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Abstract

Cortical spreading depression (CSD) is a slow-moving ionic and metabolic disturbance that propagates in cortical brain
tissue. In addition to massive cellular depolarizations, CSD also involves significant changes in perfusion and metabolism—
aspects of CSD that had not been modeled and are important to traumatic brain injury, subarachnoid hemorrhage, stroke,
and migraine. In this study, we develop a mathematical model for CSD where we focus on modeling the features essential
to understanding the implications of neurovascular coupling during CSD. In our model, the sodium-potassium–ATPase,
mainly responsible for ionic homeostasis and active during CSD, operates at a rate that is dependent on the supply of
oxygen. The supply of oxygen is determined by modeling blood flow through a lumped vascular tree with an effective local
vessel radius that is controlled by the extracellular potassium concentration. We show that during CSD, the metabolic
demands of the cortex exceed the physiological limits placed on oxygen delivery, regardless of vascular constriction or
dilation. However, vasoconstriction and vasodilation play important roles in the propagation of CSD and its recovery. Our
model replicates the qualitative and quantitative behavior of CSD—vasoconstriction, oxygen depletion, extracellular
potassium elevation, prolonged depolarization—found in experimental studies. We predict faster, longer duration CSD in
vivo than in vitro due to the contribution of the vasculature. Our results also help explain some of the variability of CSD
between species and even within the same animal. These results have clinical and translational implications, as they allow
for more precise in vitro, in vivo, and in silico exploration of a phenomenon broadly relevant to neurological disease.
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Introduction

Cortical spreading depression (CSD) is a self-propagated

depolarization that occurs in the gray matter of many species

[1]. In humans, it is known to occur during brain injury, stroke,

and subarachnoid hemorrhage [2]. There is also strong evidence

that CSD is responsible for migraine aura [3–5], a sensory

hallucination associated with migraine attack.

Although CSD was discovered in 1944 by Leão [6], we still do

not have a detailed understanding of how CSD is manifest. In

particular, CSD has been associated with massive changes in

cortical perfusion. The magnitudes of these changes vary by

animal species, but significant decreases and increases in blood

flow volume occur in all species tested [7–9]. Also common to all

species tested is a mismatch in the delivery of substrates to meet

metabolic demands, resulting in a derangement of neurovascular

coupling [10,11].

Blood delivery is known to play a significant role in CSD in

several ways. Changes in perfusion can induce peri-infarct

depolarizations (PID), which are electrophysiologically identical

to CSD. Conditions that mimic the effects of hypoperfusion, such

as oxygen glucose deprivation (OGD) and exposure to ouabain (an

inhibitor of the Naz=Kz–ATPase), also generate spreading

depolarizations [12–14].

Perfusion changes can also modulate the signature character-

istics of CSD. Depending on the levels of the underlying

oxygenation or blood pressure, the amplitude and duration of

depolarization and the velocity of propagation of CSD can be

altered [14,15]. Clearly, CSD in vivo cannot be understood

without reference to the vascular changes that condition – and are

conditioned by – the phenomenon. There is a need to further

explore the implications of the effects of perfusion and metabolism

on various aspects of CSD.

Such explorations naturally lead to the development of

mathematical models in which many mechanisms can be studied
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independently and/or simultaneously. Previous mathematical

models of CSD have accounted for ionic diffusion [16], cellular

membrane ionic currents [16,17], the Naz=Kz–ATPase and

other membrane pumps [16,17], and extra- and intracellular

volume changes [18–20].

However, mathematical models of CSD have not looked at the

dynamical implications of neurovascular coupling and metabo-

lism. Here we formulate a five-compartment continuum model for

CSD that uses known physiological data relating effective blood

vessel diameter and extracellular potassium concentration to

model oxygen delivery in the brain. The compartments in our

model are: a somatic neuronal compartment, a dendritic neuronal

compartment, an extracellular space compartment, a vascular tree

compartment, and a glial compartment.

