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Abstract

Klotho, a transmembrane protein, which can be cleaved off as b-glucuronidase and hormone, is released in both, kidney and
choroid plexus and encountered in blood and cerebrospinal fluid. Klotho deficiency leads to early appearance of age-related
disorders and premature death. Klotho may modify transport by inhibiting 1,25(OH)2D3 formation or by directly affecting
channel and carrier proteins. The present study explored whether Klotho influences the activity of the Na+-coupled
excitatory amino acid transporters EAAT3 and EAAT4, which are expressed in kidney (EAAT3), intestine (EAAT3) and brain
(EAAT3 and EAAT4). To this end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus oocytes with and without
additional injection of cRNA encoding Klotho. EAAT expressing Xenopus oocytes were further treated with recombinant
human b-Klotho protein with or without b-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate (DSAL).
Electrogenic excitatory amino acid transport was determined as L-glutamate-induced current (Iglu) in two electrode voltage
clamp experiments. EAAT3 and EAAT4 protein abundance in the Xenopus oocyte cell membrane was visualized by confocal
microscopy and quantified utilizing chemiluminescence. As a result, coexpression of Klotho cRNA significantly increased Iglu

in both, EAAT3 or EAAT4-expressing Xenopus oocytes. Klotho cRNA coexpression significantly increased the maximal current
and cell membrane protein abundance of both EAAT3 and EAAT4. The effect of Klotho coexpression on EAAT3 and EAAT4
activity was mimicked by treating EAAT3 or EAAT4-expressing Xenopus oocytes with recombinant human b-Klotho protein.
The effects of Klotho coexpression and of treatment with recombinant human b-Klotho protein were both abrogated in the
presence of DSAL (10 mM). In conclusion, Klotho is a novel, powerful regulator of the excitatory amino acid transporters
EAAT3 and EAAT4.
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Introduction

Klotho is expressed in several tissues with particularly high

expression in kidney and choroid plexus of the brain [1,2]. The

extracellular domain of the Klotho protein may be cleaved off and

released into blood or cerebrospinal fluid and affect neighbouring

cells as b-glucuronidase or hormone [3,4]. Klotho-deficient mice

suffer from severe growth retardation and premature appearance

of a variety of age-related disorders resulting in death within less

than 5 months [5,6]. Conversely, the life span of mice is

substantially extended by Klotho overexpression [5,6].

Klotho is required for the inhibitory effect of FGF23 on 1a-

hydroxylase and thus on 1,25(OH)2D3 formation [2,6–8].

Functions of 1,25(OH)2D3 include up-regulation of renal Ca2+

and phosphate transport [9,10]. Largely due to excessive

1,25(OH)2D3 formation, plasma Ca2+ [11] and phosphate [10]

concentrations are increased in Klotho-deficient mice [2,7,8],

leading to vascular calcification [12,13] and growth deficit [2].

Beyond its impact on 1,25(OH)2D3 formation, Klotho may more

directly influence transport processes, including Na+, phosphate

cotransport [4,14], Na+/K+ ATPase [15], Ca2+ channels [16] and

renal outer medullary K+ channels [17].

Transport systems expressed in intestine, kidney and brain,

include the excitatory amino acid transporter EAAT3, which is

required for dicarboxylic amino acid absorption in intestine and

reabsorption in renal proximal tubules [18,19] as well as for

cellular excitatory amino acid uptake at the blood-brain barrier

[20], into neurons [21–28], into retinal ganglion cells [29] and into

glial cells [30–33]. Excitatory amino acid uptake into cerebellar

Purkinje cells is accomplished by the excitatory amino acid

transporter EAAT4 [23,25,34].

Compromised excitatory amino acid uptake in the brain may

result in excitotoxicity [35]. Deranged function of EAAT3 may

further contribute to the pathophysiology of schizophrenia [28,36–

41], epilepsy [42–46] and hepatic encephalopathy [47]. Impaired

function of EAAT4 has similarly been implicated in schizophrenia

[36,39].

