in the liver of P. annectens during the induction phase (the

first 6 days) of aestivation in air. More importantly, there are very

few recent studies [13,14] on the brain of aestivating African

lungfish in spite of its possible role in coordinating a whole-body

aestivation-specific response during the induction phase of

aestivation. Therefore, this study was undertaken to examine,

using suppression subtractive hybridization (SSH) polymerase

chain reaction (PCR), the up- and down-regulation of gene

expression in the brain of P. annectens during the induction phase (6

days) or the prolonged maintenance phase (6 months) of

aestivation in air with reference to the freshwater control. It was

hoped that results obtained would shed light on genes that were

essential to the initiation, coordination and maintenance of the

whole-body aestivation, and genes that were involved in the

reduction in metabolism and the protection of biological structures

in the brain of aestivating P. annectens.

Materials and Methods

Collection and Maintenance of Fish
Protopterus annectens (80–120 g body mass) were imported from

Central Africa through a local fish farm in Singapore. They were

maintained in plastic aquaria filled with dechlorinated freshwater

at pH 7.0 and at 25uC in the laboratory. Water was changed daily.

No attempt was made to separate the sexes. Fish were acclimated

to laboratory conditions for at least 1 month before experimen-

tation. During the adaptation period, fish were fed with frozen fish

meat and food was withheld 96 h prior to experiments. Approval

to undertake this study was obtained from the Institutional Animal

Care and Use Committee of the National University of Singapore

(IACUC 035/09).

Experimental Conditions and Tissue Sampling
Protopterus annectens were induced to aestivate at 27–29uC and

85–90% humidity individually in plastic tanks

(L29 cm6W19 cm6H17.5 cm) containing 15 ml of dechlorinated

tap water (adjusted to 0.3% with seawater) following the

procedure of Chew et al. [7]. During the induction phase of

aestivation, the experimental fish would secrete plenty of mucus

during the first few days, and the mucus would slowly dry up

between day 5 and day 7 to form a mucus cocoon. Aestivation was

considered to begin when the fish was fully encased in the cocoon

and displayed no locomotor activities. Protopterus annectens can be

maintained in aestivation for a long period of time and this was

regarded as the maintenance phase of aestivation.

Fish maintained in freshwater served as controls. Control fish

were killed with an overdose of neutralized MS222 (0.2%)

followed with a blow to the head. Aestivating fish were killed on

day 6 (end of induction phase or beginning of maintenance phase)

or day 186 (6 months; prolonged maintenance phase) with a blow

to the head. The brain was quickly excised and frozen in liquid

nitrogen. The frozen samples were kept at 280uC until analysis.

Total RNA and Poly (A) mRNA Extraction
Frozen tissues were homogenized using a polytron homogenizer

(Kinematica AG, Lucerne, Switzerland) in 400 ml of chaotropic

buffer (4.5 M guanidine thiocyanate, 2% N-lauroylsarcosine,

50 mM EDTA (pH 8.0), 25 mM Tris-HCl (pH 7.5), 0.1 M

b-mercaptoethanol, 0.2% antifoam A). Total RNA was extracted

from the brain, using the chaotropic extraction protocol described

by Whitehead and Crawford [15]. The RNA pellet obtained was

rinsed twice with 500 ml of 70% ethanol, and further purified using

the Qiagen RNeasy Mini Kit (Qiagen Inc., Valencia, CA, USA).

The concentration and purity of the purified RNA were

determined using the NanoDrop ND-1000 spectrophotometer

(Thermo Fisher Scientific Inc., Wilmington, DE, USA). The RNA

quality was determined by visualising the presence of the 18S and

28S ribosomal RNA bands using the Bio-Rad Universal Hood II

gel documentation system (Bio-Rad, Hercules, CA, USA) after

carrying out electrophoresis of 1 mg of RNA on 1% (w/v) agarose

gel in TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0)

with nucleic acid staining dye GelRed (1:20000, Biotium Inc.,

Hayward, CA, USA) at 100 V for 30 min. The presence of sharp

28S and 18S bands in the proportion of about 2:1 indicate the

integrity of the total RNA.

Poly (A) mRNA was extracted from 200 mg of total RNA using

the Oligotek mRNA kit (Qiagen Inc.). The RNA sample (200 mg)

was mixed with 15 ml of Oligotex suspension (resin) and was

heated at 70uC for 3 min and then cooled at 25uC for 10 min.

The Oligotex:mRNA complex was spun at 14,0006g and the

pellet obtained was resuspended in 400 ml of Buffer OW2 (Qiagen

Inc.) and then passed through a small spin column by centrifuging

at 14,0006g for 1 min. The column was washed with another

400 ml of Buffer OW2. The resin in the column was resuspended

with 50 ml of hot (70uC) Buffer OEB (Qiagen Inc.) and eluted by

centrifugation at 14,0006g for 1 min to obtain the Poly (A) RNA.

Another 50 ml of hot (70uC) Buffer OEB was added to the column

and the process was repeated to ensure maximal Poly (A) mRNA

yield.

Construction of SSH Libraries
Two sets of forward (up-regulated genes) and reverse (down-

regulated genes) SSH libraries for the brain were generated using

the PCR-SelectTM cDNA subtraction kit (Clontech Laboratories,

Inc., Mountain View, CA, USA); one set for fish aestivated for 6

days in air (induction phase) with reference to the freshwater

control, and the other set for fish aestivated for 6 months in air

(prolonged maintenance phase) with reference to the freshwater

control. Two micrograms of poly (A) mRNA from each condition

was used for cDNA synthesis. After the first and second strand

synthesis, the double stranded cDNA from both groups were

digested with Rsa I. A portion of the digested cDNA was ligated

with either Adapter 1 or Adaptor 2R, and the rest was saved for

subsequent usage as the driver for hybridization. The forward

library was generated from the hybridization between adapter-

ligated cDNA obtained from fish that had undergone 6 days or 6

months of aestivation in air (tester) and Rsa I-digested cDNA from

the control fish kept in freshwater (driver). The reverse library was

made the same way, except that the adapter-ligated cDNA from

the control in freshwater served as the tester while the Rsa

I-digested cDNA from fish aestivated for 6 days or 6 months of

aestivation in air acted as the driver. The driver cDNA was added

in excess to remove common cDNA by hybrid selection, leaving

over-expressed and novel tester cDNAs to be recovered and
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cloned. The PCR amplification of the differentially expressed

cDNAs was performed using the Advantage cDNA polymerase

mix (Clontech Laboratories, Inc.) and 9902 Applied Biosystems

PCR thermal cycler (Life Technologies Corporation, Carlsbad,

CA, USA). The primary and secondary PCR amplification of

these reciprocal subtractions of cDNA from the control and

aestivated fish produced 1 forward and 1 reverse SSH libraries

enriched in differentially expressed transcripts.

Differentially expressed cDNAs were cloned using pGEMH-T

easy vector system kit (Promega Corporation, Madison, WI, USA),

transformed into chemically competent JM109 Escherichia coli

(Promega Corporation), and plated onto Luria-Bertani (LB) agar

with ampicillin, 5-bromo-4-chloro-3-indolyl-b-D-galactopyrano-

side (X-gal) and isopropyl b-D-thiogalactopyranoside (IPTG).

Selected white colonies were grown overnight in LB broth with

ampicillin. The plasmids were extracted using the resin-based

plasmid miniprep kit (Axygen Biosciences, Union City, CA, USA).

The plasmids were quantified by the NanoDrop ND-1000

spectrophotometer. Approximately 80–100 ng of plasmid DNA

was used in BigDyeH Terminator v3.1 Cycle Sequencing Kit (Life

Technologies Corporation) with 2 mM T7 primers. Excess

fluorescent nucleotides and salts were removed from the samples

by ethanol precipitation. The dried samples were resuspended in

Hi-Di Formamide (Life Technologies Corporation) before loading

to the PrismTM 3130XL sequencer (Life Technologies Corpora-

tion). A total of 500 clones for each forward and reverse library

were selected for sequencing.

