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Abstract

Background: Recent landmark studies have profiled cancer cell lines for molecular features, along with measuring the
corresponding growth inhibitory effects for specific drug compounds. These data present a tool for determining which
subsets of human cancer might be more responsive to particular drugs. To this end, the NCI-DREAM-sponsored DREAM7:
Drug Sensitivity Prediction Challenge (sub-challenge 1) set out to predict the sensitivities of 18 breast cancer cell lines to 31
previously untested compounds, on the basis of molecular profiling data and a training subset of cell lines.

Methods and Results: With 47 teams submitting blinded predictions, team Creighton scored third in terms of overall
accuracy. Team Creighton’s method was simple and straightforward, incorporated multiple expression data types (RNA-seq,
gene array, RPPA), and incorporated all profiled features (not only the ‘‘best’’ predictive ones). As an extension of the
approach, cell line data, from public datasets of expression profiling coupled with drug sensitivities (Barretina, Garnett,
Heiser) were used to ‘‘predict’’ the drug sensitivities in human breast tumors (using data from The Cancer Genome Atlas).
Drug sensitivity correlations within human breast tumors showed differences by expression-based subtype, with many
associations in line with the expected (e.g. Lapatinib sensitivity in HER2-enriched cancers) and others inviting further study
(e.g. relative resistance to PI3K inhibitors in basal-like cancers).

Conclusions: Molecular patterns associated with drug sensitivity are widespread, with potentially hundreds of genes that
could be incorporated into making predictions, as well as offering biological clues as to the mechanisms involved. Applying
the cell line patterns to human tumor data may help generate hypotheses on what tumor subsets might be more
responsive to therapies, where multiple cell line datasets representing various drugs may be used, in order to assess
consistency of patterns.
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Introduction

Response to targeted therapy may vary from patient to patient,

depending on the active pathways within the cancer being treated.

These active pathways might be inferred, using the molecular

profile of the cancer. As a step towards cataloguing molecular

correlates of drug response, which might eventually yield markers

for personalized therapy, recent studies have provided molecular

profiling data (including gene expression and mutation) on large

numbers of cancer cell lines (including ,60 breast cancer cell

lines), along with measurements of growth inhibitory effects for

specific drug compounds [1,2,3]. These data represent a valuable

resource for the possible development of molecular ‘‘signatures’’

that might eventually be used to predict drug response in patients.

While data are available for deriving candidate predictive

signatures of therapeutic response, there are a multitude of ways in

which the data may be analyzed. With the goal of identifying

analysis methodologies that may be applied here, the NCI-

DREAM consortium (DREAM standing for ‘‘Dialogue for

Reverse Engineering Assessments and Methods’’) recently spon-

sored a challenge (‘‘sub-challenge 1’’ of the DREAM7: Drug

Sensitivity Prediction Challenge), for research teams to use

molecular data to predict the sensitivity of breast cancer cell lines

to previously untested compounds. The Challenge participants

submitted their blinded bioinformatics-based predictions, which

were then evaluated empirically against the measured results, to

see which algorithms had the best performance. As stipulated by

the organizers, NCI-DREAM Challenge participants were invited

as collaborators in the main NCI-DREAM consortium paper [4],

which highlighted the top performing method, while providing

high level descriptions of the methods used by the other teams.

The purpose of this paper is to describe in more detail, what

ended being the third best performing method in the NCI-

DREAM challenge (out of 47 submissions in all). The method was

rather simple and straightforward in its approach, and did not

make much effort to select the ‘‘best’’ predictive molecular features

from the data, but rather weighted all available features according
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to their correlations with drug response. In this paper, we also

explore the potential of using this method to ‘‘predict’’ drug

response in human breast tumors, making use of data from The

Cancer Genome Atlas (TCGA), by which clear distinctions based

on tumor subtype could be observed.

Results

Basic approach
As part of the NCI-DREAM Challenge (‘‘sub-challenge 1’’),

drug sensitivity measurements were made for 31 different drugs on

53 breast cancer cell lines. For 35 cell lines (the ‘‘training set’’), the

drug sensitivity values were made available, along with molecular

data from a variety of platforms, including mRNA expression by

both sequencing (RNA-seq) and gene array, protein expression by

Reverse Phase Protein Arrays (RPPA), DNA methylation arrays,

exome sequencing, and SNP arrays. For 18 cell lines (the ‘‘test

set’’), the drug sensitivity values were withheld from the Challenge

participants. The identities of the drugs were also withheld until

after submission.