We show that the oxygen deprivation that results from both

metabolic demand and vasoconstriction modifies the characteris-

tics of CSD waves. Our results predict faster, longer duration CSD

in vivo than in vitro, due to the contribution of the vasculature. Our

results also help explain some of the variability of CSD between

species and even within the same animal. In addition, the model

explains differences between CSD in vivo and CSD in brain slices

due to variant arterial constriction and dilation during the CSD

event.

Methods

To study the important new elements that affect and are

affected by CSD, we formulate a five-compartment continuum

mathematical model, see Fig. 1. Neurons comprise two of the five

compartments: a compartment representing the dendritic process-

es (d), and a compartment representing the cell bodies (somatic

compartment s). The ECS (e), the vascular bed (v), and glia (g)

comprise the remaining compartments. Though cell swelling has

been shown to occur during CSD [21,22], we make the simplifying

assumptions that the ICS and ECS volume fractions remain fixed,

based on the findings of Yao et al. [19] and Bennett et al. [23] who

found that osmotic effects do not significantly affect the

propagation of CSD waves.

The ICS and ECS compartments include only the most relevant

ions (sodium, potassium, chloride) and channels that have been

shown to be responsible for the instigation and spread of CSD

[17,19,24]. In the somatic membranes, we include P-type sodium

channels, delayed-rectifier potassium channels, A-type potassium

channels, and the Naz=Kz–ATPase. In the dendritic mem-

branes, we additionally include NMDA channels, which for our

model are permeable to sodium and potassium ions.

Our model assumes that the vascular compartment does not

exchange fluid with the extracellular space. The effective

diameters of proximal arterioles control the blood flow rate. In

turn, the vascular diameters are coupled to neuronal activity

through ECS potassium concentrations proximal to dendritic

processes, which is also buffered by astrocytes.

Membrane potential and ion transport using a neuronal
model

The membrane potentials of the neuronal compartments, Em,�
(� is either s for somatic or d for dendritic), are governed by the

coupled partial differential equations

Cm
LEm,s

Lt
~{Is,totz

1

2Rad2
d

Em,d{Em,sð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dendrite coupling

, ð1Þ

Figure 1. Diagram of the model. Neurons (mustard) consist of various sodium and potassium channels as well as the Na+ = K+–ATPase. Dendrites
additionally consist of NMDA channels. Glia (teal) are incorporated as potassium buffers. Blood vessels (pink) bring in oxygen to supply the Na+/K+–
ATPase. The cellular-level model is taken into the continuum limit (upper right) to yield a model with 5 compartments: neural cell bodies, neural
dendrites, glial, vascular, and extracellular space.
doi:10.1371/journal.pone.0070469.g001

Model of Metabolic and Perfusion Effects on CSD
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Cm
LEm,d

Lt
~{Id,totz

1

2Rad2
d

Em,s{Em,dð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{soma coupling

ð2Þ

where Cm is the membrane capacitance per unit surface area (m
farad/cm2) for both the somatic and dendritic membranes, Ra is

the input resistance of the effective dendritic tree (ohms), dd is the

half length of the effective dendritic tree (cm), and

I�,tot~
P
ions

I�,ion,tot~
P
ions

P
channels

I�,ion,channel are the spatially-de-

pendent total cross-membrane ionic currents per unit surface area

(mA/cm2) for each neuronal compartment. Following Kager et al.

[17,20,24] and Yao et al. [19], the total cross-membrane currents,

I�,tot, are given for the three major ions (sodium, potassium, and

chloride) and are the sum of the active and passive (leak) sodium

and potassium currents, the chloride (leak) current, and the

sodium-potassium exchange pump current (see File S1).

The local rates of change of the ECS ions (Naz,Kz, and Cl{)

are due to membrane ionic currents, diffusion of extracellular ions,

and the buffering of ECS potassium by glial cells. Note that all of

the model differential equations have only time derivatives in them

with the exception of the ECS diffusion equations for the ions.