The excitatory amino acid transporters EAAT3 and EAAT4 are

regulated by phosphatidylinositide (PI)- 3-kinase signaling [29,48–

50], which is in turn sensitive to klotho [51].
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To explore, whether Klotho participates in the regulation of the

excitatory amino acid transporters EAAT3 and EAAT4, cRNA

encoding EAAT3 or EAAT4 was injected into Xenopus oocytes

either without or with additional injection of cRNA encoding

Klotho. Moreover, EAAT3 or EAAT4-expressing oocytes were

treated with recombinant human b-Klotho protein. To elucidate

glutamate transport, glutamate-induced current was determined

utilizing the two electrode voltage clamp and EAAT3 and EAAT4

protein abundance by confocal microscopy and chemilumines-

cence.

Methods

Animal Experiments
Xenopus Oocytes were explanted from adult Xenopus Laevis

(NASCO, Fort Atkinson, USA). Xenopus Laevis frogs were

anaesthesized by a 0.1% Tricain solution. After confirmation

of anaesthesia and disinfection of the skin, a small abdominal

incision was made and oocytes were removed, followed by

closure of the skin with sutures. All animal experiments were

conducted according to the German law for the welfare of

animals and the surgical procedures on the adult Xenous laevis

were reviewed and approved by the respective government

authority of the state Baden-Württemberg (Regierungspräsidium)

prior to the start of the study (Anzeige für Organentnahme

nach 16).

Constructs
For generation of cRNA constructs were used encoding Klotho

[14], EAAT3 [52,53] and EAAT4 [54]. The constructs were used

for the generation of cRNA as described previously [55].

Voltage Clamp in Xenopus Oocytes
Xenopus oocytes were prepared as previously described [56].

cRNA encoding EAAT3 or EAAT4 (10 ng) with or without

additional 7 ng of cRNA encoding Klotho was injected on the

first day after preparation of the Xenopus oocytes [57]. All

experiments were performed at room temperature (about 22uC)

3 days after the injection. Two electrode voltage clamp

recordings were performed at a holding potential of -60 mV

[58]. Pipettes were filled with 3 M KCl and had resistances of

0.3–3.0 MV. The data were filtered at 10 Hz and recorded

with a GeneClamp 500 amplifier, a DigiData 1300 A/D-D/A

converter and the pClamp 9.2 software packages for data

acquisition and analysis (Axon Instruments, Foster City, CA,

USA) [55]. The oocytes were maintained at 17uC in ND96

solution containing 88.5 mM NaCl, 2 mM KCl, 1 mM MgC12,

1.8 mM CaC12, 5 mM HEPES, 0.11 mM tretracycline (Sigma,

Schnelldorf, Germany), 4 mM ciprofloxacin (Sigma, Schnelldorf,

Germany), 0.2 mM gentamycin (Refobacin�), 0.5 mM theoph-

ylline (Euphylong�) and 5 mM sodium pyruvate (Sigma,

Schnelldorf, Germany), pH was adjusted to 7.5 by addition of

NaOH [59]. The control superfusate ND96 contained 96 mM

NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2 and 5 mM

HEPES, pH 7.4. The flow rate of the superfusion was 20 ml/

min, and a complete exchange of the bath solution was reached

within about 10 s. L-glutamate was added to the solutions at a

concentration of 2 mM unless otherwise stated. Where indicat-

ed, recombinant human b-Klotho protein (10, 30 or 50 ng/ ml,

R&D Systems) and D-saccharic acid 1,4-lactone monohydrate

(DSAL, 10m M, Sigma, Schnelldorf, Germany) were added.

Detection of EAAT Cell Surface Expression by
Chemiluminescence

Oocytes were incubated with primary mouse monoclonal anti-

EAAC1/EAAT3 antibody (diluted 1:200, Invitrogen, USA) or

with monoclonal anti-HA antibody conjugated to Horseradish

Peroxidase (diluted 1:500, Miltenyi Biotec, Germany) in order to

determine HA-tagged EAAT4. Next, oocytes were incubated with

secondary, HRP-conjugated sheep anti-mouse IgG antibody (for

EAAT3; diluted 1:1000, GE Healthcare, München, Germany).