Figure 1 outlines the basic approach used by our NCI-DREAM

Challenge Team #398 (Creighton), for predicting drug response

based on molecular features. Of the molecular datasets provided

for breast cancer cell lines, three were used: gene expression array,

RNA-seq, and RPPA; the exome-seq and SNP array data were

thought, perhaps, to be too sparse for the purposes of prediction,

and DNA methylation data could optionally have been incorpo-

rated into our method but was not for the actual Challenge

submission. Each dataset was first analyzed individually, in order

to generate a set of predictions for the relative sensitivities across

cell lines for a given drug; the resulting prediction scores from each

platform were then averaged to obtain the final scores for

submission.

The analytical method used was rather simple and straightfor-

ward, which to a degree may set it apart from other methods. For

a given expression profile dataset, a matrix of correlations (by

Pearson’s) was constructed (across cell lines in the training set),

between the drug sensitivities (2logged GI50 concentrations) and

expression values. Within the matrix, each feature (e.g. gene or

protein) would have a correlation value for each of the 31 drug

compounds; a strong positive correlation would suggest that the

feature might be a marker of sensitivity (e.g. ERBB2/GRB7 for

lapatinib 2logGI50), and a strong negative correlation, a marker

of resistance. In the prediction phase of the analysis, the Pearson’s

correlation was computed between each drug sensitivity profile

(derived from the training cell lines) and each genomic profile (e.g.

of gene/protein expression) of the test cell lines. A high correlation

between drug sensitivity training profile and test sample genomic

profile, would suggest that the test sample would be more sensitive

to the drug (at least relatively speaking).

Notably, for each dataset, all features profiled were used in the

scoring; in other words, there was no filtering or pre-selection for

the ‘‘best’’ correlates or predictive features. Instead, all features

were weighted by their correlation with drug senstivity, with

features having little or no correlation pattern being weighted near

zero. The assumption here was that the molecular patterns

associated with drug sensitivity would be widespread, with perhaps

on the order of hundreds of genes that could be used to drive the

predictions.

Gene classifier significantly predicts drug sensitivity in
blinded test

Despite the simplicity of its approach, the prediction method of

Team Creighton performed well in the Challenge. Out of 47

teams that submitted predictions, Team Creighton ranked third

overall in terms of aggregated predicion accuracy. Using the global

wac-index [4], Team Creighton had a score of 0.570 (P = 2.06E-

05), while the Challenge winner, ‘‘teamfin’’, had a score of 0.583

(with 0.5 being the expected score by chance). In addition to the

aggregate score, the individual scores by compound could also be

examined by team (Table 1). In addition to overall scoring,

teamfin frequently performed well for individual drugs, while for a

few drugs, team Creighton performed just slightly better over

teamfin. Drugs where team Creighton performed notably less well,

compared to teamfin, include Chloroquine, FTase inhibitor I, and

Mebendazole.

By team Creighton’s approach, predictions were made based on

each individual molecular platform (gene array, RNA-seq, RPPA),

then averaged for the final predictions. At the same time, the

individual molecular platforms yielded predictions that were

largely concordant with each other, and each platform-specific

set of predictions performed similarly well as compared to chance

(Figure 2). This suggests that, regarding drug sensitivity, each

molecular data type examined contains potential information; at

the same time, averaging the three sets of results might be helpful,

in order to offset any relative deficiencies as observed in one

platform by the relative strengths in another.

Widespread molecular correlations with drug response in
cell lines

Our successful prediction results would suggest that the

molecular patterns underlying drug response may be widespread.

