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Abstract

Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals,
particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions.
Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but
such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to
unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more
robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset
to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset).
This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a
computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or
time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory
resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on
standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons
excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument
response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to
complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a
bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential
anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this
algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment.
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Introduction

Background
Imaging of Förster Resonant Energy Transfer (FRET) between

proteins conjugated with suitable fluorophores has become a

powerful tool for biologists to study cellular processes with spatial

and temporal resolution [1,2]. The efficiency of FRET varies as

the inverse sixth power of distance between fluorophores, typically

reaching 50% at 2–8 nm, and this strong distance dependence

allows the detection and/or quantification of protein-protein

interactions or changes in protein conformation. There are many

reported approaches to detect and quantify FRET, of which the

most widely used imaging modalities are probably spectral

ratiometric imaging of donor and acceptor fluorophore emission,

fluorescent lifetime imaging (FLIM) of the donor emission and

fluorescence anisotropy imaging of the acceptor emission. FLIM,

which maps the decrease in donor fluorescence lifetime due to

FRET, has a number of advantages, particularly for imaging in

living cells and organisms. The changes in donor lifetime upon

FRET are generally independent of the fluorophore concentra-

tion, the excitation and detection efficiencies and scattering and

sample absorption. Fluorescence lifetime measurements are also

relatively robust in the presence of spectral crosstalk and are

relatively insensitive to donor–acceptor stoichiometry, since it is

only the donor fluorescence that is measured. They therefore do

not require parallel spectral calibration measurements and are

independent of the optical system (instrument and sample), which

is particularly important for in vivo applications. Fluorescence

lifetime can also be used to distinguish between different
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fluorophores and to read out variations in the local fluorophore

environment [3].

FLIM may be implemented in the time domain using periodic

pulsed excitation or in the frequency domain using sinusoidally

modulated or pulsed excitation [4]. This paper is concerned with

time domain analysis, for which fluorescence decay profiles are

typically measured using time-correlated single photon counting

(TCSPC) in laser scanning microscopes or time-gated detection in

wide-field microscopes. For TCSPC, histograms are constructed

from single photon detection events across equally spaced time

bins that sample the whole decay profile, while for time-gated

imaging the decay profiles can be sampled at periodic or arbitrary

delays after excitation with equal or varying widths of time gate or

image integration time [5]. Fluorescence lifetime parameters may

be analytically determined from time-gated data using rapid

lifetime determination with either a mono- or bi-exponential

model, however higher precision may be obtained at lower signal

levels using nonlinear fitting [6]. Analysis of TCSPC data and

optimal precision with time-gated data requires the use of

nonlinear fitting [6].

For frequency domain FLIM, the change in phase and

modulation depth of the fluorescence signal with respect to the

excitation signal is measured at one or more modulation

frequencies. Again, lifetimes of mono-exponential decay profiles

may be calculated using simple analytical approaches while

complex decay profiles can be analysed using nonlinear fitting

algorithms.

Alternatively, FLIM data may be analysed graphically, e.g.

using the increasingly popular ‘phasor’ approach [7,8] that

provides an immediate indication of the complexity of fluorescence

decay profiles and can yield lifetime values for mono- or bi-

exponential decays by linear fitting to distributions of points on the

phasor plots – which can be done by inspection for ‘well behaved’

data. This approach is directly applicable to data acquired in the

frequency domain, to data acquired using TCSPC and also to

periodically sampled time-gated data [9] but has yet to be

extended to the more photon efficient time-gating strategies

employing non-periodically sampled data or overlapping time

gates [6,10].

A major challenge for the quantification of FLIM (and FLIM

FRET) is the need to acquire sufficient photons to achieve the

precision in lifetime determination required to distinguish and

quantify different FRET states. In general FLIM-FRET decay

profiles are not well described by a mono-exponential model; in

the simplest example of FRET between two fluorophores with

mono-exponential decay profiles conjugated to interacting pro-

teins, there will be a mixture of interacting and non-interacting

populations leading to a bi-exponential decay profile. The decay

profile will be considerably more complex if the donor itself

exhibits a multi-exponential decay, as is the case for, e.g. ECFP

[11]. It has been calculated that tens of thousands of photons are

required to accurately fit a bi-exponential decay [4,12]; this is at

least an order of magnitude greater the number available for each

pixel from typical live cell or in vivo FLIM-FRET experiments.

The rate at which fluorescence photons can be practically detected

is usually limited by photobleaching and/or phototoxicity and so

the minimum detected photon number requirements for FLIM

can constrain the (time lapse) resolution of time-course experi-

ments and can make image acquisition times unacceptably long

for high content/throughput assays.

To address the issue of FLIM measurements with low numbers

of detected photons per pixel, it is possible to ameliorate the fitting

challenge by assuming that there are only a limited number of

fluorescence lifetime components across an entire image or

dataset. This could result from, for example, a FRET biosensor

such as the Cameleon calcium sensor [13] that can be assumed to

be in an ‘open’ (low FRET) or ‘closed’ (high FRET) conformation,

depending on whether it is bound to a calcium ion. Similarly, a

donor-labelled protein can be considered to be bound or not

bound to its acceptor-labelled ligand. Global analysis may then be

used to simultaneously fit an entire dataset assuming that only the

fractional contributions of a limited number of unknown but

spatially invariant lifetime components vary from pixel to pixel.

State of the Art of Global Fluorescence Decay Analysis
Beecham demonstrated that the simultaneous analysis of

multiple datasets could be used to reduce the uncertainty in

parameter estimation as the combined data more strongly

constrains the error surface [14]. Verveer et al. [15] first applied

global analysis to FLIM data in the frequency-domain, using two

approaches. In the first approach, termed ‘lifetime invariant

fitting’ or ‘global binning’, the decay profile data are integrated

across the image to give a single decay profile that can be fitted to

a complex decay model. The lifetime components produced by

this fit are then fixed across the image and the contributions of the

two components are then determined by fitting on a pixelwise

basis. In the second approach, which we describe as ‘global fitting’,

the lifetimes and contributions were fitted simultaneously using a

truncated Newton algorithm. The global fitting approach is able to

exploit the spatial variation of contributions across the image that

is lost in the global binning approach, providing stronger

constraints on the lifetime estimates, albeit at the cost of

significantly more computation. Pelet et al. [16] compared these

two approaches on simulated and experimental TCSPC data and

found that global binning failed to converge to the correct lifetime

values for experimental data more often that the global fitting

approach. They additionally demonstrated an intensity image

segmentation based approach to determining initial guesses for the

unknown parameters that could improve the time required for

global analysis of a 64664 pixel TCSPC image from 3 hours to 12

minutes using MATLAB large scale optimisation routines.

Barber et al. [17] subsequently developed a global fitting

software package based on nonlinear least squares fitting for

time-domain FLIM data using a multi-exponential model with a

constant background that makes use of the sparse nature of the

Jacobian matrix to reduce the computational complexity. Using a

nonlinear least squares Levenberg-Marquart fitting algorithm,

they demonstrated that global analysis may be performed across

several datasets [18]. To further address the computational burden

of global fitting, Visser et al. [19] applied the TIMP separable

nonlinear least squares fitting package, written in the program-

ming language R, to global analysis of FLIM data. This approach

uses the fact that a multi-exponential decay may be expressed as

the linear sum of a number of nonlinear components and reduces

the memory requirements dramatically. It also reduces the

number of iterations required for convergence by reducing the

number of nonlinear parameters in the fit. TIMP did not extend

the variable projection approach to use analytical derivatives and

so used numerically computed derivatives.

Although these global fitting approaches are typically faster than

pixel-wise nonlinear analysis of image data, concerns remain about

the scalability of current nonlinear fitting methods to very large

datasets and more complex decay models. In recent years

improvements in the performance potential of new generations

of processors has come through the availability of multiple cores

able to process operations in parallel while the increase in

performance of individual cores has slowed. Previous global

analysis implementations have been strictly single threaded,

FLIMFit
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limiting their ability to capitalise on hardware improvements and

run efficiently on modern CPUs. Recent developments in high-

content and high-throughput FLIM microscopy platforms have

enabled the capture of datasets with hundreds or thousands of

time-resolved images in a single acquisition session [20–23]. Such

datasets can easily exceed several gigabytes in size and it is highly

desirable that the processing and analysis of the data is practical on

conventional workstations and does not become a bottleneck for

such assays. We believe that the software presented here addresses

this increasingly important need.

Our Approach
In this paper we employ a separable nonlinear least square

fitting algorithm based on the variable projection technique of

Golub and Pereyra [24], extending the approach employed by

TIMP [19] to use analytical derivatives, considered important for

ensuring convergence [25]. Crucially, in order to allow the scaling

of this approach to the global analysis of large datasets, the code is

carefully optimised from data-loading to display and processing of

results to minimise memory usage and implemented using

multithreaded parallel algorithms to enable effective scaling on

multicore processors. The resulting software tool is called FLIMfit

and we demonstrate that it is able to routinely analyse multi-well

plate FLIM datasets on conventional PC workstations in a

reasonable time. For example a 394 image multiwell time-gated

FLIM dataset with five time gates, with each image containing

6726512 pixels, required 32 seconds and 2 GB of memory to

analyse globally.