However, all of these equations depend implicitly on the spatial

coordinate as a result of the spatial distribution of the ions.

L(½ion�e)

Lt
~

1

feF

AsIs,ion,tot

Vs

z
AdId,ion,tot

Vd

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{through channels

z
L
Lx

Dion

L½ion�e
Lx

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{extracellular diffusion

:

ð3Þ

The notation, Dion, corresponds to the ion diffusion coefficient in

aqueous solution taking into account tortuosity and volume

fraction, see [25,26], and F is the Faraday constant. The

quantities A(�) are the surface areas of the neuronal compartments

in the total fixed volume given by the sum of the fixed somatic

volume Vs, dendritic volume Vd , and extracellular volume, Ve.

The ECS volume fraction is given by fe~Ve=(VszVd ). The

equation for ECS potassium is modified by adding the buffering

flux term, vbuffer, given in the section Potassium buffering by glial cells

later in this manuscript. The equations for the rates of change of

ICS ions are

L(½ion�i,s)
Lt

~{
As

FVs

Is,ion,tot

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{through channels

z
Dion(VdzVs)

2d2
dVs

½ion�i,d{½ion�i,s
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{exchange between soma and dendrites

ð4Þ

L(½ion�i,d )

Lt
~{

Ad

FVd

Id,ion,tot

z
Dion(VszVd )

2d2
dVd

½ion�i,s{½ion�i,d
� �

:

ð5Þ

Here we model the ion exchange between the somatic and

dendritic portions of the neuron by a flux proportional to the

difference between the ion concentrations. The exchange coeffi-

cient Dion=2d2
d is estimated using the molecular diffusion

coefficient and mean length of the dendrites, adjusted by the

volume ratio of soma and dendrites. Note that we have not

included the diffusion of ICS ions because any appreciable

diffusion (relative to cell size) would require an ion to first become

an ECS ion, diffuse extracellularly, and then enter into another

cell to become an ICS ion.

As Cl2 is the only ECS anion in our simulations, to ensure

electroneutrality, its initial extracellular concentration (½Cl{�e) was

determined by the sum of the concentrations of the major ECS

cations: ½Cl{�e~½Naz�ez½Kz�e. We chose the initial intracellu-

lar concentrations of chloride (½Cl{�i,�) so that its Nernst potentials

matched the resting membrane potential of {70 mV. To achieve

intracellular electroneutrality in the soma and dendrites, we

assume the existence of immobile anions. Although calcium can

have major effects on neurotransmitter dynamics and other

secondary messenger effects, we ignored the calcium concentra-

tion because of its relatively small values.

Exchange pumps
During CSD, the ionic concentrations in the ECS and ICS are

considerably displaced from steady-state. This displacement occurs

primarily because of fluxes through voltage-gated sodium and

potassium channels. Here, we include the sodium-potassium

exchange pumps (Naz=Kz–ATPase) in the neuronal mem-

branes, whose primary role is to restore the ionic concentrations

back to their homeostatic state. The ionic pumps are active and

consume energy. When local oxygen levels are depleted, ATP is in

short supply. Therefore, the function of the ionic pumps in our

model is related to oxygen consumption and vascular flows.

These pumps are involved in the movements of ICS sodium and

ECS potassium against their electrochemical gradients and require

active ionic pumps that consume energy. The pumps are fueled by

the dephosphorylation of ATP in the cell [27] given by

ATPz3Naz
iz2Kz

e?
pump

ADPzPiz3Naz
ez2Kz

i:

ATP is replenished by the reattachment of a phosphate ion to

ADP and is powered by cellular respiration through both aerobic

and anaerobic processes. When local oxygen in the tissue is very

low, the normal ATP dynamics are perturbed.