While our actual Challenge submission used all available features,

here we considered whether the predictive accuracies might have

been improved, by using only those features having the strongest

correlations (Table 2). Interestingly, based on analysis of the gene

array dataset, predictive accuracies were just slightly worse (though

still significant), when using the more restrictive feature sets. It

would seem (at least using our method) that the potential

improvement that might be had, by using only the top predictive

Figure 1. Schematic of the basic approach used to predict drug sensitivies. In the training phase of the analysis (using cell lines in the
‘‘training’’ set), the expression of each gene is correlated with the drug sensitivity measurements (e.g. GI50s). For the given drug, the associated
molecular correlation profile of sensitivity is then correlated with each of the expression profiles from samples in the ‘‘test’’ set (e.g. from the NCI-
DREAM test cell lines, or from human tumors in TCGA). The resulting prediction scores provide a relative measure for inferring drug sensitivity.
doi:10.1371/journal.pone.0071158.g001

Drug Response Prediction Using TCGA
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features, could be outweighed by the detriment of losing

information from the rest of the features that may miss an

arbitrary statistical cutoff. In addition, the RPPA dataset in

pariticular had only 131 protein features, and using rigorous

cutpoints there would leave us few features for assessing

correlation patterns.

In addition to its potential for prediction of drug response, the

molecular data may also provide biological clues as to the

mechanisms of drug response, in terms of the individual drug-to-

feature correlations. For example, using the NCI-DREAM RPPA

data, combined with the drug sensitivity measurements by Heiser

et al. that corresponded to the cell lines [2], the top correlations

between proteins and drug sensitivity could be visualized as a two-

dimensional matrix (Figure 3). A clustering of the correlations

indicated that there were at least two major groups of proteins and

or drugs, in terms of overall similarity or dissimilarity of patterns;

Figure 2. For the NCI-DREAM cell lines, drug response correlation patterns are concordant across different molecular platforms. For
the Challenge submission by Team #398 (Creighton), the gene array, RNA-seq, and RPPA datasets were first analyzed separately, and the resulting
prediction scores from each platform were then averaged to obtain the final scores for submission. Heat maps show correlations (by Spearman’s)
between drug sensitivity predictions for any two platforms (RNA-seq vs RPPA, gene array vs RPPA, RNA-seq vs gene array). Table shows overall
prediction accuracy score (c-index), for predictions based on either an example random model (with many iterations expected to average around 0.5),
gene array data alone, RNA-seq data alone, RPPA data alone, or the average of all three platforms. (The official Challege submission had training
scores ordered by GI50, as prescribed by the Challenge organizers, while this figure has training scores ordered by molecular correlation-based
predictions.)
doi:10.1371/journal.pone.0071158.g002

Table 2. Evalutation of alternative cutoff points for defining
top feature correlates (gene array dataset).

cutoff used average features per drug c-index p-value

none 18632 0.57264 7.05E-06

P,0.05 1316 0.56718 2.89E-05

P,0.01 352 0.5605 0.000142

P,0.001 62 0.55496 0.000475

Cutoff based on Pearson’s correlation between GI50 values and gene
expression (training set).
Average features per drug do not include ‘‘Drug26.’’
c-index, weighted average probablistic c-index, assessing predictive accuracy of
gene-based scores.
doi:10.1371/journal.pone.0071158.t002

Drug Response Prediction Using TCGA
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from what can be inferred from the markers and drugs involved,

these groups should roughly coincide with the differences between

estrogen receptor-positive (ER+) and ER2 cell lines. The matrix

visualization of marker-drug correlations highlighted a number of

interesting associations (many of which could have been antici-

pated), one of the most prominent being that between expression

of Her2 protein and sensitivity to HER2- inhibitors such as

Lapatinib or BIBW2992. Also, EGFR expression correlated with

sensitivity to Gefitinib and Erlotinib. ER and progesterone

receptor (PR) proteins did correlate with Tamoxifen sensitivity,

but interestingly, this was not one of the stronger correlations

observed (perhaps due in part to the relative underrepresentation

of ER+ versus ER2 breast cancer cell lines).

Drug sensitivity correlations within human breast tumors
Ultimately, we would like to be able to predict which subsets of

human cancers may be responsive to therapy. In this sense, the

‘‘testing’’ phase of our basic approach (Figure 1) could involve data

from human tumors as well as cell lines. To this end, breast cancer

cell line data, from public datasets of expression profiling coupled

with drug sensitivities—from Barretina et al. [1], Garnett et al. [3],

and Heiser et al. [2]—were used as training data to ‘‘predict’’ the

drug sensitivities in human breast tumors. The human data here

were from The Cancer Genome Atlas [5], which provides

comprehensive molecular profiles for over 500 tumors, at data

levels that include mRNA, protein (by RPPA assay), microRNA,

gene promoter methylation, DNA copy, and somatic mutation.