The individual oocytes were placed in 96 well plates with 20 ml of

SuperSignal ELISA Femto Maximum Sensitivity Substrate

(Pierce, Rockford, IL, USA) and chemiluminescence of single

oocytes was quantified in a luminometer (Walter Wallac 2 plate

reader, Perkin Elmer, Juegesheim, Germany) by integrating the

signal over a period of 1 s. The results display normalized relative

light units [60].

Immunocytochemistry
The oocytes were fixed in 4% paraformaldehyde for at least

4 h at room temperature. After washing with PBS, the oocytes

were cryoprotected in 30% sucrose, frozen in mounting medium

and placed on a cryostat. Sections were collected at a thickness

of 8 mm on coated slides and stored at 220uC. For

immunostaining, the slides were dried at room temperature,

fixed in aceton/methanol (1:1), washed in PBS and blocked for

1h in 5% bovine serum albumin in PBS. The primary

antibodies used were goat anti-EAAT3 antibody (for detection

of EAAT3, diluted 1:2500, Millipore Corporation, USA) or rat

anti-HA antibody (for detection of EAAT4, diluted 1:100, clone

3 F10, Roche, Switzerland). Incubation was performed in a

moist chamber overnight at 4uC. In the case of EAAT3,

binding of primary antibodies was visualised with a swine anti-

goat conjugated Alexa488 antibody (diluted 1:1000, Invitrogen,

Molecular Probes, Eugene, OR, USA). For detection of

EAAT4, a goat anti-rat conjugated Alexa488 antibody (diluted

1:200, Invitrogen, Carlsbad, California, USA) was used. The

oocytes were analyzed by a fluorescence laser scanning

microscope (LSM 510, Carl Zeiss MicroImaging GmbH,

Germany) with A-Plan 406/0.25. Brightness and contrast

settings were kept constant during imaging of all oocytes in

each injection series [61].

Statistical Analysis
Data are provided as means 6 SEM, n represents the number

of oocytes investigated. To avoid any bias from differences

between oocyte batches, statistical comparisons were always made

within batches of oocytes. Data were tested for significance using

analysis of variance (ANOVA) or student’s unpaired t-test, as

appropriate. Results with p,0.05 were considered statistically

significant.

Results

The present study explored whether Klotho influences the

excitatory amino acid transporters EAAT3 and EAAT4. To this

end, cRNA encoding EAAT3 or EAAT4 was injected into Xenopus

oocytes with or without additional injection of cRNA encoding

Klotho and the glutamate-induced current was taken as a measure

of the electrogenic glutamate transport.

As illustrated in Fig. 1, negligible glutamate-induced current

was observed in water-injected Xenopus oocytes or in oocytes

injected with cRNA encoding Klotho alone. In contrast, the

injection of cRNA encoding EAAT3 (Fig. 1 A,B) or EAAT4

(Fig. 1 C,D) was followed by the appearance of a marked

Klotho Sensitive EAAT’s
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inward current in the presence of glutamate. Additional

injection of cRNA encoding Klotho led to a significant increase

of the glutamate-induced current through EAAT3 (Fig. 1 A,B)

and EAAT4 (Fig. 1 C,D).

Kinetic analysis of glutamate induced currents was performed to

elucidate whether Klotho coexpression modifies the affinity of the

carriers. As illustrated in Fig. 2, the glutamate-induced current

increased as a function of the substrate concentration. The

maximal glutamate-induced current was significantly (p,0.05)

higher in Xenopus oocytes injected with cRNA encoding both

EAAT3 and Klotho (212.867.1 nA, n = 9) than in Xenopus oocytes

injected with cRNA encoding EAAT3 alone (161.364.3 nA, n = 9)