Accounting for instrumental and experimental

effects. Our software is able to account for instrumental effects

and experimental limitations such as background fluorescence

from plastic multi-well plates and contributions from previous

pulses due to the use of high repetition rate lasers. In addition, it

can analyse either time-binned TCSPC data or time-gated FLIM

data (with arbitrary temporal sampling profiles) and can account

for the temporal instrument response function (IRF) using either a

direct measurement of the IRF or a measurement of a reference

fluorophore with a known mono-exponential decay profile using

the delta-function convolution method [26,27]. Contributions

from a constant background of stray light, scattered excitation light

and a time-varying noise background can be taken into account if

appropriate background measurements are provided. The effect of

incomplete fluorescence decay profiles from previous excitation

pulses are included in the model, as previously demonstrated by

Rowley et al. [28].

Handling FRET donors with complex fluorescence decay

profiles. For the common case of a FRET system with a bi-

exponential donor, for example ECFP [29,30], paired with a

mono-exponential acceptor such as EYFP [31], the resulting

complex decay can be approximated by four exponential decay

components: two associated with the different donor conforma-

tions alone and two associated with these conformations under-

going FRET. We demonstrate a constrained model to fit such

data, where the FRET efficiencies of the two donor conforma-

tional states are linked via their relative quantum yields and the

relative contributions of the two states are assumed to be in

dynamic equilibrium. We apply the model to fit multiwell plate

time-gated FLIM FRET (ECFP/EYFP) data from an assay of the

aggregation of HIV Gag protein into virus like particles in HeLa

cells.

Global analysis of time-resolved fluorescence anisotropy

data. Our global fitting algorithm may also be applied to

quantitative readouts of time-lapse live cell imaging experiments

where fitting to complex decay models with modest numbers of

detected photons is required. One application is the readout of

homoFRET using time-resolved fluorescence anisotropy, e.g. [32–

35], which makes use of the fact that fluorescence excitation is

most efficient for radiation polarised parallel to the absorption

dipole moment of a fluorophore. The net polarisation of

fluorescence emission from an initially randomly orientated

ensemble of fluorophores therefore tends to follow that of the

excitation radiation as long as the rotational correlation time h (the

timescale over which fluorophore orientations are randomised due

to collisions with surrounding molecules) is longer than the

fluorescence lifetime. This is typically true for fluorescent proteins

(h,30 ns) [4]. When homo-FRET occurs, the emission becomes

depolarised [36] due to the angle between the emission dipole of

the excited fluorophore and the absorption dipole of the receiving

fluorophore. While steady-state anisotropy measurements are

sufficient for detecting FRET, time-resolved anisotropy measure-

ments can provide more quantitative information on the fraction

of fluorophores undergoing FRET and the FRET rate. Such

readouts, however, require the fitting of multiple rotational

correlation time components and, for pixel-wise analysis, therefore

require more detected photons to achieve a reasonable accuracy

than either FLIM or steady-state anisotropy measurements.

Global analysis of time resolved anisotropy data has previously

been demonstrated across a number of spectral channels [37–39],

but has not yet been applied to the analysis of image data.

Demonstration of FLIMfIT
To demonstrate the capabilities of the FLIMfit software, we

apply it to the analysis of five different datasets. First, we illustrate

the ability of our approach to rapidly analyse a large experimental

fluorescence lifetime dataset obtained from a multiwell plate array

containing mixtures of dyes using a global double-exponential

decay model. Second, we apply a similar analysis approach to the

readout of a FRET Rac1 biosensor (mTurquoise/YPET) based on

that developed by Hahn et al. [40,41] in live cells. Third, we

demonstrate how this software can enable the use of more complex

fitting models to analyse FRET with donors presenting complex

fluorescence decay profiles. Fourth, we demonstrate its application

to simulated photon-constrained polarisation-resolved TCSPC

imaging data of homoFRET between two identical fluorescent

proteins with a bi-exponential decay profile and show that it is

possible to perform global fitting across the image to successfully

recover the lifetimes, fractional contributions and rotational

correlation times and compare the results to fitting on a pixel-

by-pixel basis. Finally, we apply this approach to demonstrate

global analysis of a time series of experimental polarisation-

resolved TCSPC images of homo-FRET between PH domains of

AKT labelled with EGFP to readout accumulation of

PtdIns(3,4,5)P3 in the plasma membrane in live mouse embryonic

fibroblasts following stimulation with PDGF. We show that it is

possible to globally fit this 15 frame time series of 128|128 pixel

polarisation resolved FLIM images to extract rotational correla-

tion times associated with FRET and rotational motion at

sufficiently low photon numbers to be compatible with live cell

imaging.

Methods

Data Analysis
FLIM data model. We first consider the case of a single

population of fluorophores with a mono-exponential lifetime t
excited by a train of pulses with period Tand measured using a

system whose instrument response function (IRF) may be

described by a function gI (t). Using the identity for a geometric

FLIMFit
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series, the model fluorescence signal DP t,tð Þ arising from the train

of all previous pulses, excluding the current one may be expressed

as

DP t,tð Þ~
X?
n~1

exp
{t{nT

t

� �
~ exp {

t

t

� � 1

exp T=t

� �
{1

2
4

3
5 ð1Þ

and so the total model decay D t,tð Þ, including previous pulses,

may be expressed as

D t,tð Þ~ H tð Þz 1

exp T=t

� �
{1

2
4

3
5 exp {

t

t

� �
for{TvtvT ð2Þ

where H(t) is the Heavyside step function. We note that this

expression is equivalent to that derived by Rowley et al. [28]. If a

direct measurement of the IRF is available, the measured decay ~DD
can be expressed as the convolution of the model and the IRF,

~DD t,tð Þ~gI tð Þ �D t,tð Þ ð3Þ

In some cases it is not practical or possible to directly measure the

IRF. In this case a measurement of a mono-exponential reference

dye with lifetime tR, denoted gR tð Þ, may be used in place of an

IRF using the delta-function convolution method [27]. In this

case, the model decay ~DDR t,tð Þ may be expressed as

~DDR t,tð Þ~gR tð Þ � d tð Þz 1

tR

{
1

t

� �
D t,tð Þ

� �

~gR tð Þz 1

tR

{
1

t

� �
~DD t,tð Þ

ð4Þ

Using the commutivity of convolution, the model measured

intensity decay ~II from a mixed population of fluorophores with

lifetimes ti whose amplitudes are given by Ai may be expressed as

~II tð Þ~
X

i

Ai
~DD(ti,t) ð5Þ

We use the tilde to indicate that a decay model has been

convolved with the IRF.

ECFP FRET data model. We describe a model accounting

for FRET when ECFP is used as a donor, accounting for the bi-

exponential nature of ECFP. The efficiency of FRET transfer

between a donor and acceptor fluorophore is given by [42]

E~
1

1z R=R0

� �6
ð6Þ

where R is the distance between the donor and acceptor and the

Förster distance R0 [4] is defined by

R6
0~

9Q ln 10k2J

128p5n4NA

ð7Þ

where Q is the fluorescence quantum yield of the donor alone, k2

is the dipole orientation factor, n is the refractive index of the

medium, NA is Avogadro’s number and J is the overlap integral

between the donor emission spectrum and the acceptor excitation

spectrum.

ECFP [29,30] has two lifetime components which are associated

with distinct chromophore conformations. If the overall structure

and spectra of two conformations are similar [29], it is reasonable

to assume that k2, R and J will be approximately equal for the two

conformations in a given FRET system and so the Förster

distances for the two conformations will be proportional to their

respective donor-only quantum yields, which in turn will be

proportional to their lifetimes t1 and t2 [43–45] such that

R
(1)
0

R
(2)
0

 !6

~
t1

t2

ð8Þ

where R
(i)
0 is the Förster distance for the ith component. Although

these conditions are not strictly fulfilled by ECFP, which has been

reported to present two conformations with slightly different

emission spectra [46], it is a useful simplification that is more

realistic than the assumption of a monoexponential donor decay

profile. Accordingly, we can then express the FRET efficiency of

the second component, E2, in terms of the FRET efficiency of the

first, E1, and the two lifetimes by combing Equations 6 and 8 and

using the assumption that R is invariant between the conforma-

tions

E1

1{E1
~

t1

t2

: E2

1{E2
ð9Þ

E2~
t2

t1

: E1

1{E1 1{
t2

t1

� � ð10Þ

The two conformations exist in a slow equilibrium [46] and so

we may assume that, for a given system, the relative contributions

of the two conformations, b1 and b2, in a non-FRET state will be

the same as their relative contributions in the FRET state. The

non-FRET and FRET states may then be respectively associated

with the decay profiles ~FF0 tð Þ and ~FF1 tð Þ

~FF0 tð Þ~
X

i

bi
~DD ti,tð Þ ð11Þ

~FF1 tð Þ~
X

i

bi
~DD (1{Ei)ti,tð Þ ð12Þ

where i indexes the different conformations. For a bi-exponential

donor these two decay profiles are characterised by four

parameters: the donor lifetimes t1,t2,b1 and E1 since b2~1{b1

and E2 is defined by Equation 10. A model for a mixture of non-

FRET and FRET states may then be written

~II tð Þ~B0
~FF0 tð ÞzB1

~FF1 tð Þ ð13Þ

FLIMFit
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where B0 and B1 are the amplitudes of the non-FRET and FRET

populations respectively.