For each drug represented in the cell line dataset, the

correlations with gene or protein expression were projected onto

Figure 3. Global correlations between proteins and drug sensitivity measurement (using NCI-DREAM RPPA dataset and GI50 data
from Heiser et al. [2]). The subset of protein represented here, are those having correlations with significance of P,0.01 for at least two
compounds. Rows, proteins; columns, drugs. Blue, correlation with drug sensitivity; red, correlation with resistance.
doi:10.1371/journal.pone.0071158.g003

Drug Response Prediction Using TCGA
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the human tumor dataset, yielding a matrix of drugXtumor

sensitivity correlations. These sensitivity correlations could be

viewed as a heat map representation, for each cell line dataset that

was used to derive the molecular feature correlates (Figure 4). For

the Heiser dataset, both mRNA data and RPPA data were used

separately to generate correlation patterns.

As might be expected, based on previous analyses of the cell line

data [2], drug sensitivity correlations within human breast tumors

showed clear differences by expression-based subtype (e.g. luminal

A, luminal B, Her2-enriched, basal-like, and normal-like [5]). A

number of these subtype-specific associations appeared to be in

line with what might have been expected. For example, the Her2-

Figure 4. Drug sensitivity correlation patterns within human breast tumors. Three different datasets of cancer cell lines were examined
(Barretina, Garnett, and Heiser), each dataset consisting of both molecular profiles and drug sensitivity measurements. For each cell line dataset,
molecular correlation profiles of drug sensitivity were generated and applied to a separate profile dataset of human breast tumors (from TCGA). For
each heat map, rows represent drugs, and columns represent human tumors (ordered by mRNA expression-based subtype); blue, correlation with
drug sensitivity pattern; red, correlation with resistance pattern. For Barretina, all drugs with available data are shown, while for Garnett and Heiser,
drugs shown include Tamoxifen, Her2 inhibitors, and chemotherapeutic agents represented in multiple studies. For Heiser, both mRNA data and
RPPA data were used separately to generate correlation patterns (gray, no data).
doi:10.1371/journal.pone.0071158.g004
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enriched subtype showed sensitivity to anti-Her2 agents (e.g.

Lapatinib and BIBW2992), the luminal subtype showed sensitivity

to Tamoxifen, and the basal-like subtype showed sensitivity to

chemotherapeutic agents [6]. Overall, the separate results sets

using data from the three different cell line studies were

concordant, though individual descrepancies could be seen as

well (e.g. Docetaxol associations between Garnett and Heiser),

which illustrates the utility of using multiple data sources in order

to identify patterns of consensus.

Basal-like tumors show patterns of resistance to PI3K
inhibitors

While many of the drug sensitivity associations, as observed in

human breast tumors, could be verified using prior knowledge,

other associations could invite further consideration and study. For

example, when focusing on the subset of drugs that target the

PI3K pathway, basal-like tumors, in general, showed patterns of

resistance to PI3K inhibitors (Figure 5). The consensus pattern was

evident when considering not just multiple independent datasets,

but multiple drugs thought to target the same pathway. There

were some notable exceptions to the overall pattern, such as the

drug BEZ235 showing higher sensitivity in the basal-like group, as

has previously been observed in the cell lines [2]. Interestingly,

previous analyses of TCGA data, using gene and protein

signatures of pathway activation, had indicated that the PI3K

pathway was most active in the basal-like group. Genetic and

genomic alterations in the PI3K pathway were previously found in

all breast cancer subtypes, with basal-like cancers having more loss

of pathway inhibitors PTEN and INPP4B, and with luminal A

cancers having more mutations in PIK3CA.

Discussion

We may conclude that cancer cells have a molecular signal

indicative of potential drug response, based in part on the results of

the NCI-DREAM Drug Sensitivity Prediction Challenge, where

multiple analytical approaches, from various independent research

teams, could yield significant accuracies of prediction. Notably, the

Challenge used a rather small sample set, and even more robust

patterns would likely emerge as more data on additional cell lines

are considered. More data would also be needed, in order to assess

whether the level of precision such molecular-based predictions

can offer, would be useful for guiding treatment decisions for

specific patients. One caveat of these types of analyses is that the

predicted sensitivity rankings are relative, and in the case of

patients, translating the predictions into recommended therapeutic

doses may be difficult in some cases.