Sequence output was exported as text and edited manually to

remove vector sequences using BioEdit Sequence Alignment

Editor software version 7.0.9 [16]. BLAST searches were

performed using the tBLASTx algorithm [17] and default search

conditions. Proteins were considered significant when the E value

was ,1E-04. The annotated sequences were grouped based on

Gene Ontology classification. The zebrafish nomenclature system

(see https://wiki.zfin.org/display/general/

ZFIN+Zebrafish+Nomenclature+Guidelines) for genes and pro-

teins of fish origin and the human nomenclature (see http://

www.genenames.org/guidelines.html) for genes and proteins of

mammalian origin were adopted in this paper.

Relative Quantitative Real-time PCR (qPCR)
In order to validate the changes obtained in the SSH studies,

seven genes were selected for the determination of mRNA

expression using quantitative real-time PCR (qPCR). These

include pyruvate kinase (pk), fumarate hydratase (fh), glutamine synthetase

(gs), phosphofructokinase (pfk), prolactin (prl), Na+/K+-ATPase a2 (nkaa2)

and ferritin heavy chain (fth). Prior to first strand cDNA synthesis,

RNA from the brain of fish kept in freshwater, aestivated for 6

days in air or aestivated for 6 months in air were treated separately

with Deoxyribonuclease I (Qiagen Inc.) to remove any contam-

inating genomic DNA. First strand cDNA was synthesized from

1 mg of total RNA using random hexamer primer and the

RevertAidTM first stand cDNA synthesis kit, following the

manufacturer’s instruction (Thermo Fisher Scientific Inc). The

mRNA expression of selected genes were quantified using a

StepOnePlusTM Real-Time PCR System (Life Technologies

Corporation). Each PCR reaction contained 5 ml of 2x Fast

SYBR H Green Master Mix (Life Technologies Corporation), a

certain aliquot of gene-specific primers (listed in Table 1) and 0.1–

2 ng of cDNA in a total volume of 10 ml. Samples were run in

triplicate. qPCR reactions were performed with the following

cycling conditions: 95uC for 20 s (1 cycle), followed by 40 cycles of

95uC for 3 s and 60uC of 30 s. Data was collected at each

elongation step. Each run was followed by a melt curve analysis by

increasing the temperature from 60uC to 95uC at 0.3uC increment

to confirm the presence of only a single PCR product. In addition,

random PCR products were electrophoresed in a 1.8% agarose gel

to verify that only one band was present. All the data were

normalized to the abundance of b-actin mRNA. The amplification

efficiencies for b-actin and all selected genes were between 90–

100%. The subsequent application of the 22DDCT calculation for

relative quantification was validated by confirming that the

variation between the amplification efficiencies of the target and

reference gene through a 100-fold dilution remained relatively

constant [18]. The mean fold-change values were transformed into

logarithmic values (log2) to enable valid statistical analysis.

Statistical Analysis
Results for qPCR were presented as means 6 standard errors of

the mean (S.E.M.). Student’s t-test was used to evaluate the

difference between means. Differences with P,0.05 were regarded

as statistically significant.

Results

Induction Phase (6 days) of Aestivation
Two subtracted libraries, forward (Table 2) and reverse

(Table 3), were constructed to determine the genes that were

up- and down-regulated, respectively, in the brain of P. annectens

which had undergone 6 days of aestivation (induction phase) in air.

A total of 130 genes were identified from these subtraction

libraries. Interestingly, many more genes were up-regulated (80

genes; Table 2) than down-regulated (50 genes; Table 3) in the

brain of P. annectens after 6 days of aestivation. There were 570

unidentified sequences which could be genes that have yet to be

characterized in P. annectens. Tubulin alpha 4a (tuba4a) and some

ribosomal protein mRNAs appeared in both forward and reverse

Table 1. Primers used for quantitative real-time PCR on
fumarate hydratase (fh), ferritin heavy chain (fth), glutamine
synthetase (gs), Na+/K+-ATPase a2 (nkaa2), phosphofructokinase
(pfk), pyruvate kinase (pk) and prolactin (prl), with b-actin as
the reference gene, from the brain of Protopterus annectens.

Gene Primer sequence (59 to 39)

fh (JZ347458) Forward (59-TAGTAACAGCACTCAACCCAC-39)

Reverse (59-GCTTGACCCACTGATCAAACTG-39)

fth (JZ347374) Forward (59-CTCAGGTCCGCCAGAACTA-39)

Reverse (59-GCCACATCATCTCGGTCAA-39)

gs (JZ347462) Forward (59-GTGACATGTACCTCATCCCA-39)

Reverse (59-TACTCCTGCTCCATGCCAAACCA-39)

nkaa2 (JZ347474) Forward (59-AGACATTGCAGCACGTCTC-39)

Reverse (59-CATTCATTTCCTTCAAATCCGAA-39)

pfk (JZ347479) Forward (59-TTTGCCAACACCGTAGATACA-39)

Reverse (59-GCACAAAGTCAGTCTCGTCT-39)

pk (JZ347493) Forward (59-GCGTGGTGACTTGGGTATAG-39)

Reverse (59-CGAGTTGGACGTGGCTTT-39)

prl (JZ347487) Forward (59-CAACTGTCATACCTCATCACTG-39)

Reverse (59-CTTCATTACTAGCCGCAAGAG-39)

b-actin Forward (59-CATACTGTGCCCATTTATGAAGGT-39)

Reverse (59-CAAGTCACGGCCAGCTAAATC-39)

doi:10.1371/journal.pone.0071205.t001
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Table 2. Known transcripts found in the forward library (up-regulation) obtained by suppression subtractive hybridization PCR
from the brain of Protopterus annectens aestivated for 6 days in air with fish kept in freshwater as the reference for comparison.

Group and Gene
P. annectens accession
no. Biological processes E-value No of clones

Apoptosis

Plasminogen activator inhibitor 1 RNA-binding protein JZ347480 Regulation of anti-apoptosis 3.00E-07 1

Carbohydrate metabolism

Enolase JZ347451 Glycolysis 4.00E-31 1

Fructose-bisphosphate aldolase C JZ347457 Glycolysis 4.00E-91 3

Fumarate hydratase JZ347458 TCA cycle 5.00E-30 2

Pyruvate kinase JZ347493 Glycolysis 9.00E-35 1

Cell cycle and proliferation

BRCA2 and CDKN1A interacting protein JZ347437 Cell cycle and DNA repair 2.00E-57 1

Growth hormone precursor JZ347464 Positive regulation of growth 0 2

RAN, member RAS oncogene family JZ347497 Cell cycle 3.00E-173 1

Secreted acidic cysteine rich glycoprotein JZ347521 Regulation of cell proliferation 1.00E-65 4

Lipoprotein, fatty acid and cholesterol homeostasis
and transport

c11orf2 homolog JZ347439 Lipid transport 8.00E-56 1

Ion binding and transport

ADP/ATP translocase 2 putative JZ347428 Membrane transport 8.00E-50 5

Mitochondrial ATP synthase beta subunit JZ347472 ATP synthesis 9.00E-35 5

Sec61 beta subunit JZ347520 Membrane transport 1.00E-64 2

Solute carrier family 20, member 1b JZ347524 Phosphate transport 3.00E-17 1

Solute carrier family 25 alpha, member 5 JZ347526 Membrane transport 1.00E-51 1

Iron metabolism and transport

Apoferritin higher subunit JZ347429 Iron binding 2.00E-88 1

Nitrogen metabolism

Glutamine synthetase JZ347462 Glutamine biosynthetic process 2.00E-23 2

Nucleic acid binding and transcription

Brain abundant, membrane attached signal protein 1 JZ347436 Negative regulation of gene-specific
transcription

8.00E-18 2

Breast carcinoma amplified sequence 2 JZ347438 RNA splicing 1.00E-83 2

Ctr9, Paf1/RNA polymerase II complex component JZ347445 Histone monoubiquitination 0 1