Time-resolved anisotropy data model. In the case of

polarisation resolved data we must consider the anisotropy of the

fluorophores. Considering a population of identical, randomly

oriented fluorophore it may be shown [4] that the fluorescence

intensity I polarised at an angle y to the excitation is given by

I t,yð Þ~ IT (t)

3
1z 3cos2y{1
� 	

:r(t)

 �

ð14Þ

where IT (t) is the total fluorescence intensity decay, which may

generally be expressed as a multi-exponential decay with lifetimes

tiand pre-exponential factors Ai, and r tð Þ is the time resolved

anisotropy. For convenience we define g(y)~3cos2y{1. If the

time resolved anisotropy follows a multi-exponential decay with

correlation times hj and initial anisotropy contributions rj , the

model becomes

I t,yð Þ~ 1

3

X
i

Aiexp {
t

ti

� �
: 1zg(y):

X
j

rjexp {
t

hj

� �" #
ð15Þ

The total initial anisotropy is defined as r0~
P

j rj . Accounting for

a measured instrument response function and contributions from

incomplete decays, the model measured decay may be expressed

in terms of a sum over one or more convolved single exponential

decay functions ~DDA t,t,yð Þ~g t,yð Þ �D(t,t) where g t,yð Þ is the

instrument response function measured at polarisation angle y.

~II t,yð Þ~ 1

3

X
i

Ai
~DDA ti,t,yð Þ

z
g(yp)

3

X
j

rj

X
i

Ai
~DDA

1

ti

z
1

hj

� �{1

,t,y

 ! ð16Þ

The instrument response functions may differ between polar-

isation angles if measurements are made with a polarising beam

splitter and two different detectors.

Instrument and background light. In addition to light

from the sample, the signal may be corrupted by unwanted

background light. This background generally takes one of three

forms

(1) a time-independent background, e.g. from room light or

detector dark noise, that may be accounted for by a constant

value Z

(2) scattered light from the excitation source that is not fully

blocked by the emission filter, that may be accounted for by

including a contribution S that is proportional to the IRF

(3) background fluorescence, e.g. from instrument or fibre-optic

cable autofluorescence when using UV excitation, that may

be accounted for by measuring the time-dependent back-

ground fluorescence, b(t,y), which may have a spatially-

varying intensity V in the absence of a sample and including

this contribution in the model.

The model including stray light may be written

M t,yð Þ~I t,yð ÞzS:g t,yð ÞzV :b t,yð ÞzZ ð17Þ

S, V and Z may be included as either local or global

parameters depending on whether they are expected to vary from

pixel to pixel or to be invariant across the image. These

parameters may be fitted but where possible should be measured

using data acquired from the instrument with control samples in

the absence of the fluorescent objects of interest, e.g. imaging

buffer only.

Global analysis using partitioned variable

projection. To perform global fitting across a large number of

decay profiles we use partitioned variable projection [24]. The

model shown in Equation 17 may be expressed as the linear sum

of a number of nonlinear functions. For global analysis, the

nonlinear functions are assumed to be constant across the data set

and so the total intensity may be written as

I (s)~W að Þa(s) ð18Þ

where I (s) is a vector containing the model decay at the sth pixel, a
is a vector of nonlinear parameters that are constant across the

dataset, W að Þ is a matrix whose columns contain the nonlinear

functions included in the model and a(s) is a vector of linear

parameters at the sth pixel. The nonlinear functions will vary

depending on the fitting problem specified and may include the

exponential decay functions or background components. For

example, in the case of a FLIM data set with a bi-exponential

decay and a spatially-varying scattered excitation light component,

the nonlinear matrix becomes

W að Þ~

~DD t1,t1ð Þ
..
.

~DD t1,tnð Þ

~DD t2,t1ð Þ
..
.

~DD t2,tnð Þ

g(t1)

..

.

g(tn)

2
664

3
775 ð19Þ

while the linear components are

a(s)~

A
(s)
1

A
(s)
2

S(s)

2
64

3
75 ð20Þ

In another example, for the case of a polarisation resolved data set

measured at two angles, y1 and y2, with a mono-exponential

fluorescence intensity decay profile with lifetime t and a bi-

exponential anisotropy decay profile with rotational correlation

times h1 and h2 a constant background, the nonlinear matrix

becomes

W að Þ~ 1

3

~DD t,t1,y1ð Þ
..
.

~DD t,tn,y1ð Þ

g(y1) ~DD c1,t1,y1ð Þ
..
.

g(y1) ~DD c1,tn,y1ð Þ

g(y1) ~DD c2,t1,y1ð Þ
..
.

g(y1) ~DD c2,tn,y1ð Þ
~DD t,t1,y2ð Þ

..

.

~DD t,tn,y2ð Þ

g(y2) ~DD c1,t1,y2ð Þ
..
.

g(y2) ~DD c1,tn,y2ð Þ

g(y1) ~DD c2,t1,y2ð Þ
..
.

g(y1) ~DD c2,tn,y2ð Þ

2
666666666664

3
777777777775
ð21Þ
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where we define ci~ t{1zh{1
i

� 	{1
for clarity. The linear com-

ponents are then

a(s)~

A
(s)
1

r
(s)
1 A

(s)
1

r
(s)
2 A

(s)
1

2
664

3
775 ð22Þ

Having expressed the model in a generalised form, the weighted

residual between the model and data to be minimised may be

written as

r(a,a)~
X

s,i

y
(s)
i {

P
j

Wi,j(a)a
(s)
j

s(s)
i

0
B@

1
CA

2

ð23Þ

where y
(s)
i is the decay measured for the sth pixel at the ith time/

polarisation point, s
(s)
i is the estimated error on the ith

measurement and Wi,j(a) refers to the ith measurement in the jth

column of W að Þ. We discuss our approach for estimating s(s)
i to

weight the residual function below.

We may rewrite Equation 23 in matrix form

r(a,a)~
X

s

�yy(s){ �WW(a)a(s)
�� ��2 ð24Þ

where �yy(s) is a column vector of the data measured for the sth pixel

weighted by the estimated error and �WW(a) is the decay matrix

weighted by the estimated error. Note that it is possible to express

the residual as the sum of independent calculations for each pixel

since the linear parameters for a given pixel are determined

exclusively by the data for that pixel. For a given set of nonlinear

parameters, the magnitude of the residual vector is minimised

when a(s)~ �WW(a){�yy(s), where �WW að Þ{ is the symmetric generalized

inverse of �WW að Þ. Therefore the linear variables may be eliminated

entirely from the residual after [24]

r að Þ~
X

s

1{ �WW{ að Þ �WW að Þ
� 	

�yy sð Þ�� ��2
~
X

s

r
sð Þ

2 (a)
��� ���2

ð25Þ

The quantity (1{ �WW{ að Þ �WW að Þ) is denoted P\
W(a) and can be

calculated by matrix decomposition of �WW að Þusing the QR method

[47]. Continuing the notation used by [24], r
sð Þ

2 að Þ~P\
W(a)�yy

(s) and

is known as the variable projection of �yy sð Þ: We now have an

objective function that can be expressed purely in terms of the

nonlinear parameters and so have reduced our minimisation

parameter space considerably. Our variable projection implemen-

tation is based on a modified version of the VARP2 code by

LeVerque [48].

Data weighting. A critical factor in non-linear fitting is the

choice of data weighting. For Poisson distributed data the variance

s2
i is equal to the expected value of the data. It is well known that

two common weighting approaches, Neymann weighting,

s2
i ~ min yi,1ð Þ and Pearson weighting, s2

i ~li að Þ, give biased

estimators of the true function parameters [49]. Kim and Seok

[50] recently presented a systematic investigation of the statistical

properties of several common estimator functions. They estimated

the bias and variance of the estimators by linearising the gradient

of the objective function around the true parameter values;The

gradient should of course be zero at the minimum point. As

previously observed they showed that Neymann and Pearson

weighting yield relatively efficient but biased estimators. They

noted that equal weighting, s2
i ~1, gives an unbiased estimator but

with higher variance on the parameter estimate. We use the

approximation s2
i ~SyiTs, where SyiTs is the measured value for

the ith time/polarisation point averaged over all pixels. This

approach allows the same weighted model function to be used for

each pixel and so significantly reduces the computation burden

compared to weighting each pixel independently. It is possible to

show that this weighting technique produces an unbiased

estimator even if the decay in different pixels varies significantly.

Consider first the expected value of the derivative of the objective

function with respect to the non-linear parameters a at the true

non-linear and linear parameter values, denoted (âa,âa). For clarity

we write the model function l
(s)
i (âa,âa)~

P
j

Wi,j(âa)âa
(s)
j and make

use of Equation 24.