Given the good performance of our method in the Challenge

results, we can give some consideration to the patterns associated

with drug sensitivity in the human breast tumors. We find that

these patterns segregate tumors by expression-based subtype,

which should not be suprising, given the observed differences in

drug sensitivities in the cell lines by their subtype [2], as well as the

widespread molecular patterns that define the tumor subtypes [5].

These drug sensitivity-associated patterns may be helpful in

generating hypotheses, of what patient subgroups might best

respond to given therapy, though careful evaluation of all available

data (including any clinical trials data) would be needed to better

establish any associations.

Multiple cell line datasets representing various drugs that target

similar pathway may be considered, in order to assess consistency

of patterns as observed in human tumors. In particular, the

observation, of basal-like breast tumors showing patterns of

resistance to PI3K inhibitors, is intriguing, given that these tumors

were found previously to show elevated PI3K signaling [5,7]. One

might expect, given our previous experiences with targeting ER

and Her2, that those tumors having greater activity for the

pathway would be more sensitive to therapies blocking that

pathway; however, it is conceivable that not all pathways may

follow this model of oncogene addition. Figuratively speaking, it

may be, in some cases, that more water is needed to put out a

bigger fire. More data, and more analysis and integration of the

existing molecular datasets (from both cell lines and human

tumors), are needed, regarding the overall question of drug

response; however, this present study, coupled with the results of

the NCI-DREAM Challenge, might be considered to represent a

step forward.

Materials and Methods

Prediction of drug sensitivity in breast cancer cell lines
Prediction of drug sensitivity in breast cancer cell lines was

carried out as part of the NCI-DREAM Drug Sensitivity

Prediction Challenge [4], using the datasets provided by the

Challenge organizers (including Growth Inhibitor, or GI, mea-

surements, gene expression array, gene-level RNA-seq, and RPPA

proteomic datasets). Methods are described elsewhere (NCI-

DREAM manuscript in preparation). Briefly, for each dataset,

features were first logged and centered on the median across

samples. For a given dataset and the known GI values, a matrix of

correlations (by Pearson’s) was constructed (across cell lines in the

training set) between negative logged GI concentration values and

expression values. Using this matrix of [gene X drug] sensitivity

correlations, the Pearson’s correlation was then computed between

each drug sensitivity profile and each genomic profile (e.g. of

gene/protein expression) of the test cell lines, a high positive

correlation for a given cell line denoting relatively higher drug

sensitivity. Sensitivity predictions made using the three individual

datasets were then averaged, in order to derive the final scores for

submission. Example calculations in Excel, using the RPPA

dataset, are available in Data S1. The ‘‘weighted average

probablistic c-index,’’ used to assess the overall accuracy of a

given set of predictions, is elsewhere described [4] and was

computed here, using code provided by the Challenge organizers.

Prediction of drug sensitivity in human breast tumors
Prediction of drug sensitivity in human tumors was carried out

using public datasets [1,2] [3] [5], using a very similar approach

used for the Challenge submission as described above. The sets of

tumors analyzed in TCGA cohort were the same as those analyzed

previously as part of the initial data freeze [5], having either

mRNA data or data on multiple platforms (mRNA, mutation, and

RPPA data), as indicated. For TCGA datasets (gene array and

RPPA), gene features were normalized across samples to standard

deviations from median. Using a given cell line expression dataset

(Barretina mRNA, Garnett mRNA, Heiser mRNA, NCI-

DREAM RPPA), Pearson’s correlation was computed between

the expression of each gene and log (GI50 or IC50) across the cell

lines; each TCGA breast tumor expression profile (either gene

array or RPPA) was then correlated with each (cell line-derived)

drug response profile. For Barretina and Garnett datasets, only the

data from breast cancer cell lines were used in the analysis. For the

‘‘Heiser RPPA’’ correlations, the NCI-DREAM RPPA dataset

was projected onto the Heiser drug sensitivity measurements. Java

TreeView [8] represented matrix patterns as color maps. For

PI3K pathway, transcriptomic and proteomic signatures of activity

were previously applied to TCGA data [5,9].
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Data S1 Calculations for predictions of drug response
in cell lines, based on RPPA data (used for Challenge
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