DEAH (Asp-Glu-Ala-His) box polypeptide 15 JZ347449 RNA splicing 6.00E-07 1

H3 histone, family 3B JZ347379 Nucleosome assembly 3.00E-74 1

High mobility group protein-1 JZ347466 Positive regulation of transcription 9.00E-16 1

Histone H2A.Z putative mRNA JZ347467 Nucleosome assembly 3.00E-97 3

p68 RNA helicase JZ347477 ATP dependent helicase activity 7.00E-06 4

Poly(A) binding protein, cytoplasmic 1 JZ347481 RNA splicing 2.00E-54 2

Polymerase (RNA) II (DNA directed) polypeptide J JZ347482 Transcription 2.00E-36 3

Small nuclear ribonucleoprotein E JZ347523 RNA splicing 2.00E-64 2

SRA stem-loop-interacting RNA-binding protein,
mitochondrial precursor

JZ347527 Regulation of transcription 8.00E-38 1

Tripartite motif protein 28 JZ347537 Regulation of transcription 5.00E-19 1

Y box binding protein 1 isoform 2 JZ347547 mRNA splicing 6.00E-61 2

Protein degradation

Proteasome (prosome macropain) subunit alpha type 4 JZ347489 Proteolysis 5.00E-95 1

Protein synthesis, transport and folding

40S ribosomal protein S2 JZ347424 Translation 3.00E-65 2

40S ribosomal protein S30 JZ347425 Translation elongation 8.00E-37 4

Amyloid beta (A4) precursor protein JZ347354 Protein transport 6.00E-48 5

Eukaryotic translation elongation factor 1 alpha 2 JZ347371 Translation 4.00E-25 40
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Table 2. Cont.

Group and Gene
P. annectens accession
no. Biological processes E-value No of clones

Eukaryotic translation elongation factor 1 beta 2 JZ347452 Translation 9.00E-54 1

Eukaryotic translation initiation factor 3, subunit 3 gammaJZ347454 Translation 2.00E-28 1

Lipocalin JZ347384 Protein transport 1.00E-23 28

Prefoldin subunit 2 JZ347483 Protein binding 1.00E-31 1

RAB36, member RAS oncogene family JZ347495 Protein transport 5.00E-11 1

Ribosomal protein L12 JZ347505 Translation 7.00E-74 5

Ribosomal protein L3 fragment 1 JZ347500 Translation 2.00E-35 2

Ribosomal protein L35 JZ347509 Translation 7.00E-41 2

Ribosomal protein L41 JZ347510 Translation 3.00E-21 1

Ribosomal protein L4-like JZ347502 Translation 5.00E-133 2

Ribosomal protein L5 JZ347503 Ribosome assembly 0 1

Ribosomal protein L7a-like JZ347392 Ribosome biogenesis 9.00E-78 8

Ribosomal protein S12 JZ347516 Translation 3.00E-36 2

Ribosomal protein S27a JZ347519 Translation 5.00E-97 3

Ribosomal protein S2e JZ347511 Translation 1.00E-75 1

Ribosomal protein S3 JZ347512 Translation 0 2

Ribosomal protein S4 JZ347514 Translation 0 8

Transmembrane protein 11 JZ347536 Protein binding 2.00E-17 2

Response to stimulus

Cold-inducible RNA-binding protein JZ347442 Response to stress 4.00E-33 3

Ganglioside-induced differentiation-associated protein 1-
like 1

JZ347460 Response to retinoic acid 2.00E-29 2

Signaling

Prolactin JZ347487 Lactation, positive regulation of cell
proliferation

5.00E-14 15

RAC/CDC42 exchange factor JZ347496 Regulation of Rho protein signal
transduction

2.00E-39 1

RAS-like, family 11, member B JZ347498 Signal transduction 1.00E-25 2

Reticulon 1-C.1 JZ347499 Signal transduction 2.00E-04 1

Structural

Tubulin alpha-1 chain putative JZ347538 Cell structure 9.00E-170 9

Tubulin, alpha 4a JZ347416 Cell structure 0 11

Tubulin, beta JZ347540 Cell structure 7.00E-44 1

Tubulin, beta 5 JZ347541 Cell structure 5.00E-164 1

Others

ATG7 autophagy related 7 homolog JZ347431 Autophagy 2.00E-44 1

Cardiac muscle alpha actin 1 JZ347440 Unclassified 2.00E-67 1

Cell cycle associated protein 1b JZ347441 Unclassified 2.00E-12 2

Creatine kinase, mitochondrial 1 JZ347444 ATP binding 3.00E-150 1

Dynamin 1-like JZ347450 GTP catabolic process 2.00E-26 6

Fumarylacetoacetate hydrolase JZ347459 Cellular amino acid metabolic process 8.00E-10 2

Glucose regulated protein, 58 kDa JZ347461 Unclassified 1.00E-40 1

HMP19 protein JZ347468 Unclassified 6.00E-43 2

Myosin, light chain 1, alkali; skeletal, fast, JZ347473 Muscle contraction 4.00E-27 1

Nasopharyngeal epithelium specific protein 1 JZ347475 Unclassified 1.00E-46 2

Ornithine decarboxylase antizyme JZ347476 Cell differentiation 2.00E-137 3

Prolyl 4-hydroxylase, alpha polypeptide II JZ347488 Unclassified 1.00E-25 2

Quinoid dihydropteridine reductase JZ347494 Metabolic process 2.00E-19 1

Stromal cell derived factor receptor 1 JZ347529 Unclassified 1.00E-39 6
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subtraction libraries, indicating that they could be false positives or

they encode for different isoforms of the same protein.

Results obtained from the forward library (Table 2) demon-

strated for the first time that the mRNA expression of certain

genes related to signaling (prl), cell cycle and proliferation [growth

hormone (gh)], and transcription in general were up-regulated in the

brain of P. annectens after 6 days of aestivation in air. A number of

ribosomal genes that was involved in protein synthesis were also

up-regulated. Other up-regulated genes included those involved in

carbohydrate metabolism [enolase (eno), fructose-bisphosphate aldolase C

(aldoc), fh and pk], nitrogen metabolism (gs) and iron metabolism.

The fewer genes that were down-regulated in the brain of P.

annectens after 6 days of aestivation in air (Table 3) included genes

involved in cell cycle, protein synthesis, protein degradation, ion

binding and transport [nkaa2 and Na+/K+-ATPase b1a (nkab1a)],

and oxidation reduction [cytochrome c oxidase subunit VIa polypeptide 1

(cox6a1)]. There was also a down-regulation in the mRNA

expression of some genes related to carbohydrate metabolism

[pfk and glyceraldehyde 3-phosphate dehydrogenase (gapdh)].

Maintenance Phase (6 Months) of Aestivation
Forward (Table 4) and reverse (Table 5) libraries were also

constructed to reflect the genes that were up- and down-regulated,

respectively, in the brain of P. annectens after 6 months of

aestivation in air. Unlike the brain of P. annectens that had

undergone 6 days of aestivation in air, only a total of 81 genes

were identified from these subtraction libraries. Again, the forward

library showed that more (63) genes were up-regulated (Table 4)

while the reverse library showed that only 18 genes were down-

regulated (Table 5). Out of the 1000 sequences obtained, 458

sequences were unidentified and they could again be genes that

have yet to be characterized in P. annectens. Ribosomal protein L19

appeared in both forward and reverse subtraction libraries,

indicating that it could be a false positive or it could be encoding

for different isoforms of the same protein in the 2 libraries.

Unlike the induction phase, some genes involved in protein

synthesis, iron metabolism, carbohydrate metabolism (e.g., pk), and

lipid metabolism appeared in the forward library (Table 4)

indicating that their mRNA expression were up-regulated in the

brain of P. annectens after 6 months of aestivation in air. As for the

reverse library (Table 5), genes that were down-regulated included

prl and others involved in cell structure, iron metabolism (e.g., fth),

and nucleic acid binding.