{E
Lr(âa,âa)

Laj

� �
~{E

L
Laj

X
s,i

y
(s)
i {l

(s)
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� �2
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i
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ð26Þ

In the last equality we have used the fact that at the true

function minimum, l
(s)
i (âa,âa) ¼D E y

(s)
i

h i
by definition. The expect-

ed value of the derivative with respect to the linear parameters at a

given pixel s� will depend only on the data points for that pixel,

since
Ll

(s)
i (âa,âa)

La
(s�)
j

~0 for s=s�.

{E
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j
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For a global fitting problem with a moderate number of pixels

y
(s�)
i %

P
s’=s�

y
(s’)
i so the dependence of the average decay, and

therefore the weighting, on any given data point is negligible.

Using this approximation,

{E
Lr(âa,âa)

La
(s�)
j

" #
&

2npx

X
i

1P
s’=s�

y
(s’)
i

E y
(s�)
i

h i
{l

(s�)
i (âa,âa)

� � Ll(s)
i (âa,âa)

La
(s�)
j

~0

ð28Þ

Therefore average weighting yields an unbiased estimator of the

true parameters even if there is a range of disparate lifetime

components present across the image.

Nonlinear minimization. Nonlinear minimisation of the

residual defined by Equation 25 with respect to the parameters a is

performed using a modified Levenberg-Marquart (LM) routine

derived from the Minpack library [51]. The LM algorithm is a

widely used trust-region modification of the traditional Gauss-

Newton optimisation algorithm [52]. For fast and stable conver-

gence using the LM algorithm, we use analytical rather than

numerical derivatives when calculating the Jacobian matrix of

r2 að Þ. We use the approximation of Kaufman to obtain the

Jacobian of the projected residuals [24]

J (s)
j &{ P\

W(a)

L �WW

Laj

�WW{

� �
�yy(s)~{P\

W(a)

L �WW

Laj

a(s) ð29Þ

where J (s)
j is the derivative of the residual for the sth pixel with

respect to the jth nonlinear variable.

Multithreaded implementation. The computationally in-

tensive sections of the fitting algorithms are implemented in multi-

threaded C++ to exploit the increasing prevalence of multi-core

CPUs. A schematic flow chart of the main sections is shown in

Figure 1B. The initial loading of data from disk is performed by a

single thread loading consecutive images into a circular buffer

while a number of worker threads operating in parallel apply the

user selected thresholds to calculate image masks and the number

of pixels within each region. This part of the algorithm is limited

by the data transfer rate from disk and would benefit from use of a

solid state drive and/or disk array. The images are stored in virtual

memory for the next stage of the processing; if there is enough

memory they will be retained in main memory, otherwise they will

be reloaded as required. The data is then transformed, first

applying any smoothing and background subtraction specified and

then applying the image masks calculated earlier. The portions of

the data within the image masks are then copied into main

memory. Removing the requirement to store only the included

portions of the images in memory provides a significant reduction

in required memory when analysing images of sparsely seeded

cells, since a large fraction of the image is dark. This

transformation is calculated in parallel with worker threads

transforming images independently.

The computation time of the fitting process is dominated by the

variable projection that calculates the residuals at each iteration

and the calculation and the factorisation of the Jacobian. The

computation of the model functions does not factor significantly, as

it is only calculated once per iteration for the entire dataset, rather

than for each pixel. The variable projection is calculated in parallel

with each thread computing the projection for independent pixels.

Since for even a modest global problem there are many more

pixels than threads this will scale well to any realistic number of

CPU cores in a shared memory architecture.

We use a parallel hybrid Householder-Givens transform

approach to factorise the Jacobian across multiple cores based

on the approach of Cunha et al. [53]. The pixels are divided

evenly between threads. Each thread calculates the QR decom-

position of the rows of the Jacobian in blocks of up to 1,024 rows

by Householder reflection, combining the resultant matrices in

turn using Givens rotations. The rows of the Jacobian are

computed on demand, eliminating the requirement to store the

whole Jacobian before factorisation. This block size was chosen to

minimse the storage requirements without significantly affecting

the performance. Once the Jacobian rows for all pixels have been

factorised, the resultant matrices from each thread are merged in

turn.

After the fit, the linear parameters are calculated by back-

substitution in parallel for each pixel and the mean, standard

deviation, median, and interquartile range are calculated for each

fitted region. These statistics are calculated across each image in

parallel. Results are only stored for thresholded pixels, i.e.

complete images are constructed for display on demand.

The program is compiled for both 32- and 64-bit platforms. The

64-bit version is able to overcome the 2 GB memory limit imposed

by 32-bit Windows and can use the full memory capacity available

in modern workstations. All fitting reported here was performed

on using an Intel Core i7 870 quad-core processor clocked at

2.93 GHz with 8 Gb of main memory. For convenience we have

implemented a graphical user interface (GUI) in MATLAB

(Mathworks, MA, USA) that allows the user to load data from

multiple sources, to easily modify the fitting parameters and data

pre-processing settings, to apply segmentation and to generate

summary statistics and false colour maps of the fitted parameters.

The source code and compilation instructions for the software

used in this paper are provided in File S1. The latest version of the

source code and binary executables are available online [54].

To profile the core utilisation by stage in the algorithm, we used

the Visual Studio concurrency analysis tool (Microsoft, USA).

Note that this tool has a small overhead which increases the overall

fitting time when profiling.

Memory utilisation. The memory requirements of the

conventional LM algorithm are dominated by the storage of the

data (npx|ng ), stored as single precision float point, the

transformed residuals (npx|ng ), the Jacobian (npx|ng|p), and

the results of the fit (npx|nl ) stored as double precision due to

their use in intermediate calculations. Here, npx is the number of

pixels in the fit, ng the number of time gates or bins, p the number

of non-zero derivatives of the non-linear functions and nl the

number of linear parameters in the fit. For a bi-exponential model,

p~2 while for a FRET model with a bi-exponential donor, p~8.

Typically, LM algorithms use Householder reflections [55] to

factorise the Jacobian to determine the step direction, which

requires storing the entire Jacobian. The use of the hybrid

Householder-Givens algorithm for Jacobian factorisation elimi-

nates the requirement to store the complete Jacobian. This reduces

the memory requirements by 70–90% compared to the standard

Householder algorithm. This also nearly eliminates the depen-

dence of the memory utilisation on the model complexity, leaving

only the additional storage required for the results of the fit.

Generating initial parameter estimates. To generate

initial estimates of the nonlinear parameters to be determined,

all the decay profiles in the global data set are binned and the

mean lifetime StT is estimated. For multi-exponential fits the

initial estimates for the lifetime components are linearly spaced
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between 0:5StT and 1:5StT, with the smallest and largest lifetimes

set equal to those values. These parameters were found to give

good convergence over a wide range of lifetimes. When calculating

the mean lifetime, data before the peak of the IRF is discarded

and the time points are shifted such that the time is zero at the

peak of the IRF. For TCSPC data, the mean photon arrival time

StT over the acquisition window T is used, which is given by

StT~

Ð T

0
t:exp {t=t

� 	
dtÐ T

0
exp {t=t
� 	

dt
~t{

T

exp T=t

� �
{1

ð30Þ

We calculate the mean lifetime by applying a recursive

correction to the mean arrival time to obtain an estimate of the

mean lifetime StT following the methodology of Isenberg and

Dyson [56]. We use three iterations of the Newton-Raphson

method to solve Equation 30. Defining c~StT=T , the update step

is

ciz1~ci{
c0{ciz exp 1=cið Þ{1½ �{1

exp 1=cið Þc{2
i exp 1=cið Þ{1½ �{2

{1
ð31Þ

where c0~
StT=T . We found that three iterations was sufficient to

give a bias of less than 1% in the estimated mean arrival time for

all values of StTvT .

For time-gated data, the linearised least squares determination

method [57] is used to determine the mean lifetime, which is given

by

StT~{
N
P

i t2
i {

P
i ti

� 	2

N
P

i ti ln Ii{
P

i ti

� 	 P
i ln Ii

� 	 ð32Þ

where Nis the number of gates, and ti and Ii the time and intensity

of the ith gate respectively.

Estimating confidence intervals on globally fitted

parameters. To calculate confidence intervals for the globally

fitting parameters we used full support plane analysis [4,58,59].

Briefly, for each fitted parameter an optimisation is performed to

determine the amount by which the parameter must change to

produce a statistically significant change in the x2. At each step the

new parameter value is held constant while the other parameters

are refitted. This process is repeated to find the upper and lower

confidence limits on all parameters. We use the TOMS algorithm

748 for root finding [60], implemented in the Boost C++ library,

to find the required parameter value. The statistically significant

change required, ~xx2, is determined using the F statistic

~xx2

x2
min

~1z
1

v
F v,pð Þ ð33Þ

where v is the number of free parameters in the fit, p is the

required confidence interval, and F v,pð Þ is the F statistic for the

required values of v and p. In the present analysis we use p~0:05
to estimate the 95% confidence limits on the parameters and have

presented the larger of the lower and upper confidence intervals.

We note that the confidence intervals represent the confidence

based on statistical uncertainty and will not account for any biases

due to, for example, model inaccuracies.