(Fig. 2 A). Similarly, the maximal glutamate induced current was

significantly (p,0.05) higher in Xenopus oocytes injected with

cRNA encoding both EAAT4 and Klotho (11.260.4 nA, n = 6)

than in Xenopus oocytes injected with cRNA encoding EAAT4

alone (5.060.3 nA, n = 6) (Fig. 2C). The glutamate concentration

required for half maximal glutamate-induced current was not

significantly different (p = 0.1815) between Xenopus oocytes injected

with cRNA encoding both EAAT3 and Klotho (34.566.9 mM,

n = 9) and in Xenopus oocytes injected with cRNA encoding

EAAT3 alone (48.767.4 mM, n = 9). Similarly, the glutamate

Figure 1. Effect of Klotho coexpression on electrogenic glutamate transport in EAAT3 or EAAT4 expressing Xenopus oocytes. A:
Representative original tracings of glutamate (2 mM)-induced current (Iglu) at 260 mV in Xenopus oocytes injected with water (i), or with cRNA
encoding Klotho alone (ii), EAAT3 alone (iii) or both, EAAT3 and Klotho (iv). B: Means 6 SEM (n = 7–36) of glutamate (2 mM)-induced current (Iglu) in
Xenopus oocytes injected without (left bars) or with (right bars) cRNA encoding EAAT3 and injected without (white bars) or with (black bars) cRNA
encoding Klotho.***(p,0.001) indicates statistically significant difference from Xenopus oocytes injected with cRNA encoding EAAT3 alone (ANOVA).
C: Representative original tracings of glutamate (2 mM)-induced current (Iglu) measured at a holding potential of 260 mV in Xenopus oocytes
injected with water (i), or with cRNA encoding Klotho alone (ii), EAAT4 alone (iii) or both EAAT4 and Klotho (iv). D: Means 6 SEM (n = 5–8) of
glutamate (2 mM)-induced current (Iglu) in Xenopus oocytes injected without (left bars) or with (right bars) cRNA encoding EAAT4, and injected
without (white bars) or with (black bars) cRNA encoding Klotho.**(p,0.01) indicate statistically significant difference from Xenopus oocytes injected
with cRNA encoding EAAT3 or EAAT4 alone (ANOVA).
doi:10.1371/journal.pone.0070988.g001
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concentration required for halfmaximal glutamate induced current

was not significantly (p = 0.9236) different between Xenopus oocytes

injected with cRNA encoding both EAAT4 and Klotho cRNA

(274.3648 mM, n = 6) and in Xenopus oocytes injected with cRNA

encoding EAAT4 alone (283.3678.2 mM, n = 6). It should be

pointed out, however, that the scatter of the data precludes safe

conclusions regarding effects of klotho on affinity of the glutamate

carriers.

The increased maximal transport rate upon Klotho coexpres-

sion could have been due to an increase of EAAT3/EAAT4

protein abundance in the cell membrane. Confocal microscopy

and chemiluminescence were thus employed in order to determine

the EAAT3/EAAT4 protein abundance in the cell membrane of

Xenopus oocytes. As illustrated in Fig. 3, injection of cRNA

encoding Klotho significantly enhanced the EAAT3 (Fig. 3 A,B)

and EAAT4 (Fig. 3 C,D) protein abundance in the cell membrane

of oocytes injected with cRNA encoding EAAT3 or EAAT4.

Further experiments explored whether the effect of Klotho

coexpression was mimicked by the pretreatment of EAAT3-

expressing Xenopus oocytes with recombinant human b-Klotho

protein. As shown in Fig. 4A, pretreatment of Xenopus oocytes

injected with cRNA encoding EAAT3 with recombinant human

b-Klotho protein (10, 30 and 50 ng/ ml) for 24 hours was followed

by a gradual increase in the glutamate-induced inward current, an

effect reaching statistical significance at the concentration of 30

ng/ ml. The effect of recombinant human b-Klotho protein (30

ng/ml) on the glutamate induced current of oocytes injected with

cRNA encoding EAAT3 was time-dependent and reached

statistical significance after 24 hours of treatment (Fig. 4B).

Accordingly, in the next series of experiments b-Klotho protein

was used at a concentration of 30 ng/ ml and an incubation time

of 24 hours.