Confirmation of Up- or Down-regulation of Selected
Genes using qPCR

In agreement with the SSH results of the brain of P. annectens

after 6 days of aestivation in air, there were significant increases in

the mRNA expression of pk, gs, fh, and prl (Fig. 1A–D) and

significant decreases in the mRNA expression of pfk (Fig. 1E) and

nkaa2 (Fig. 1F). Also, there was a significant increase in the mRNA

expression of pk (Fig. 1G) in the brain of P. annectens after 6 days of

aestivation in air and significant decreases in the mRNA

expression of prl (Fig. 1H) and fth (Fig. 1I) in corroboration of

the SSH results.

Discussion

More Genes are Up-regulated than Down-regulated
during the Induction and Maintenance Phases of
Aestivation

Surprisingly, many more genes were up-regulated than down-

regulated in the brain of P. annectens during the induction and

maintenance phases of aestivation, although one would expect

exactly the opposite in a situation of metabolic down-regulation

[19]. From the physiological point of view, aestivation has often

been traditionally associated with metabolic depression [20],

because conservation of metabolic fuels has been regarded as an

important adaptation during long periods of aestivation without

food intake. Furthermore, strong global suppression of gene

expression is an integral part of metabolic rate depression in

various hypometabolic systems that have been studied to date [19].

However, while the association between aestivation and metabolic

depression is clearly present in endothermic mammals during

aestivation, it is debatable whether it can be universally applied to

aestivating ectothermic animals [1]. For instance, whether

metabolic depression in turtles is an adaptation to aestivation

per se or simply a response to fasting [21,22] remains an open

question. In fact, the decrease in oxygen consumption in

laboratory-aestivating yellow mud turtle, Kinosternon flavescens, is

identical to that of fully hydrated turtles that are fasted for an

equivalent period [23,24]. Based on studies mainly on P. aethiopicus,

it has long been accepted that a profound decrease in metabolic

rate occurs in African lungfishes in general during the mainte-

nance phase of aestivation in a mud cocoon or an artificial

substratum [25,26], without reference to whether aestivation takes

place in hypoxia or normoxia. However, Perry et al. [27] reported

that P. dolloi exhibited constant rates of O2 consumption before

(0.9560.07 mmol kg21 h21), during (1.2160.32 mmol kg21 h21)

and after (1.1460.14 mmol kg21 h21) extended periods (1–2

months) of aestivation in a completely dried mucus cocoon in air

(normoxia). Subsequently, Loong et al. [10] obtained results which

suggested that metabolic depression in aestivating African lungfish

was triggered by hypoxia and not an integral part of aestivation.

In the past, the occurrence of organic structural modifications in

aestivating animals has been largely neglected, but to date,

aestivation in African lungfishes are known to be associated with

structural and functional modifications in at least the heart and the

kidney [28,29]. Icardo et al. [28] reported that the myocytes in the

trabeculae associated with the free ventricular wall of P. dolloi

showed structural signs of low transcriptional and metabolic

activity (heterochromatin, mitochondria of the dense type) while in

water [28]. These signs are partially reversed in aestivating fish

(euchromatin, mitochondria with a light matrix), and paradoxi-

Table 2. Cont.

Group and Gene
P. annectens accession
no. Biological processes E-value No of clones

Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein, gamma polypeptide

JZ347542 Protein targeting 1.00E-54 2

Ubiquinol-cytochrome c reductase core protein I JZ347543 Electron transport chain 8.00E-55 2

doi:10.1371/journal.pone.0071205.t002
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Table 3. Known transcripts found in the reverse library (down-regulation) obtained by suppression subtractive hybridization PCR
from the brain of Protopterus annectens aestivated for 6 days in air with fish kept in freshwater as the reference for comparison.

Group and Gene
P. annectens accession
no. Biological processes E-value No of clones

Carbohydrate metabolism

Glyceraldehyde-3-phosphate dehydrogenase JZ347463 Glycolysis 6.00E-22 1

Phosphofructokinase JZ347479 Glycolysis 4.00E-163 7

Cell cycle and proliferation

Protein phosphatase 1 (pp1) gamma 1 JZ347490 Cell cycle 2.00E-172 11

SUMO-conjugating enzyme UBC9 JZ347531 Cell cycle 4.00E-147 5

Cell structure

Actin, gamma 1 JZ347426 Cell structure 3.00E-70 4

Transmembrane protein 2 JZ347535 Integral to membrane 1.00E-49 2

Tubulin, alpha 4a JZ347539 Microtubule–based process 9.00E-16 1

UPF0466 protein C22orf32, mitochondrial JZ347545 Integral to membrane 1.00E-12 3

Complement

Complement component factor H JZ347443 Complement activation 6.00E-07 2

DNA repair and protection

Activity-dependent neuroprotector homeobox JZ347427 Neuroprotection 2.00E-16 3

Apoptosis-inducing, TAF9-like domain 1 JZ347430 DNA repair 2.00E-16 1

Ion binding and transport

ATP synthase, H+ transporting, mitochondrial F0 complex,
subunit c-3

JZ347432 ATP synthesis coupled proton
transport

1.00E-41 1

ATP synthase, H+ transporting, mitochondrial F0 complex,
subunit f

JZ347433 ATP synthesis coupled proton
transport

6.00E-33 2

ATPase, Na+/K+ transporting, beta 1a polypeptide JZ347434 Ion transport 1.00E-09 1

Na+/K+-ATPase alpha 2 subunit JZ347474 Cation transport 0 3

Solute carrier family 25 (mitochondrial carrier; phosphate
carrier), member 3

JZ347525 Transmembrane transport 1.00E-30 2

Voltage-dependent anion-selective channel protein 2 JZ347546 Anion transport 8.00E-132 1

Iron, copper metabolism and transport

Beta-2-globin JZ347435 Oxygen transport 7.00E-05 2

Lipoprotein, fatty acid and cholesterol homeostasis
and transport

Lipoyltransferase 1 JZ347471 Protein lipoylation 9.00E-27 3

Sulfotransferase family 4A, member 1 JZ347530 Lipid metabolic process 1.00E-72 1

Nucleic acid binding and transcription

KH domain containing, RNA binding, signal transduction
associated 1b

JZ347469 RNA binding 3.00E-05 5

Protein phosphatase 1A magnesium-dependent, alpha
isoform

JZ347491 Regulation of transcription 4.00E-79 1

Prothymosin, alpha JZ347492 Transcription 4.00E-24 13

Staufen 1 JZ347528 Intracellular mRNA localization 2.00E-35 3

Transcription elongation factor B polypeptide 2 JZ347533 Regulation of transcription 6.00E-40 1

Translin JZ347534 DNA binding 3.00E-71 1

Protein degradation

Ubiquitin conjugating enzyme E2 JZ347544 Protein degradation 2.00E-90 9

Serpin peptidase inhibitor, clade B (ovalbumin),member 1,
like 3

JZ347522 Serine type endopeptidase inhibitor
activity

1.00E-08 1

Protein synthesis, transport and folding

Ribosomal protein L3 fragment 2 JZ347501 Translation 2.00E-28 1

DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 JZ347448 Ribosomal RNA biogenesis, editing,
transport

4.00E-05 4

Eukaryotic translation elongation factor 2 JZ347453 Translation 2.00E-39 1
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cally, aestivation appears to trigger an increase in transcriptional

and synthetic myocardial activities, especially at the level of the

ventricular septum [28]. In addition, Ojeda et al. [28] demon-

strated structural modifications in all the components of the renal

corpuscle of aestivating P. dolloi. These changes can be reversed

after arousal, indicating that the renal corpuscle is a highly

dynamic structure capable of modifying its architecture in

response to different phases of aestivation. Morphological down-

regulation and quick restoration of morphology during the

maintenance phase and arousal phase, respectively, also occur in

the intestine of P. annectens [30]. Thus, aestivation cannot be

regarded as the result of a general depression of metabolism, but it

involves the complex interplay between up-regulation and down-

regulation of diverse cellular activities, and aestivation would

logically involve variations in rates of protein degradation and

protein synthesis, reconstructing and regenerating cells and tissues

during the induction and arousal phases, respectively, through a

rapid protein turnover. Such a proposition is corroborated by the

fact that a greater variety of genes were up-regulated than down-

regulated in the brain of P. annectens during the induction and

maintenance phases of aestivation. Whether increased mRNA

expression would lead to increases in protein expression through

increased translational activities is unclear at present.