Sample Preparation
Experiment 1: Multiwell plate rhodamine dye lifetime

unmixing. Dye mixtures of Rhodamine B and Rhodamine 6G

were prepared by dissolving pure dye powder into spectroscopic

grade methanol and then subsequent dilution in MilliQ to give a

final 10 mM solution of each dye. The Rhodamine B and

Rhodamine 6G solutions were mixed in the following ratios;

Figure 1. Profiling of the CPU and memory requirements of the algorithm. (A) Fractional core activity of the four cores while performing the
fit in Experiment 1, colour coded by algorithm stage as shown in the flowchart in (B) which shows the main stages of the algorithm. (C) CPU time
spent on the different algorithm stages in Experiment 1. (E) Memory requirements for a global fit against image number for (blue) a five
672|512frame time gated FLIM dataset, (red) a 256|256|256TCSPC dataset and (green) a 128|128|256 two channel polarisation resolved
dataset. Numbers exclude the memory required for the MATLAB runtime engine (300 MB).
doi:10.1371/journal.pone.0070687.g001
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Columns 1,2; 0:1, Columns 3,4; 1:4, Columns 5,6; 2:3, Columns

7,8; 3:2, Columns 9,10; 4:1, Columns 11,12; 1:0.

Cell preparation. All cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) (Gibco, USA) supplemented

with 10% fetal calf serum (Gibco, USA), 0.5% penicillin/

streptomycin and 4 mM L-glutamine (growth media). Cells were

maintained at 37uC, 5% CO2 and grown until 80–90% confluent

in T75 flasks (Corning, USA) before passaging using Trypsin-

EDTA to detach the cells. For imaging fixed cells in multiwell

plates, cells were fixed by incubation with 4% paraformaldehyde

for fifteen minutes and washed twice with phosphate buffered

saline (PBS).

Experiment 2: Multiwell plate FRET assay of inhibition of

Rac1-Pak1 interaction. COS-7 cells (ECACC, cat. no.

87021302) were transfected with a 2:1 ratio of mTurquoise-

Rac1 and YPet-PBD plasmid DNA [40,41] at a final concentra-

tion of 2 mg/ml by electroporation using an Amaxa Nuclofector II,

program W-001, seeded in 96 well plates (mclear, Greiner) and

allowed to settle overnight in culture medium. The cells were

starved in DMEM supplemented with 0.5% FCS for three hours.

Cells were then incubated with varying concentrations of the PAK

inhibitor IPA-3 [61] (1,19-Disulfanediyldinaphthalen-2-ol, Sigma-

Aldrich) for one hour. Cells were stimulated with 100 ng/ml

Epidermal Growth Factor (EGF) for fifteen minutes and then

fixed.

Experiment 3: Multiwell plate FRET assay of inhibition of

HIV-1 Gag aggregation. HeLa cells (ECACC, cat. no.

93021013) were seeded in 96 well plates 24 hours prior to

transfection. Immediately before transfection the cells were

washed in PBS and the growth media replaced with Optimem 1

reduced serum media (Gibco, USA). Transfections were per-

formed using Lipofectamine 2000 (Invitrogen). Transfection mixes

were prepared following manufacturer’s instructions using a total

of 150 ng of plasmid DNA per well with a 2:1 ratio of lipids to

DNA. The transfection mixes were left on the cells for 6 hours.

Cells were then washed in PBS and the media replaced with

growth media. The addition of NMT inhibitor doses was

performed at the same time as the lipofection, with the NMT

inhibitor also being diluted into the Optimem 1 used to seed the

cells prior to transfection. Transfections were then carried out as

described above. The cells were fixed after 24 hours.

Experiment 5: Live cell time-resolved anisotropy imaging

of AKT-PH accumulation. Immortalised Mouse Embryonic

Fibroblasts (MEFs, as described in [41]) were transfected with

3 mg/ml EGFP-AKT-PH plasmid DNA by electroporation using

an Amaxa Nuclofector II, program A-023, seeded onto glass

bottom dishes (MatTek, MA, USA) and allowed to settle overnight

in culture medium. Before imaging the cells were starved in Hanks

Balanced Salt Solution for three hours.

Time-gated Imaging of Multiwell Plate Data
Samples were excited using a fibre-laser pumped superconti-

nuum source (Fianium UK Ltd, SC400-6) with a repetition rate of

60 MHz or a frequency doubled, Ti:Sapphire laser with an

80 MHz repetition rate. Images were recorded using an Orca

ER2 (Hamamatsu, Japan) with 262 binning, providing 672|512
pixels. To account for the IRF, finely sampled reference

measurements were made at the same excitation and emission

wavelengths as used for imaging using 20 mM DASPI in MilliQ

purified water (Millipore, USA) for ECFP or mTurquoise

measurements and 20 mM Erythrosin B in MilliQ for Rhodamine

B/Rhodamine 6G measurements. Fixed cells were imaged in PBS

at room temperature.

Experiment 1: Multiwell plate rhodamine dye lifetime

unmixing. Imaging was performed using the automated

Nipkow spinning-disk (CSU-X, Yokogawa, Japan) based FLIM

multiwell plate system described in [22] with a 40x CFI PLAN

Fluor ELWD 0.60 NA objective (Nikon, Tokyo, Japan). The

sample was illuminated using the supercontinuum source with a

465/30 nm excitation filter and a 525/50 nm emission filter. For

each field of view (FOV), six time-gated images with a gate-width

of 2000 ps and integration times of 1 s per gate were recorded.

Three FOV were recorded per well. An oval segmentation mask

with ,42% coverage was applied to the images to approximate

the coverage observed with dense cell data.

The relative contribution to the fluorescence decay of each dye

depends on the quantum yield and spectral characteristics of the

dyes. We fitted a decay profile from a pure sample of each dye to a

single exponential model to find the pre-exponential factor Ai,

which then allowed us to determine the pre-exponential factor per

micromole of dye, Mi~Ai=Ci
, where Ci is the molar concentra-

tion of each dye in its pure solution. We calculated the expected

relative contributions AB and A6G of a mixture of Rhodamine B

and Rhodamine 6G with respective molar concentrations CB and

C6G using

AB~
CBMB

CBMBzC6GM6G

,A6G~
C6GM6G

CBMBzC6GM6G

ð34Þ

Experiment 2: Multiwell plate FRET assay of inhibition of

Rac1-Pak1 interaction. Imaging was performed using an

automated widefield FLIM multiwell plate system with a 40x

LUCPlanFLN 0.6 NA objective (Olympus, Japan). The sample

was excited at 435 nm using the frequency doubled Ti:Sapphire

laser and emission recorded with a 483/32 nm filter. Five time-

gated images were acquired for each field of view (FOV) with a

temporal gate-width of 1000 ps and integration times of 1 s per

gate. Eight FOV were recorded per well. Fluorescence intensity

images of the acceptor were recorded using a mercury fluores-

cence lamp with a 545/30 nm excitation filter and 610/75 nm

emission filter.

Experiment 3: Multiwell plate FRET assay of inhibition of

HIV-1 Gag aggregation. Imaging was performed using the

automated Nipkow spinning-disk based FLIM multiwell plate

system described in [23] with a 40x LUCPlanFLN 0.6 NA

objective (Olympus, Japan). The sample was excited using the

supercontinuum source with a 434/17 nm excitation filter and

emission recorded with a 483/35 nm filter. Seven time-gated

images were recorded for each field of view (FOV) with a temporal

gate width of 3000 ps and integration times of 2.3 s per gate. Four

FOV were recorded per well.

Time-resolved Anisotropy Imaging Using Tcspc
Experiment 5: Live cell time-resolved anisotropy imaging

of AKT-PH accumulation. Time-resolved fluorescence anisot-

ropy imaging was performed using a confocal scanning micro-

scope (TCS SP5, Leica Microsystems). The sample was excited at

465 nm using a frequency doubled Ti:Sapphire laser. The

polarisation state of the excitation light was controlled using a

cube polariser and a half-wave plate. GFP emission was recorded

using a 528/38 nm emission filter. The confocal pinhole was set to

one Airy unit. Emission light was split into parallel and

perpendicular components using a polarising beam splitter cube

and recording simultaneously using hybrid photomultipliers

(HPM-100-40, Becker & Hickl, GmbH). Photon counting was
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performed using a (SPC830, Becker & Hickl, GmbH) TCSPC

board. A 406 0.75NA objective was used and 128|128 pixel

images recorded with 256 time-bins over a measurement period of

12.5 ns with a total integration time per image of 60 s. An IRF

was recorded using excitation light scattered from a coverslip with

edge-overlapping filters and the half-wave plate rotated until the

peak of both channels was approximately equal. The g-factor

representing the polarisation response of the instrument [4] of the

system was determined using a 20 mM Rhodamine 6G sample in

MilliQ water assuming that the residual anisotropy should be zero

since Rhodamine 6G has a short (,200 ps) anisotropy decay. The

relative magnitudes of the IRF in each channel were adjusted so as

to compensate for their relative sensitivities as determined by the

measured g-factor. Time lapse TCSPC images were recorded

every two minutes and the cell was stimulated with 50 ng/ml

PDGF after six minutes. In total, 15 images of 128|128 pixels

were recorded. Due to the low signal levels, a 3|3mean

smoothing kernel was applied to each the image representing

each time-bin of the data by convolution to reduce the error in the

local parameter estimates.