An additional series of experiments explored whether the

effect of Klotho was related to its b-glucuronidase activity. To

Figure 2. Glutamate-induced currents as a function of glutamate concentration in EAAT3/EAAT4-expressing Xenopus oocytes
wihout or with Klotho coexpression. A, C: Means 6 SEM of glutamate-induced current (Iglu) as a function of glutamate concentration in Xenopus
oocytes injected with cRNA encoding EAAT3 (A, n = 9) or EAAT4 (C, n = 6) without (open circles) or with (closed circles) additional coexpression of
Klotho.*,**(p,0.05, p,0.01) indicate statistically significant difference from Xenopus oocytes injected with cRNA encoding EAAT3 (A) or EAAT4 (C)
alone (two-tailed unpaired t-test). B, D: Means 6 SEM of glutamate induced current (Iglu) normalized to Iglu at 5 mM glutamate as a function of
glutamate concentration in Xenopus oocytes injected with cRNA encoding EAAT3 (B, n = 9) or EAAT4 (D, n = 6) without (open circles) and with (closed
circles) additional coexpression of Klotho. The values were fitted to a hyperbola function.
doi:10.1371/journal.pone.0070988.g002
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this end, Xenopus oocytes, which were injected with cRNA

encoding both, EAAT3 and Klotho (Fig. 5A) or both, EAAT4

and Klotho (Fig. 5C), were treated with the b-glucuronidase

inhibitor DSAL (10 mM) for 24 hours prior the measurement.

As illustrated in Fig. 5A, C, pretreatment of Xenopus oocytes

with DSAL (10mM) abrogated the effect of Klotho encoding

cRNA injection on glutamate-induced inward current of oocytes

injected with cRNA encoding EAAT3 (Fig. 5A) and EAAT4

(Fig. 5C). Similarly, parallel pretreatment with b-glucuronidase

inhibitor DSAL (10 mM) for 24 hours abrogated the effect of

Figure 3. Effect of Klotho coexpression on protein abundance of both EAAT3 and EAAT4 in the Xenopus oocyte cell membrane. A, C:
Confocal images of EAAT3 (A) and EAAT4 (C) protein abundance in the plasma membrane of Xenopus oocytes injected with water (1st panel), injected
with cRNA encoding EAAT3 (A) or EAAT4 (C) without (2nd panel) or with additional coexpression of Klotho (3rd panel). B, D: Means 6 SEM of EAAT3
(B, n = 75–80) and EAAT4 (D, n = 82–87) protein abundance as determined by chemiluminescence in the plasma membrane of Xenopus oocytes
injected with cRNA encoding EAAT3 (B) or EAAT4 (D) without (white bars) or with (black bars) coexpression of Klotho. For comparison, water injected
oocytes (grey bars).**,***(p,0.01, p,0.001) indicate statistically significant difference from Xenopus oocytes injected with cRNA encoding EAAT3/
EAAT4 alone (ANOVA).
doi:10.1371/journal.pone.0070988.g003

Figure 4. Effect of recombinant human b-Klotho protein on electrogenic glutamate transport in EAAT3 -expressing Xenopus
oocytes. A: Means 6 SEM (n = 7–16) of glutamate (2 mM)-induced current (Iglu) in Xenopus oocytes injected with water (grey bar) or injected with
cRNA encoding EAAT3 and pretreated prior to measurements for 24 hours without (white bar) or with 10, 30 and 50 ng/ml recombinant human b-
Klotho protein (1st, 2nd and 3rd black bar respectively).*,**(p,0.05, p,0.01) indicate statistically significant difference from untreated Xenopus oocytes
(ANOVA). B: Means 6 SEM (n = 12–17) of glutamate (2 mM)-induced current (Iglu) in Xenopus oocytes injected with water (grey bar) or injected with
cRNA encoding EAAT3 pretreated prior to measurements with 30 ng/ml recombinant human b-Klotho protein for 0 hr (white bar) or 1, 6, 12 or 24hr
(black bars respectively).**(p,0.01) indicates statistically significant difference from untreated Xenopus oocytes (ANOVA).
doi:10.1371/journal.pone.0070988.g004
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recombinant human b-Klotho protein (30 ng/ ml) on glutamate

induced inward current of oocytes injected with cRNA encoding

EAAT3 (Fig. 5B) and EAAT4 (Fig. 5D).