Induction Phase: Prl and Gh could be Involved in
Inducing and Coordinating Aestivation

PRL, GH and somatolactin are three pituitary hormones whose

genes are considered to have evolved from a common ancestral

gene [31]. PRL affects a number of physiological processes and

among them are the control of mammary gland development,

initiation and maintenance of lactation, immune modulation,

osmoregulation, control of hypothalamic releasing-inhibiting

factors, and behavioral modification. At the cellular level, PRL

exerts mitogenic, morphogenic, and secretory activities. In fish, the

major function of Prl is osmoregulation in freshwater to prevent

the loss of Na+ [32], and in terrestrial adaptation [33]. The up-

regulation in the mRNA expression of prl in the brain of

P. annectens during the induction phase of aestivation (Table 2)

indicate for the first time that Prl might have an important role in

the aestivation process, although the mechanism is unknown at

present.

A number of endogenous hormonal substances have been

proposed to be involved in initiating and maintaining aestivation

[34]. These substances are often related to sleep e.g., Gh,

somatostatin and arginine vasotocin. In human, GH secretion

was associated with sleep and the maximal GH levels occur within

minutes of the onset of slow wave sleep [35]. Somatostatin is a

cyclic tetradecapeptide that acts as a negative regulator for the

secretion of growth hormone. It is synthesized as a large precursor

molecule before it is processed into its active form. In the brain of

the European hamster, Cricetus cricetus, somatostatin levels were

reported to be significantly lower in hibernating winter specimens

than euthermic winter animals [36]. The novel findings on the

down-regulation of preprosomatostatin 2 (Table 3), together with the

up-regulation of gh (Table 2) in the brain of P. annectens during the

Table 3. Cont.

Group and Gene
P. annectens accession
no. Biological processes E-value No of clones

Eukaryotic translation initiation factor 4E-binding protein 2 JZ347455 Translation initiation 4.00E-09 9

Procollagen C-endopeptidase enhancer 2 JZ347486 Heparin/protein binding 1.00E-23 1

Ribosomal protein L22-like 1 JZ347506 Translation 4.00E-79 1

Ribosomal protein L31 JZ347507 Translation 3.00E-88 3

Ribosomal protein L34 JZ347508 Translation 6.00E-88 1

Ribosomal protein L7a-like JZ347504 Ribosome biogenesis 2.00E-101 3

Ribosomal protein S13 JZ347517 Ribosome assembly 5.00E-105 1

Ribosomal protein S20 JZ347518 Translation 6.00E-85 1

Ribosomal protein S3A JZ347513 Translation 5.00E-146 1

Ribosomal protein S9 JZ347515 Translation 4.00E-122 10

Response to stimulus

Cyclic AMP-regulated phosphoprotein, 21 kD JZ347446 Cellular response to heat 4.00E-22 9

FK506 binding protein 1B, 12.6 kDa JZ347456 Regulation of heart rate, response to
glucose stimulus

7.00E-68 4

Signaling

Guanine nucleotide binding protein (G protein), alpha
activating activity polypeptide O

JZ347465 G-protein coupled receptor protein
signaling pathway

2.00E-04 1

Phosphatidylethanolamine binding protein JZ347478 Regulation of mitosis and signaling 4.00E-52 1

Others

Cytochrome c oxidase subunit VIa polypeptide 1 JZ347447 Oxidation reduction 1.00E-27 14

KH domain-containing transcription factor B3 JZ347470 Unclassified 4.00E-10 3

Prepromesotocin JZ347484 Unclassified 5.00E-32 1

Preprosomatostatin 2 JZ347485 Regulation of cell migration 3.00E-164 5

Telomere associated repeat sequence JZ347532 Unclassified 2.00E-20 1

doi:10.1371/journal.pone.0071205.t003
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Table 4. Known transcripts found in the forward library (up-regulation) obtained by suppression subtractive hybridization PCR
from the brain of Protopterus annectens aestivated for 6 months in air with fish kept in freshwater as the reference for comparison.

Group and Gene
P. annectens
accession no. Biological processes E-value No of clones

Antioxidant

Superoxide dismutase JZ347414 Antioxidant 5.00E-34 1

Apoptosis

Tumor protein, translationally-controlled 1 JZ347418 Anti-apoptosis 2.00E-53 2

Carbohydrate metabolism

Alpha enolase-1 JZ347353 Glycolysis 1.00E-48 1

Enolase 2 JZ347369 Glycolysis 2.00E-71 4

Glyceraldehyde-3-phosphate dehydrogenase JZ347377 Glycolysis 5.00E-161 4

Pyruvate kinase JZ347390 Glycolysis 1.00E-56 4

Cell structure

Actin-related protein 2/3 complex subunit 3 JZ347351 Actin polymerization 4.00E-131 2

Beta actin JZ347358 Cell structure 1.00E-174 1

Calponin 3, acidic b JZ347359 actomyosin structure organization 1.00E-09 1

Cofilin-2 putative JZ347362 Cell structure 3.00E-18 1

Myosin light polypeptide 6 putative JZ347385 Muscle filament sliding 7.00E-19 1

Tubulin beta-1 chain putative JZ347415 Microtubule-based movement 2.00E-50 1

Tubulin, alpha 4a JZ347416 Microtubule-based movement 0 1

Type I keratin isoform 1 JZ347419 Cell structure 1.00E-06 8

Up-regulated during skeletal muscle growth protein 5 JZ347420 Integral to membrane 8.00E-26 2

Ion binding and transport

Adenine nucleotide translocase JZ347352 ADP/ATP transport 6.00E-129 4

Calretinin putative mRNA JZ347360 Calcium ion binding 3.00E-68 1

Cysteine and histidine-rich domain (CHORD)-containing,
zinc binding protein 1

JZ347363 Calcium ion bindng 1.00E-28 2

voltage-dependent anion channel 2 JZ347421 Anion transport 2.00E-69 2

voltage-dependent anion channel 3 JZ347422 Anion transport, synaptic
transmission

5.00E-72 4

Iron metabolism and transport

Ferritin, middle subunit JZ347375 Cellular iron ion homeostasis,
iron ion transport

3.00E-57 1

Lipoprotein, fatty acid and cholesterol homeostasis
and transport

Apolipoprotein O JZ347355 Lipid transport 1.00E-22 1

Nucleic acid binding and transcription

H3 histone, family 3B JZ347379 Nucleosome assembly 1.00E-79 4

H3 histone, family 3C JZ347380 Nucleosome assembly 8.00E-64 1

High mobility group B3b JZ347381 DNA binding 1.00E-05 1

Histone H3.3 putative JZ347382 Nucleosome assembly 1.00E-61 1

Polymerase (RNA) II (DNA directed) polypeptide G JZ347389 Transcription 4.00E-143 1

Splicing factor, arginine/serine-rich 11 JZ347413 RNA splicing 6.00E-13 1

Protein degradation

Dipeptidylpeptidase 8 JZ347364 Proteolysis 2.00E-39 2

Protein synthesis, transport and folding

Amyloid beta (A4) precursor protein JZ347354 Protein transport 3.00E-69 2

Elongation factor 1-alpha putative JZ347366 Translational elongation 2.00E-78 1

Elongation factor 1-beta putative JZ347367 translational elongation 3.00E-93 2

Eukaryotic translation elongation factor 1 alpha JZ347372 Translational elongation 2.00E-75 3

Eukaryotic translation elongation factor 1 alpha 1 JZ347370 Translational elongation 4.00E-91 7

Eukaryotic translation elongation factor 1 alpha 2 JZ347371 Translational elongation 3.00E-107 32
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induction phase of aestivation indicate the importance of these

genes in the induction of aestivation.