Data Simulation
Experiment 4: Simulated TR-FAIM homo-FRET

data. Polarisation resolved TCSPC data of fluorophores with

a bi-exponential fluorescence decay profile undergoing homo-

FRET leading to a bi-exponential anisotropy decay profile was

simulated in MATLAB with a time window of 12.5 ns for a

simulated pulse repetition rate of 80 MHz. The model, before

accounting for incomplete decays and a simulated instrument

response function takes the form

I t,yð Þ~ I0

3

X
i

b1exp {
t

t1

� �
z 1{b1ð Þexp {

t

t2

� �� �

: 1zg(y): r1
:exp {

t

h1

� �
zr2

:exp {
t

h2

� �� �� � ð35Þ

where b1 is the fractional contribution of the long component of

the intensity decay and I0 is the peak intensity. The data was

simulated for two detectors polarised parallel and perpendicular to

the excitation light, i.e. yE~00 and y\~900. Using Equation 14,

g(yE)~2=3 and g(y\)~{1=3. The model was convolved with a

Gaussian IRF with a full width half maximum of 150 ps. The

lifetimes of the fluorescence decay components were set to be

t1~3:0ns and t2~1:2ns with a fractional contribution of the long

component b1~0:6. The rotational correlation times were set to

h1~30ns and h2~1:0ns, i.e. of the order expected for a

fluorescent protein fusion construct undergoing homo-FRET.

The 256|256 pixel simulated image was split into three regions

with initial anisotropy contribution of the short component r2set to

0.1, 0.2 and 0.3. In all three regions the total initial anisotropy

r0~0:4. The initial intensity I0 was set such that there were on

average 103total integrated counts in each pixel and Poissonian

noise was added to each decay using the MATLAB function

poissrnd. These simulation parameters were chosen to approxi-

mate realistic values for cell imaging data, with the lifetimes

selected to be similar to those of common cyan fluorescent

protein variants such as ECFP and Cerulean [62]. In common

with Experiment 5, a 3|3 mean smoothing kernel was applied to

each the image representing each time-bin of the data by

convolution.

Image Segmentation
In Experiment 2, automatic image segmentation was performed

on the integrated intensity image and a corresponding acceptor

intensity image to identify individual cells expressing both donor

and acceptor. To identify cells above the background, a size-tuned

nonlinear top-hat (nTh) transform [63] was applied to the

mTurquoise integrated intensity image. This method applies the

pixelwise transform

NTh J De,kð Þ~ J:SJTe

SJTkeð Þ2
, kw1 ð36Þ

to the integrated intensity image J where S � � �Te denotes

averaging with a square mask of width e. This transformation

locally enhances bright pixels in region of approximately size

esurrounded by a dim region of size ke. The mask radius ewas set

to the approximate size of cells, 200 pixels, while relative

background radius k was set to 2. The transformed image was

then thresholded at a value of 0.1. Since the COS-7 cells were

relatively densely seeded regions identified by this method often

contained more than one cell. A marker based watershed

segmentation routine [64] was applied to identify individual cells

from the thresholded regions, exploiting the fact the mTurquoise

fluorescence is higher in the cell nucleus in this cell system. Briefly,

ultimate erosion of the thresholded image was calculated by

iterative erosion to identify the peaks associated with the bright cell

nuclei. Markers separated by fewer than 20 pixels were assumed to

belong to the same nucleus and so were merged. The remaining

peaks were used as markers in a watershed transform, which

identifies the boundaries between objects by ‘flooding’ the regions

around the markers [65]. The cell regions were then filtered

according to three criteria. Regions with a total area of fewer than

4000 pixels were rejected since this is significantly smaller than the

average cells size and likely to be associated with cell debris. Since

we are only interested in cells expressing both mTurquoise-Rac1

and YPet-PBD, the regions were then thresholded based on the

fluorescence intensity in the acceptor channel. Regions below the

threshold were rejected.

Results

Global Fitting of Multiwell Plate Fluorescence Lifetime
Data

Experiment 1: Multiwell plate rhodamine dye lifetime

unmixing. To illustrate global fitting of large datasets we

analysed a 96 well plate arrays containing a mixture of

Rhodamine 6G and Rhodamine B in water at six different

relative concentrations. These are both fluorescent dyes reported

[66] to present mono-exponential decays with lifetimes 4.08 and

1.52 ns respectively. FLIM images consisting of six time-gated

images were acquired for each FOV and four FOV were acquired

per well. This produced 384 FLIM images and a total of 5:4|107

pixels/decays. The dataset was fitted globally to a bi-exponential

model and the analysis time, including loading the data, was 54

seconds and required 4.7 GB of main PC memory. The fitted

lifetimes were t1~3:947+0:004ns and t1~1:518+0:001 ns, in

reasonable agreement with literature [66]. Figure 2A shows a plate

map of the contribution of Rhodamine 6G across the plate and a

plot of the measured contribution against the actual contribution.

The CPU utilisation during the fitting process is shown in

Figure 1A, colour coded by algorithm stage. For comparison, a

pixel-wise single exponential decay analysis was also performed,

which took 219 seconds to analyse the entire dataset.

FLIMFit
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Experiment 2: Multiwell plate FRET assay of inhibition of

Rac1-Pak1 interaction. To demonstrate the ability of the

fitting software to analyse biological multiwell plate FLIM FRET

data, we performed global fitting on a FRET dataset assaying the

effect of the p21-activated kinase (Pak1) inhibitor IPA-3 [61] on

the interaction between Rac1 and Pak1 in COS-7 cells. Rac1 [67]

is a small GTPase involved in cell growth and motility, among

other processes, that is known to bind Pak1 in its active form

[68,69]. Here we used a modified version of the intermolecular

FRET biosensor, FLAIR [40,41], consisting of a mTurquoise-

Rac1 construct and YPet conjugated to the p21-binding domain of

Pak1 (PDB). mTurquoise is a fluorescent protein with a spectral

profile similar to that of ECFP but which exhibits a mono-

exponential decay profile [70]. This enables the FLIM FRET

analysis to be performed using a bi-exponential decay model

where the long lifetime and short lifetimes may be associated with

donor only and interacting populations respectively.

The dataset comprising 394 FOV over a range of doses of IPA-3

was globally fitted to a bi-exponential decay model. The images

were segmented as described in the methods section. In total,

1,508 cell regions were identified. In a random subset of fifty fields

of views, the automatic segmentation was compared against

manual segmentation in order to determine the segmentation

accuracy. In each field of view we counted the number of correctly

identified cells (TP), false positives (FP) and false negatives (FN).

We could then calculate the hit rate, defined here as TP/(TP+FN).

We also assessed the quality of the region boundaries and counted

regions containing more than one cell (M) and the number of

regions that missed portions of the true cell extent (IN). In that

subset, we found TP = 137 cells, FP = 5 cells (3.6%), FN = 8 cells

(5.5%), giving a hit rate of 87%. Additionally M = 7 (5.1%) and

IN = 14 (10.2%). An example of the segmentation results are

shown in Figure 3B. Since the background fluorescence from the

plastic plates is not negligible at the wavelengths used to excite

mTurquoise, we included a time varying background in the fitting

model that was acquired from a measurement of the fluorescence

decay profile of a well filled with PBS. We fitted to a double

exponential model across all FOV and the analysis took 32

seconds and required 2 Gb of memory. The globally fitted

lifetimes were 3:624+0:003 ns and 1:085+0:006 ns, correspond-

ing to the unbound and bound mTurquoise-Rac1 states respec-

tively. Figure 3A shows representative false colour maps of the

interacting fraction and Figure 3C shows the fractional contribu-

tion of the short lifetime associated with the interacting population

as a function of IPA-3 concentration, where the fractional

contributions are averaged over each segmented cell. We fitted a

dose-response curve to this data using nonlinear fitting to the Hill

equation. This gave an EC50 value of 2.59 mM, which is close to

the value reported in the literature of 2.5 mM [71].

Experiment 3: Multiwell plate FRET assay of inhibition of

HIV-1 gag aggregation. We have also demonstrated the ability

of our fitting software to account for the complex decay profile of

ECFP as a FRET donor by applying it to a FLIM-FRET assay of

Gag protein aggregation in HeLa cells [22,23] and its response to

the NMT inhibitor DDD85646 [72]. HIV-1 Gag proteins are

responsible for enabling the assembly of nascent HIV-1 virions at

the cell membrane [73] and produce virus like particles (VLPs)

even in the absence of other viral proteins and enzymes. They are

therefore often used as a model system for the late stages in the

HIV-1 lifecycle. VLP formation may be monitored using a FRET

aggregation assay by co-transfecting cells with Gag proteins

stochastically labelled with donor (ECFP) and acceptor (EYFP)

fluorophores that undergo FRET when colocalised in Gag protein

aggregates. The NMT inhibitor prevents the formation of VLPs

and was used to obtain dose response curves of the Gag

aggregation. In our previous study [23], the analysis was restricted

to a single exponential decay model that provided a semi-

quantitative readout. For further quantitative analysis, however, it

would be useful to determine the relative fractions of Gag

monomers and VLP-bound Gag proteins and an estimate of the

average FRET efficiency of proteins in VLPs by fitting to a more

complex decay model. Accordingly, we analysed an inhibitor dose-

response dataset using global fitting to a bi-exponential donor

FRET model using the assumption that the fluorophores can be

divided into a first population of non-FRETing monomers and a

second population of VLP-bound oligomers undergoing FRET.