Discussion

The present observations uncover a completely novel function

of Klotho, i.e. the up-regulation of the excitatory amino acid

transporters EAAT3 and EAAT4. Klotho increased the carrier

protein abundance in the cell membrane and thus enhanced the

Figure 5. Reversal of the effect of Klotho on electrogenic glutamate transport in EAAT3 or EAAT4 expressing Xenopus oocytes by b-
glucuronidase inhibitor DSAL. A: Means 6 SEM (n = 9–21) of glutamate (2 mM)-induced current (Iglu) in Xenopus oocytes injected with water
(grey bar) or injected with cRNA encoding EAAT3 alone (white bar) or both EAAT3 and Klotho (black bars). Where indicated, the oocytes were treated
with b-glucuronidase inhibitor DSAL (10 mM).**(p,0.01) indicates statistically significant difference from oocytes injected with cRNA encoding EAAT3
alone (ANOVA). ### (p,0.001) indicates statistically significant difference from oocytes injected with cRNA encoding both EAAT3 and Klotho
(ANOVA).B: Means 6 SEM (n = 11–23) of glutamate (2 mM)-induced current (Iglu) in Xenopus oocytes injected with water (grey bar) or injected with
cRNA encoding EAAT3 alone (white bar) or pretreated for 24 hours with 30ng/ ml recombinant human b-Klotho protein without (first black bar) or
with the presence of b-glucuronidase inhibitor DSAL (10mM ) (second black bar).***(p,0.001) indicates statistically significant difference from non-
treated oocytes injected with cRNA encoding EAAT3 alone (ANOVA). ##(p,0.01). indicates statistically significant difference from oocytes injected
with cRNA encoding EAAT3 and treated for 24 hours with 30ng/ ml recombinant human b-Klotho protein (ANOVA).C: Means 6 SEM (n = 5–23) of
glutamate (2 mM)-induced current (Iglu) in Xenopus oocytes injected with water (grey bar) or injected with cRNA encoding EAAT4 alone (white bar) or
both EAAT4 and Klotho (black bars). Where indicated, the oocytes were treated with b-glucuronidase inhibitor DSAL (10 mM).***(p,0.001) indicates
statistically significant difference from oocytes injected with cRNA encoding EAAT4 alone (ANOVA). ###(p,0.001) indicates statistically significant
difference from oocytes injected with cRNA encoding both EAAT4 and Klotho (ANOVA).D: Means 6 SEM (n = 9–21) of glutamate (2 mM)-induced
current (Iglu) in Xenopus oocytes injected with water (grey bar) or injected with cRNA encoding EAAT4 alone (white bar) and pretreated for 24 hours
with 30 ng/ ml recombinant human b-Klotho protein without (first black bar) or with the presence of b-glucuronidase inhibitor DSAL (10mM, second
black bar).***(p,0.001) indicates statistically significant difference from non-treated oocytes injected with cRNA encoding EAAT4 alone (ANOVA).
##(p,0.01). indicates statistically significant difference from oocytes injected with cRNA encoding EAAT4 and treated for 24 hours with 30 ng/ml
recombinant human Klotho protein (ANOVA).
doi:10.1371/journal.pone.0070988.g005
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maximal transport rate of the carriers. The effect apparently

required the hydrolysis of b-D-glucuronic acid by Klotho, as it was

reversed by the b-glucuronidase inhibitor. The effect of klotho on

EAAT3 and EAAT4 contrasts the effect of klotho on Na+ coupled

phosphate transporter NaPiIIa and NaPiIIb, which are both

donwregulated by klotho [14].

Klotho further up-regulates the Na+/K+ATPase [15,62], which

is required to maintain the chemical gradient for Na+ coupled

transport [63]. Thus, Klotho modifies excitatory anino acid

transport not only by up-regulating the carrier protein, but at least

in theory by additional maintaining the electrochemical gradient

for Na+.