Induction Phase: Reduction in Biological Activity of the
Brain

The tyrosine 3-monooxygenase/tryptophan 5-monooxygenase

activation protein (14-3-3), b polypeptide, c polypeptide and f
polypeptide are highly abundant in the brain. They are activators

of tyrosine and tryptophan hydroxylases, which are also known as

tyrosine 3-monooxygenase and tryptophan 5-monooxygenase,

respectively [37]. These two hydroxylases are the initial and

rate-limiting enzymes in the biosynthesis of dopamine and

serotonin, respectively. Both dopamine and serotonin were

involved in regulating sleep- waking cycle [38,39]. Moreover,

through interaction with more than 100 binding partners, these

proteins are crucial for various physiological cellular processes

such as signaling, cell growth, division, adhesion, differentiation

and apoptosis [37]. The up-regulation of the mRNA expression of

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein c
polypeptide (ywhac) in the brain of P. annectens during 6 days of

aestivation (Table 2) might lead to the increased production of

dopamine and serotonin, which might be important in regulating

the biological activity of the brain.

Phosphatidylethanolamine binding protein (PEBP) is a signaling

protein that plays a role in neurotransmission. In mammals, PEBP

modulates the signaling pathways by regulating the activation of

mitogen-activated protein kinase (MAPK), nuclear factor of kappa

light polypeptide gene enhancer in B cells (NF-kB) and also the

G-protein coupled receptors [40]. The most important brain-

specific function of PEBP elucidated to date is its role as precursor

for hippocampal cholinergic neurostimulating peptide, which in

mammals is known to stimulate the activity and the growth of

acetylcholine neurons in the brain [40,41]. The down-regulation

of pebp in the brain of P. annectens after 6 days of aestivation

(Table 3) suggested that there could be a reduction in neuronal

activity.

Table 4. Cont.

Group and Gene
P. annectens
accession no. Biological processes E-value No of clones

Eukaryotic translation elongation factor 1 gamma JZ347373 Translational elongation 2.00E-27 3

Glycyl-tRNA synthetase JZ347378 Glycyl-tRNA aminoacylation,
translation

9.00E-68 1

Lipocalin JZ347384 Protein transport 1.00E-23 7

Ribosomal protein L10 JZ347394 Translation 2.00E-40 1

Ribosomal protein L11 JZ347395 Translation 4.00E-130 6

Ribosomal protein L12 JZ347505 Translation 6.00E-102 13

Ribosomal protein L13 JZ347396 Translation 2.00E-76 3

Ribosomal protein L19 fragment 1 JZ347397 Translation 4.00E-104 2

Ribosomal protein L21 JZ347399 Translation 3.00E-79 2

Ribosomal protein L23 JZ347400 Translation 1.00E-130 5

Ribosomal protein L26 JZ347401 Ribosome large subunit biogenesis 6.00E-32 1

Ribosomal protein L41 JZ347510 Translation 3.00E-04 10

Ribosomal protein L7a-like JZ347392 Ribosome biogenesis 1.00E-104 2

Ribosomal protein Large P0 JZ347404 Translational elongation 2.00E-165 1

Ribosomal protein P2 JZ347405 Translational elongation 4.00E-73 2

Ribosomal protein S12 JZ347410 Translation 2.00E-40 5

Ribosomal protein S20 JZ347411 Translation 1.00E-35 5

Ribosomal protein S23 JZ347412 Translation 7.00E-49 5

Ribosomal protein S3 JZ347406 Translation 0 2

Ribosomal protein S4 JZ347514 Translation 0 3

Ribosomal protein S5 putative JZ347407 Translation 2.00E-21 1

Ribosomal protein S7 JZ347408 Translation 0 4

Ribosomal protein S8 JZ347409 Translation 2.00E-84 1

Ribosomal protein S9 JZ347515 Translation 0 1

Response to stimulus

Cold-inducible RNA binding protein JZ347442 Response to stress 3.00E-29 9

FK506 binding protein 1B, 12.6 kDa JZ347456 Regulation of heart rate, response to
glucose stimulus

1.00E-12 4

Others

Ribosomal protein 5S-like protein JZ347391 Unclassified 1.00E-54 12

XMAB21 JZ347423 Unclassified 2.00E-33 1

doi:10.1371/journal.pone.0071205.t004
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Induction Phase: Cytoprotection through Increased
Expression of Cold Inducible RNA-binding Protein and
Glucose Regulated Protein 58

The cold inducible RNA-binding protein (CIRBP) is a member

of a glycine-rich RNA binding protein family. It is known to be

induced by cold stress [42]. In vitro studies have shown that the

CIRBP has cytoprotective effects [43] and regulates neural

development. Using cultured neural stem cells, Saito and co-

workers [44] reported an increase in mRNA expression for CIRBP

and the protein abundance at 32uC compared to those cultured at

37uC. In addition, the knockdown of this gene by RNA

interference in neural stem cells showed an increase in apoptotic

cell population, indicating the cytoprotective effect of this protein

[44]. The up-regulation of cirbp mRNA was also reported when

salmon was subjected to hyperosmotic stress during the transition

from freshwater to marine environment [45]. Since P. annectens

would encounter osmotic and dehydration stresses during the

induction and maintenance phase of aestivation, the up-regulation

of the mRNA expression of cirbp could enhance its cytoprotective

effects in the brain of P. annectens during the aestivation process.

Glucose regulated protein 58 (GRP58) is a member of the

protein disulfide isomerase family of proteins that are present

mainly, but not exclusively, in the endoplasmic reticulum (ER). It

was first identified as a stress protein in response to glucose

deprivation and its well-characterized functions include acting as a

molecular chaperone to help in the correct folding of glycoprotein

[46] and the assembly of the major histocompatibility complex

class 1. GRP58 serves as a carrier protein in Alzheimer’s disease to

prevent the aggregation of b-amyloids [47]. Hence, the up-

regulation of grp58 in the brain of P. annectens during the induction

phase (6 days) of aestivation (Table 2) may prevent misfolding of

proteins to preserve biological structures.

Induction Phase: Suppression of Proliferation of Brain
Cells by Down-regulation of Prothymosin a

Prothymosin a (PTMAa) is a ubiquitously and abundantly

expressed small nuclear protein [48,49,50] that is involved in cell

proliferation [51] and protection against apoptosis [52,53]. Over-

expression of PTMAa accelerates cell proliferation [54,55],

whereas inhibition of PTMAa synthesis prevents cell division

[56] and induces apoptosis [57]. Consistent with its properties,

PTMAa is particularly abundant in tumor cells [58,59].

Table 5. Known transcripts found in the reverse library (down-regulation) obtained by suppression subtractive hybridization PCR
from the brain of Protopterus annectens aestivated for 6 months in air with fish kept in freshwater as the reference for comparison.

Group and Gene
P. annectens
accession no. Biological processes E-value No of clones

Cell structure

Beta-tubulin JZ347417 Cell structure 2.00E-67 1

Myristoylated alanine-rich protein kinase C substrate JZ347386 Cell structure 2.00E-10 3

Ion binding and transport

ATPase, H+ transporting, V0 subunit C JZ347356 ATP synthesis coupled
proton transport

4.00E-25 4

Basic leucine zipper and W2 domains 1 JZ347357 Regulation of transcription 2.00E-05 1

Iron metabolism and transport

Ferritin heavy chain JZ347374 Cellular iron ion homeostasis,
iron ion transport

2.00E-75 1

Protein synthesis, transport and folding

Coatomer protein complex, subunit gamma 2 JZ347361 Intracellular protein transport,
vesicle-mediated transport

7.00E-23 104

DnaJ (Hsp40) homolog, subfamily A, member 1 JZ347365 Protein folding 4.00E-33 1

Elongation factor-1, delta, b JZ347368 Translation elongation 4.00E-63 1

Ribosomal protein L19 fragment 2 JZ347398 Translation 2.00E-82 3

Ribosomal protein L36a JZ347402 Translation 2.00E-62 2

Ribosomal protein L38 JZ347403 Translation 1.00E-32 1

Ribosomal protein L8 JZ347393 Translation 6.00E-112 3

Signaling

Prolactin JZ347487 lactation, positive regulation of
cell proliferation

1.00E-20 43

Others

Gephyrin JZ347376 Establishment of synaptic specificity
at neuromuscular junction

0 1

HN1-like protein JZ347383 Unclassified 2.00E-05 4

KH domain-containing transcription factor B3 JZ347470 Unclassified 4.00E-08 146

NADH dehydrogenase 1 alpha subcomplex subunit 13 JZ347387 Electron transport chain 4.00E-45 3

Peptidyl-glycine alpha-amidating monooxygenase A precursor JZ347388 Peptide metabolic process,
oxidation reduction

3.00E-28 1

doi:10.1371/journal.pone.0071205.t005
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Mounting evidence suggests PTMAa involvement in transcrip-

tion regulation [60,61,62]. Thus, the down-regulation of the

mRNA expression of ptmaa (Table 3) in the brain of P. annectens

during the induction phase of aestivation suggests that there

could be a suppression of transcription and cell proliferation

which is an essential preparation for the maintenance phase of

aestivation.