The dataset contained cells at nine different dose concentrations

with a total of 385 FOV, for which the analysis took 7.3 seconds

using 400 Mb of main memory.

Table 1 shows the globally fitted parameters and Figure 4 shows

the fraction of Gag molecules undergoing FRET as a function of

inhibitor dose with representative false colour maps of the VLP-

bound fraction. The fraction of Gag population undergoing FRET

varies from 50% at low concentrations of inhibitor to just over

10% at high concentrations. On closer examination of the images,

we can see that in the membrane regions of many cells exposed to

low concentrations of the inhibitor, the FRET population fraction

is close to 100% at the membrane where we expect aggregation to

be highest. We fitted a dose-response curve to the average FRET

population across wells using nonlinear fitting to the Hill equation,

giving an EC50 value of 0.037 mM.

Figure 2. Global analysis of a multiwell plate with varying
concentrations of fluorescent dyes. Global analysis was applied to
a multiwell plate with varying concentrations of the fluorescent dyes
Rhodamine B and Rhodamine 6G using a bi-exponential model. The
relative concentration of Rhodamine 6G reduces across pairs of
columns as described in the text. The dataset contains four fields FOV
per well. A) plate map showing the measured fractional contribution of
Rhodamine 6G for a representative FOV in each well. B) plot of the
actual Rhodamine 6G contribution against measured contribution
(crosses). C) plot of measured lifetime using a single exponential fit
against actual Rhodamine 6G concentration. This dataset was collected
as part of a previous study [22].
doi:10.1371/journal.pone.0070687.g002
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Global Fitting of Time-Resolved Anisotropy Homo-fret
Data

Experiment 4: Simulated time-resolved anisotropy homo-

FRET data. Polarisation resolved TCSPC data simulated as

described in the methods section was fitted on a pixel-wise and

global basis to the polarisation resolved model described in

Equation 35. In each case, the lifetimes and fractional contribu-

tions of both the fluorescence and anisotropy decays were left free.

Table 2 shows the fit parameters obtained for quantities that were

are invariant across the initial simulated image and Figure 5 shows

false colour maps and histograms of the recovered initial

anisotropy contributions. Using global fitting, the true values of

the spatially invariant parameters are recovered within the

standard deviation and the different initial anisotropy regions

are clearly distinguishable. When fitting pixel-wise, however, the

errors on the spatially invariant parameters are significantly larger,

particularly for the rotational correlation times. The large

uncertainty in the correlation times is reflected in the initial

anisotropy contributions, which show little correlation with the

true values.

Experiment 5: Live cell time-resolved anisotropy imaging

of AKT-PH accumulation. We applied the global fitting

approach to study experimental homo-FRET data of EGFP

tagged AKT-PH, providing an intensity-independent readout of

PtdIns(3,4,5)P3 accumulation in response to PDGF stimulation.

The pleckstrin homology domain of the AKT protein kinase

(AKT-PH) is known to bind selectively to PtdIns(3,4,5)P3 and has

been used to monitor accumulation of this signalling molecule in

the plasma membrane [74] by translocation. As previously noted

[75], it is often difficult to quantify this membrane localisation and

a number of factors such as changes in membrane shape, e.g. due

to ruffling, can lead to changes in intensity independent of

translocation. FRET has previously been used to report on

phosphoinositide translocation and it has been suggested that

PtdIns(3,4,5)P3 localises in microdomains within the plasma

membrane [76,77] where the local density may be high enough

to allow efficient FRET between bound PH-domains. Van der

Wal et al. [78] used this approach to report on the membrane

translocation of the PH domain of phospholipase C-d1 (PLC d1-

PH), which binds PtdIns(3,4)P2 (PIP2). They co-transfected cells

with CFP-PLC d1-PH and YFP-PLC d1-PH and observed that

upon hydrolysis of PIP2 the PH domains translocate to the

membrane and a reduction in FRET is observed.

Here we acquired a 15 frame dataset that was globally fitted to a

mono-exponential fluorescence intensity decay model with lifetime

t and two rotational correlation times h1 and h2 with respective

initial anisotropy contributions r1 and r2. The model before

convolution and before accounting for incomplete decays took the

form

Figure 3. Global analysis of an IPA-3 dose-response dataset modulating the interaction between Rac1 and Pak1. Global analysis was
applied to a multiwell plate dose-response dataset showing the effect of the inhibitor IPA-3 on interaction between Rac1 and Pak1 using an
mTurquoise variant of the FLAIR biosensor in COS-7 cells stimulated with EGF. A) representative images from each inhibitor concentration showing
distribution of fraction undergoing FRET. B) examples of automatic image segmentation with (left) donor intensity and (right) acceptor images shown
in grey-scale with coloured segmented cell regions overlaid. C) plot of fraction of donor molecules undergoing FRET against IPA-3 concentration,
averaged across segmented cells with fitted dose-response curve. Error bars indicate 95% confidence intervals on average FRET fraction over
segmented cells at each dose. White scale bar represents 100 mm.
doi:10.1371/journal.pone.0070687.g003

Table 1. Parameters from global fitting of a dose-response
dataset using an NMT inhibitor with HeLa cells expressing
ECFP-Gag and EYFP-Gag using a bi-exponential donor FRET
model.

t (ns) B E t FRET (ns)

Component 1 3.49360.005 0.611460.003 0.5560.02 1.5560.05

Component 2 0.96160.003 0.385660.003 0.2560.01 0.7260.01

t represents the lifetimes of the donor-only decay and B represents the
fractional contribution of each component. E represents the FRET efficiency for
each component as defined in Equations 9–13. All three parameters are
determined globally. tFRET represents the fluorescence lifetime of the FRET
population calculated from the fitted parameters and is therefore shown in
italics.
doi:10.1371/journal.pone.0070687.t001

FLIMFit

PLOS ONE | www.plosone.org 12 August 2013 | Volume 8 | Issue 8 | e70687



I t,yð Þ~ I0

3
exp {

t

t

� �

1zg(y): r1
:exp {

t

h1

� �
zr2

:exp {
t

h2

� �� �� � ð37Þ

The fitting process took 7.2 seconds using 550 Mb of main

memory. The resulting globally estimated lifetime of EGFP was

t~2:466+0:002ns, i.e. close to a previously reported lifetime of

2.39 ns for the same construct [79]. The rotational correlation

times were estimated to be h1w400ns and h2~1:82+0:08ns,

which we associate with the rotational motion of the molecules and

homo-FRET respectively. Note that we present only a lower

bound on h1 as the x2 surface is essentially flat for larger values of

h1 since we are not able to accurately resolve long rotational

correlation times due to the shorter fluorescence decay time. The

rotational correlation time is much longer than that reported for

free EGFP in the cytoplasm, 36 ns [80], suggesting that the

rotation of the protein is significantly hindered, consistent with

membrane binding.

Figure 6 shows the temporal development of the fitted initial

anisotropy contributions r1and r2 (associated with the rotational

correlation time and homo-FRET respectively) following stimula-

tion with EGF. After stimulation, the initial anisotropy contribu-

tion of the short rotational component due to FRET, r2 decreases,

consistent with an increase in FRET due to accumulation of EGFP

tagged AKT-PH at the membrane, and there is a corresponding

reduction in the initial anisotropy contribution associated with the

rotational correlation time. Consistent with previous observations

[74], a translocation of EGFP tagged AKT-PH from the nucleus

and cytosol to the membrane is also observed. Note that the

decrease in GFP fluorescence intensity over the time course is due

to this translocation to the membrane upon stimulation and not to

photobleaching, which was measured to change the fluorescence

intensity by less than 8%.

Discussion

Model Validity
The interpretation of the estimated parameters from this or any

other fitting software depends critically on the validity of the model

applied. For example if a FRET donor has a significant second

decay component but a biexponential model is used to fit the

detected signal, then the contribution of the shorter lifetime fitted

component, nominally associated with FRET, will be higher to

compensate for the second component of the donor alone. This

could lead to a systematic overestimate of the FRET population

fraction. Even for a donor with a mono-exponential lifetime,

recent studies suggest that the approximation of the decay of a

population of molecules undergoing FRET by a single exponential

decay may dramatically break down under certain circumstances.