The effect of Klotho on EAAT3 may contribute to the

regulation of renal tubular amino acid transport. In the kidneys,

the excitatory amino acid transporter EAAT3 accomplishes

dicarboxylic amino acid reabsorption in renal proximal tubules

[19] and defective EAAT3 leads to dicarboxylic aminoaciduria

[18]. Whether Klotho deficient mice suffer from amino aciduria is

– to the best of our knowledge – not known. Dicarboxylic amino

aciduria is expected only, if the lack of Klotho decreases the

maximal transport rate of EAAT3 below the filtered load.

In the brain, EAAT3 contributes to excitatory amino acid

transport at the blood-brain barrier [20], and to the clearance of

excitatory amino acids from synaptic clefts by cellular uptake into

neurons [21–28], retinal ganglion cells [29] and glial cells [30–33].

EAAT4 accomplishes excitatory amino acid transport into

cerebellar Purkinje cells [23,25,34]. Decreased cerebral or

cerebellar excitatory amino acid uptake in the brain is expected

to cause excitotoxicity [35,64]. Acccordingly, impaired function of

EAAT3 may lead to epilepsy [42–46] and hepatic encephalopathy

[65]. Moreover, deranged cellular excitatory amino acid uptake by

EAAT3 [28,36–41] or EAAT4 [36,39] may foster the develop-

ment of schizophrenia. Evidence for a role of glutamatergic

neurotransmission in the pathophysiology of psychiatric disorders

comes from studies using magnetic resonance spectroscopy, a

technique that non-invasively measures in vivo concentrations of

glutamate and other amino acids under different experimental

conditions [66]. Morover, recent clinical studies have demonstrat-

ed that a single subpsychotomimetic dose of ketamine, an

ionotropic glutamatergic N-methyl-D-aspartate (NMDA) receptor

antagonist, produces a rapid antidepressant response in patients

with major depressive disorder, with effects lasting up to 2 weeks

[67]. Along those lines, altered EAAT expression has been found

in schizophrenic and bipolar patients in frontal and temporal brain

regions [40,68–70]. Furthermore, administration of riluzole, a

drug that enhances glutamate uptake through EAATs, reverses

stress-induced motivational deficits and restores prefrontal BDNF

expression after corticosterone [71]. Because riluzole has antide-

pressant effects in both, animal models and human subjects, it may

represent the prototype for a novel class of antidepressants with the

modulation of glial physiology as a primary mechanism of action

[72].

Klotho deficiency has been shown to foster the degeneration of

mesencephalic dopaminergic neurons leading to decreased levels

of striatal dopamine [73]. The effect was, however, reversed by

vitamin D restriction [73] and is thus presumably not the result

from direct regulation of excitatory amino acid transport. Lack of

Klotho expression further leads to cognitive deficits [65]. Klotho

induces maturation of rat primary oligodendrocytic progenitor

cells, an effect attributed in part to stimulation of Akt and ERK

[47]. Klotho deficiency leads to a decrease of major myelin protein

expression due to a decreased number of total and mature

oligodendrocytes [65]. Klotho is downregulated in the aged brain,

which is paralleled by decrease of white matter and myelin

abnormalities [38,74]. Whether or not oligodendrocyte matura-

tion and survival is modified by the abundance of extracellular

excitatory amino acids and thus by EAAT3 and EAAT4 activities,

remains to be shown. Klotho abundance is downregulated by

TNFa and thus, deranged expression of Klotho may participate in

the pathophysiology of neuroinflammation [75]. It is tempting to

speculate that Klotho sensitivity of EAAT3 and EAAT4 contrib-

utes to neurodegeneration during neuroinflammation. Clearly,

additional studies will be required, however, to define the in vivo

relevance of Klotho-sensitive excitatory amino acid transport.

In conclusion, the anti-aging protein Klotho up-regulates the

excitatory amino acid transporters EAAT3 and EAAT4, an effect

which may participate in the regulation of renal tubular transport

of dicarboxylic amino acids and the clearance of excitatory amino

acids from synaptic clefts in the brain. Mechanisms regulating

glutamate cycling and metabolism including Klotho may be viable

drug targets for depression and schizophrenia.
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