Figure 1. qRT-PCR of selected genes that were differentially expressed based on suppression subtractive hybridization. Relative
quantification of mRNA expression (fold change) of (A) pyruvate kinase (pk, JZ347493), (B) glutamine synthetase (gs, JZ347462), (C) fumarate hydratase
(fh, JZ347458), (D) prolactin (prl, JZ347487), (E) phosphofructokinase (pfk, JZ347479), (F) Na+/K+-ATPase a2 (nkaa2, JZ347474), (G) pyruvate kinase (pk,
JZ347493), (H) prolactin (prl, JZ347487) and (I) ferritin heavy chain (fth, JZ347374), using b-actin as the reference gene, in the brain of Protopterus
annectens aestivated for 6 days (d) (A–F) or 6 months (G–I) in air with reference to the those of fish kept in freshwater as control. Results represent
mean+S.E.M. (N = 6). *Significantly different from the corresponding freshwater control (P,0.05).
doi:10.1371/journal.pone.0071205.g001
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Induction Phase: A Reduction in Glycolytic Capacity
During the induction phase of aestivation, the mRNA

expression of several genes related to carbohydrate metabolism,

e.g., eno, aldoc and pk were up-regulated (Table 2), but there were

also down-regulation in the mRNA expression of gapdh and pfk

(Table 3) which happened to be the regulatory enzyme of

glycolysis. The precise regulation of PFK prevents glycolysis and

gluconeogenesis from occurring simultaneously. Therefore judging

by changes in the mRNA expression of pfk, which in turns affects

one of the regulatory steps in the glycolytic pathway, it would

appear that there could be a decrease in the glycolytic capacity in

the brain of P. annectens during the induction phase of aestivation.

The changes in the mRNA expression of pk might indicate the

needs to prevent an increase in gluconeogenesis in relation to a

decrease in glycolysis, since the balance between these two

processes would be controlled by Pk and phosphoenolpyruvate

carboxykinase over the conversion between phosphoenolpyruvate

and pyruvate.

The down-regulation in the mRNA expression of gapdh in the

brain of P. annectens during the induction phase is consistent with

the proposition that there could be a decrease in the glycolytic

capacity. However, Gapdh has multiple functions in mammals

and some of these may extend to fish. Zheng et al. [63] reported

that GAPDH could itself activate transcription. The octamer binding

protein coactivator in S phase (OCA-S) transcriptional coactivator

complex contains GAPDH. GAPDH moves between the cytosol

and the nucleus and may thus link the metabolic state to gene

transcription [63]. Hara et al. [64] showed that GAPDH initiates

apoptosis. GAPDH also appears to be involved in the vesicle

transport from the ER to the Golgi apparatus which is part of the

shipping route for secreted proteins [65]. Hence, a down-

regulation in the mRNA expression of gapdh might also indicate

a suppression of transcription, apoptosis and protein secretion,

which could be regarded as adaptive responses, in the brain of

P. annectens during the induction phase of aestivation.

Induction Phase: Reduction in Metabolic Activity
At present, there is a dearth of knowledge concerning

metabolism of the brain of African lungfishes during aestivation,

especially concerning the substrates used to supply energy for

various metabolic processes. Even if there is a high glycogen store

in the brain, it is a limited source of energy store. Hence, it is

logical to deduce that the brain would still have to depend on

glucose supply from the blood during aestivation. However,

aestivating lungfish would have a slower heart beat rate [26,66],

and hence a slow rate of blood circulation. Consequently, it would

be essential for the brain to reduce its metabolic rate, including the

rate of ATP synthesis through oxidative phosphorylation. Indeed,

the down-regulation of ATP synthases indicates that ATP

synthesis was reduced during aestivation. In general, metabolic

rate reduction requires a coordinated suppression of the rate of

cellular ATP turnover, including both ATP-generating and ATP-

consuming reactions. Hence, the down-regulation of mRNA

expressions of nkaa2- and nkab1a- subunits and voltage-dependent

anion channel (vdac) 2 (vdac2) in the brain of P. annectens during the

induction phase of aestivation (Table 3) corroborates the

proposition that a reduction in metabolic activities in the brain

could be essential to aestivation.

Induction Phase: Suppression of Protein Synthesis and
Degradation

Protein synthesis is a major energy expense in cells and it will

utilise up to 50% of the cellular energy during translation

[67,68,69]. Although down-regulation of protein synthesis is a

consistent phenomenon in organisms undergoing metabolic

depression, translation of genes must become more selective in

order to conserve energy but at the same time, allows critical

functions to carry on during the subsequent maintenance phase of

aestivation. A number of genes related to protein synthesis,

transport and folding appeared in the forward and reverse libraries

of P. annectens after 6 days of aestivation. Besides various ribosomal

proteins, the mRNA expression of eukaryotic translation elongation

factor (eef) 1a2 (eef1a2; 40 clones) and eef1b2 (1 clone), and eef3c3 (1

clone) were up-regulated (Table 2), while those of eef2 (1 clone) and

eukaryotic translation initiation factor 4E-binding protein 2 (9 clones) were

down-regulated (Table 3), instead. Overall, these results indicate

there could be simultaneous up- and down-regulation in the

synthesis of certain proteins. This could be important for the brain

to make the necessary preparation to enter into the maintenance

phase of aestivation without an over expenditure of energy [1].

SUMO enzymatic cascade catalyzes the dynamic posttransla-

tional modification process of SUMOylation. SUMOylation is a

post-translational modification involved in various cellular pro-

cesses, such as nuclear-cytosolic transport, transcriptional regula-

tion, apoptosis, protein stability, response to stress, and progression

through the cell cycle [70].http://en.wikipedia.org/wiki/

SUMO_protein - cite_note-0 A reduction of SUMO-conjugating

enzyme (UBC9) prevents cell cycle progression at the G2 or early

M phase, causing the accumulation of large budded cells with a

single nucleus, a short spindle and replicated DNA in Xenopus

oocyte [71]. Protein phosphatase 1 (PP1) belongs to a certain class

of phosphatases known as protein serine/threonine phosphatases,

which control glycogen metabolism, muscle contraction, cell

progression, neuronal activities, splicing of RNA, mitosis [72],

cell division, apoptosis, protein synthesis, and regulation of

membrane receptors and channels [73]. Therefore, the down-

regulation of SUMO-conjugating enzyme ubc9 and pp1 suggests

that there could be a suppression of protein degradation in the

brain of P. annectens during the induction phase of aestivation. Only

then, would there be preservation of protein structure and function

during the aestivation process. In addition, the down-regulation of

these two genes may be important in arresting the cell cycle and

growth during the early stage of aestivation. Together, these

adaptive responses would reduce energy expenditure and conserve

the limited endogenous energy reserve.