Figure 4. Global analysis of an NMT inhibitor dose-response dataset modulating Gag aggregation. Global analysis was performed
across a multiwell plate dataset with HeLa cells expressing ECFP-Gag and EYFP-Gag with increasing levels of a NMT inhibitor using a bi-exponential
donor FRET model. A) representative images from each inhibitor dose showing distribution of fraction Gag-CFP undergoing FRET. B) plot of fraction
of Gag-CFP undergoing FRET against inhibitor concentration, averaged across wells with fitted dose-response curve. Error bars indicate 95%
confidence intervals across wells. This dataset was collected as part of a previous study [23]. White scale bar represents 100 mm.
doi:10.1371/journal.pone.0070687.g004

Table 2. Parameters used for simulation of polarisation
resolved TCSPC data of a fluorescent protein undergoing
homo-FRET and fitted parameters using global and pixel-wise
fitting.

t1 (ns) t2 (ns) b1 h1 (ns) h2 (ns)

Simulated 3.0 1.2 0.6 30.0 1.0

Global Fit 2.99860.002 1.19860.003 0.60060.001 30.0060.28 0.99960.004

Pixel-wise
Fit

2.7860.30 1.0460.27 0.6860.13 7.4267.74 1.3360.43

The mean and standard deviations are calculated over 10 independent
datasets.
doi:10.1371/journal.pone.0070687.t002
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For example, Vogel et al. [81] recently demonstrated that a short

Cerulean-YFP linked construct demonstrates a bi-exponential

decay and proposed that this could be due to a distribution of

conformations with a variety of chromophore angles and

distances, leading to a distribution of FRET efficiencies.

In Experiment 2 we used a global double exponential decay

model to analyse data from an mTurquoise YPet FRET pair. This

model assumes that mTurquoise exhibits a monoexponential

decay, which we believe is reasonable [70]. This model also

assumes a narrow distribution of FRET efficiency, which implies a

tightly constrained relative orientation of the mTurquoise with

respect to the YPet when Rac1 binds PDB. This assumption has

not been tested rigorously. If there is significant flexibility of

mTurquoise relative to YPet when the constructs are bound, then

the absolute values reported by the analysis may not be correct.

However, relative changes in the fit parameters will still report

changes in the relative binding of the FRET pair.

In the future it may be possible to account for these effects by

using a model which, for example, accounts for the ensemble

average decay of a population of biosensors with, for example, an

isotropic k2 distribution (see Equation 19 in [81]). Using a global

analysis approach where the model function need only be

computed once per iteration, rather than for each pixel, could

enable the practical application and evaluation of such computa-

tionally expensive models.

In Experiment 3 we assumed that the fluorophores can be

divided into a first population of monomers and a second

population of VLP-bound oligomers undergoing FRET. It is

thought that Gag packs in a 2D hexagonal structure as VLPs form

[82] and therefore all nearest neighbours are likely to have similar

distances and orientations. In addition, the close packing may

constrain the motion of the fluorophore. While our fitting model is

clearly an approximation to the complex underlying situation, it

appears to provide a reasonable tool to analyse the Gag

oligomerisation. For the purposes of this paper, this experiment

and its analysis is intended only to demonstrate the ability of our

approach to explore the use of more complex global models that

may provide a better approximation to complex fluorescence

decay profiles than fitting to a single exponential decay model.

In Experiment 5, we assumed a monoexponential decay for the

fluorescence decay of EGFP, which is consistent with previous

work showing that the second decay component of EGFP has an

amplitude of less than 10% at the wavelength used in this

experiment [83]. We then assume that FRET introduces a short

single exponential anisotropy decay associated with depolarisation

due to homo-FRET in addition to a longer single exponential

anisotropy decay associated with the rotational correlation time of

the whole protein. This implies, as in Experiment 2, that there is a

narrow distribution of FRET efficiencies and hence tightly

constrained relative orientation between the FRETing fluoro-

phores. These assumptions have been applied before, e.g. [43,84],

but should be treated with caution and be taken into account when

interpreting biological data obtained using them.

Algorithm Scalability
The memory usage of the algorithm scales linearly with the

number of data points for large datasets. Figure 1D illustrates the

upper limit of the memory requirement as a function of number of

images for a selection of common data dimensions. This is

dominated by the storage of the data, residuals and the results.

The use of a hybrid Householder-Givens algorithm to factorise the

Jacobian means the memory usage is essentially independent of

model complexity, with the exception of storage of additional

linear parameters. The computational complexity of the algorithm

scales linearly with the number of data points. Computationally

intensive sections of the algorithm are divided across cores either

Figure 5. Global and pixel-wise analysis of simulated TCSPC polarisation resolved image data. Simulated polarisation resolved TCSPC
data was generated with fluorescence lifetimes 3.0 and 1.2 ns and rotational correlation times of 30 ns and 1.0 ns. The simulated data was generated
with the total initial anisotropy set to 0.4 across the image with the initial anisotropy contribution of the short component equal to 0.1, 0.2 and 0.3 in
three bands from top to bottom across the image. (A) False colour images of the recovered initial anisotropy contribution for the long (left) and short
(right) correlation time components analysed pixel-wise (top) and with global fitting (bottom); Histograms of estimates of the initial anisotropy
contribution of the (B) long and (C) short correlation time components analysed pixel-wise (dashed lines) and with global fitting (solid lines).
doi:10.1371/journal.pone.0070687.g005
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by pixel or image and so will scale efficiently with increasing cores

while the number of cores is smaller than the number of images.

Figure 1A shows the computational load of the CPU while fitting

the data in Experiment 1. The initial data loading the

performance is limited by the speed of the data store. During

the fitting process the four cores are nearly fully utilised. The

computational complexity of the Levenberg-Marquart algorithm is

well known to scale quadratically with number of nonlinear

parameters, while the variable projection algorithm scales

quadratically with the number of linear parameters.

Conclusions
We have demonstrated a new global fitting software tool for the

analysis of FLIM data based on variable projection. By optimising

the memory usage and enabling parallel processing across multiple

CPU cores, it is possible to apply global analysis to obtain

quantitative information from large multiwell plate or time-series

datasets with w5|107decay profiles using standard PC worksta-

tions with analysis times on the order of 1–2 minutes.

We have illustrated the ability of this software to globally fit

complex decay models to photon-constrained data, as is typically

encountered with live cell imaging using fluorescent proteins. Such

Figure 6. Global analysis of a polarisation resolved homo-FRET TCSPC dataset reading out PtdIns(3,4,5)P3 accumulation at the
membrane. A MEF transfected with EGFP-AKT-PH was imaged at two minute intervals and stimulated with 50 ng/ml PDGF after 6 minutes
(indicated by black triangles). (A, top row) False colour map of the initial anisotropy contribution r2 associated with homo-FRET over the time course.
(A, bottom row) Integrated fluorescence intensity images over the time course. (B, C) Initial anisotropy contributions spatially averaged over the cell:
r1 associated with the rotational correlation (B) and r2 associated with homo-FRET (C). Error bars represent the standard deviation across the image.
(D,E) Exemplar fluorescence decays from the region indicated by a white triangle in the first (D) and last (E) frame with fit (top) and normalised
residuals (bottom). The thin, fainter lines represent the experimental data while the thick, bolder lines represent the fitted model. Black lines
represent the parallel component while grey lines represent the perpendicular component. Data are representative of three experiments. White scale
bar represents 20 mm.
doi:10.1371/journal.pone.0070687.g006
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data can be fitted more robustly to more complex decay models

than is possible with traditional pixel-wise analysis of separate

images. In particular, we have applied a FRET model accounting

for the bi-exponential nature of donor fluorophores such as ECFP

where the FRET efficiencies and relative contributions of the two

fluorophore conformations are linked, accounting for their relative

quantum yields. Using simulated and experimental data we also

demonstrated the potential to apply global fitting to analyse

polarisation resolved TCSPC data to determine the anisotropy

decay and lifetime parameters associated with homo-FRET. We

note that any fitting software should be used with caution and the

results will always be limited by the validity of the fitting model. To

this end, however, we believe that global analysis tools which

enable the fitting of practical experimental fluorescence lifetime

data to complex models can be important in improving the

biological utility of FLIM and FRET experiments.

We note that the speed of this global fitting approach is

sufficient to make it routinely useful, even for large FLIM datasets

where previously only non-iterative approaches using simpler

decay models were practical. Indeed the ease with which global

fitting can now be applied to multiwell plate array or time-series

datasets strengthens the case to implement automatic acquisition

of such large datasets for biological studies.

Source code and binary executable files for a software package

implementing this algorithm, FLIMfit, are available under an

open source licence through the Open Microscopy Environment

[54].

Supporting Information

File S1 Compressed archive of the source code for
FLIMfit used in the present study. Please note that up to

date source code and compiled binaries are available from the

Open Microscopy website [54].
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82. Briggs JAG, Simon MN, Gross I, Kräusslich H-G, Fuller SD, et al. (2004) The
stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11: 672–675.

doi:10.1038/nsmb785.

83. Cotlet M, Hofkens J, Maus M, Gensch T, Van der Auweraer M, et al. (2001)
Excited-State Dynamics in the Enhanced Green Fluorescent Protein Mutant

Probed by Picosecond Time-Resolved Single Photon Counting Spectroscopy.
J Phys Chem B 105: 4999–5006. doi:10.1021/jp003813i.
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