Induction Phase: Defense Against Ammonia Toxicity
Gs catalyzes the formation of glutamine from ammonia and

glutamate and the reaction requires ATP, and it is essential for the

detoxification of ammonia to glutamine in fish [74,75]. Neural

tissues are sensitive to ammonia, and thus Gs activity is high in

most fish brains [76,77,78,79]. Four gs isoforms have been

identified in the rainbow trout Oncorhynchus mykiss [80], which

are differentially expressed in the brain and liver of fish exposed to

elevated environmental ammonia [81]. At present, it is uncertain

whether Gs isoforms are present in African lungfishes. However, it

is logical to deduce that Gs could be up-regulated in the brain of

P. annectens to detoxify ammonia produced within the brain during

aestivation. This is especially important considering the fact that

aestivating lungfish would have a decrease in heart beat rate

[26,66], and hence a decrease in blood circulation might slow

down the removal of ammonia that was produced endogenously

within the brain. Although, it is highly unlikely that amino acids

were degraded for energy production in the brain; rather, it is

probable that ammonia would be released from amino acid

catabolism due to an increased turnover of protein synthesis and
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protein degradation during the induction phase to prepare the

brain to enter into the maintenance phase of aestivation.

Maintenance Phase: Prolactin could be involved in
Maintaining Whole-body Aestivation

In contrast to the induction phase, there was a down-regulation

in the mRNA expression of prl in the brain of P. annectens during

the prolonged maintenance phase of aestivation (Table 5). A total

of 43 clones (out of 500) of prl appeared in the reverse library,

indicating that there could be a drastic suppression of prl

expression which was supported by qPCR results. This corrobo-

rates the proposition that Prl could be an important part of the

signaling mechanisms to induce and maintain aestivation in

P. annectens.

Maintenance Phase: Superoxide Dismutase was Involved
in Oxidative Defense in the Brain

Increased synthesis and/or activity of intracellular antioxidant

enzymes can protect cellular macromolecules from potentially

lethal stress-induced damage. The brain of hibernating squirrel is

characterized by increased oxidative stress resistance [82,83,84].

Over-expression of superoxide dismutase (SOD), both mitochon-

drial (MnSOD) and cytosolic (CuZnSOD), increases oxidative

stress resistance [85,86,87]. In addition, over-expression of SODs,

glutathione peroxidase (GPx) and catalase (CAT) also act to

protect against ischemia associated cytochrome c release from

mitochondria, thereby limiting the occurrence of apoptotic cell

death [88]. Similarly, Page et al. [89] found that most of the

intracellular antioxidant enzymes, including the MnSOD, CuZn-

SOD, CAT, GPx and glutathione reductase were up-regulated in

brain tissue of lungfish that had aestivated for 60 days. Therefore,

Page et al. [89] concluded that aestivating P. dolloi had enhanced

oxidative stress resistance in the brain due to a significant up-

regulation of intracellular antioxidant capacity. Results obtained

from this study are in agreement with the conclusion of Page et al.

[89] because there was an up-regulation of the mRNA expression

of sod1 in the brain of P. annectens during the prolonged

maintenance phase (6 months) of aestivation (Table 4).

Maintenance Phase: Regulation of ATP Usage through an
Up-regulation of vdac2

VDACs are pore-forming proteins found in the outer

mitochondria membrane of eukaryote. They are the major

channels for metabolites to permeate the outer mitochondrial

membrane. In mammals, they are known to play an essential role

in cellular metabolism. They conduct ATP to bind to several

cytosolic carbohydrate kinases, e.g. hexokinase, glycerol kinase

and creatine kinase, and thus providing bound kinases with

preferential access to mitochondrial ATP [90]. Hence, the up-

regulation of vdac2 and vdac3 in the brain of P. annectens after 6

months of aestivation (Table 4) may reflect on the limited ATP

supply by the mitochondria and the importance of transporting

ATP to essential kinases on the outer mitochondria membrane to

facilitate its usage by the relatively more important metabolic

pathways.

Maintenance Phase: Increased Glycolytic and Protein
Synthesis Capacities in Preparation for Arousal?

Six months of aestivation led to increases in mRNA expression

of several enzymes involved in glycolysis (eno1, eno2, gapdh and pk)

in the brain of P. annectens (Table 4). Unlike the induction phase,

both gapdh and pfk no longer appeared in the reverse library.

Taken together, these results indicated that the glycolytic capacity

in the brain of P. annectens varied between the induction and

maintenance phases. Simply based on the SSH results, it is difficult

to draw a definitive conclusion, but it would appear that there was

an up-regulation of the glycolytic capacity during the prolonged

maintenance phase of aestivation. Considering that the aestivating

fish was in a state of torpor and the importance of conserving

endogenous energy stores, this could be viewed as a strategy in

preparation for arousal, and an increase in glycolytic capacity

might not imply an increase in glycolytic rate.

In comparison with the induction phase, more genes related to

protein synthesis, transport and folding appeared in the forward

library for lungfish that had entered into the prolonged

maintenance phase of aestivation. Specifically, 2 elongation factor 1

(ef1) genes (ef1a and ef1b), and 4 eef1 genes (eef1a, eef1a1, eef1a2 and

eef1c) were up-regulated, with 32 clones of eef1a2 appearing in the

forward library (Table 4). The increases in mRNA expression of

these genes indicate that there could be an increase in the capacity

for protein synthesis in the brain of P. annectens. This does not

necessarily imply an increase in protein synthesis in situ, since the

mRNA expression of coatomer protein complex subunit gamma 2 (copc2)

was down-regulated with 104 clones (Table 5). Biosynthetic

protein transport from the ER via the Golgi apparatus to the

plasma membrane is mediated by vesicular carriers [91,92,93].

These vesicles, termed COPI-coated vesicles contain a fuzzy

protein coat whose major coat protein components are ADP-

ribosylation factor and coatomer, which is a protein complex

made up of seven subunits [94,95]. Thus, a down-regulation of the

mRNA expression of copc2 suggested that the transport of protein,

even if synthesized, was put on hold during the prolonged

maintenance phase of aestivation, probably in preparation for

arousal.

Maintenance Phase: Up-regulation of Histone Expression
Histones are the chief protein components of chromatin, acting

as spools around which DNA winds, and play a role in gene

regulation. Five major families of histones (H) exist, and H3 is one

of the core histones [96,97]. Acetylation and methylation of

different lysine (Lys) and arginine residues in H3 has been linked to

either transcriptionally active or transcriptionally repressed states

of gene expression [98], whereas phosphorylation of H3 was

initially linked to chromosome condensation during mitosis

[99,100]. The phosphorylation of H3 at serine 10 (Ser 10) has

an important role in the transcriptional activation of eukaryotic

genes in various organisms. Methylation of Lys9 in H3 (H3K9) is a

prominent modification that has been implicated in diverse

processes, including transcriptional silencing, heterochromatin

formation, and DNA methylation [101]. H3 also plays a crucial

role in activating the spindle assembly checkpoint in response to a

defect in mitosis [102]. Therefore, the up-regulation of mRNA

expression of h3 in the brain of P. annectens after 6 months of

aestivation (Table 4) indicates that there could be an increase in

the capacity of transcription, which could be an adaptive response

for increased mitosis for tissue repair upon arousal.

Conclusion
We have demonstrated by SSH PCR that during the induction

phase of aestivation, several genes in the brain of P. annectens such

as prl, gh and preprosomatostatin 2 could be involved in inducing and

coordinating aestivation. There could be a reduction in biological

activities of the brain as an up-regulation of ywhac and a down-

regulation of pebp in the brain were observed during the induction

phase of aestivation. Our results also revealed that several gene

clusters were up- or down-regulated in the brain of P. annectens

after 6 days of aestivation in air. These aestivation-specific genes
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could be involved in a reduction in glycolytic capacity, metabolic

activities and suppression of protein synthesis and degradation. By

contrast there was a down-regulation of prl expression in the brain

during the maintenance phase, corroborating the proposition that

Prl plays an important role in coordinating aestivation in

P. annectens. There was also an up-regulation of sod1 expression

in the brain during the maintenance phase of aestivation. Sod is

important for oxidative defense, and oxidative defence could be

important for life maintenance during the maintenance phase of

aestivation. Furthermore, there could be an increase in glycolytic

and protein synthesis capacities during the maintenance phase of

aestivation, and the up-regulation of h3 indicated an increase in

capacity of transcription, which could be an adaptive response in

preparation for the arousal phase of aestivation.
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