The Naz=Kz–ATPase is a transmembrane protein with two

extracellular binding sites for potassium, three intracellular

binding sites for sodium, and a single intracellular binding site

for ATP. In each neuronal compartment, its potassium and

sodium currents are given by I�,K,pump~{2I�,pump and

I�,Na,pump~3I�,pump (as noted in the beginning of the previous

section), � is either s for somatic or d for dendritic), respectively,

with

I�,pump~Imaxc�,pump,1cpump,2

where

c�,pump,1(½Kz�e,½Naz�i,�)~ 1z
½Kz�e,0

½Kz�e

� �{2

1z
½Naz�i,0
½Naz�i,�

 !{3

: ð6Þ

Eq. (6) is given in [17] and the expressions on the right are

dependent on ECS potassium and ICS sodium concentrations.

(6)

Model of Metabolic and Perfusion Effects on CSD
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These equations implicitly assume that ATP is plentiful, which is

not the case when oxygen is limited or when metabolic needs are

high.

In the oxygen–limited regime, where ATP is limited, we modify

this expression with an additional oxygen dependent term

cpump,2(½O2�)~2 1z
½O2�0

(1{a)½O2�za½O2�0

� �{1

ð7Þ

where a is the percentage (about 5%) of ATP production that is

independent of oxygen [28,29], the subscript 0 denotes the

equilibrium values, and ½O2� is the tissue oxygen concentration (see

Fig. 2). This expression indicates that the pumping rate will be

reduced whenever there is a decrease of the oxygen level in the

tissue (see File S2 for details).

Potassium buffering by glial cells
Astrocytes, a type of glial cell, play important roles in the

instigation and propagation of CSD as well as in neurovascular

coupling through neurotransmitter-mediated signaling pathways

[30]. A principal role of astrocytes is the clearance of local increases

of ECS potassium [31]. This buffering is achieved through a variety

of inward rectifying potassium channels in the glial membrane and

is bolstered by the extreme polarity of glial cell membranes with

membrane potential near the Nernst potential for potassium [32].

For this study, we are not interested in the exact mechanisms of glial

potassium buffering, but are interested in reproducing accurate

potassium dynamics for our model. Thus, we incorporate astrocyte

effects through empirical potassium buffering.

Following Kager et al. [17], we modeled the potassium-

buffering flux, vbuffer, by the following differential equation,

vbuffer(x,t)~{
LB(x,t)

Lt
~mz½Kz�eB(x,t) exp

½Kz�e{5:5

{1:09

� �
{m{(B0{B(x,t)),

ð8Þ

where B (mM) is the free buffer concentration, the rate constants

mz~m{~8:0|10{6ms{1 determine the speed at which potas-

sium is buffered, and B0~200 mM is the effective total buffer

concentration. This equation describes strong buffering of

extracellular potassium for concentrations above 5:5 mM, but is

limited by saturation of the finite buffer. As the amount of buffered

potassium increases, re-release of potassium into the extracellular

space becomes more favorable. The initial value of the free buffer

concentration is set to maintain steady state when the extracellular

potassium concentration is at its rest value (3:5 mM).

Neurovascular coupling and oxygen supply
We now describe how the tissue oxygen level is affected by and

influences CSD. First, we assume that there exists an effective

blood vessel radius r in the tissue, and that the cerebral blood flow

rate (CBF) is given by

CBF~CBF0
r4

r4
0

ð9Þ

in which the equilibrium values are again denoted by the subscript

0. This expression is based on the empirical observation that blood

flow through the small vessels, where nutrient exchange primarily

occurs, can be modeled as Poiseuille flow where the volume flow

rate is proportional to r4 [33].

We use an empirical model for the effective vessel radius r,

based on replicating the activity observed in many experimental

studies on the subject [34,35]. Extracellular potassium is known to

dilate vessels at lower concentration elevations (less than

*17 mM), and constrict vessels at higher concentration levels.

To mimic this vascular response, Farr and David [36] constructed

a plot of the radius of cerebral arterioles versus extracellular

potassium based upon currents through potassium channels in the

membranes of vascular cells. To reproduce this plot, we assume

that the effective vessel radius is given by

r(½Kz�e)~r0 exp {
½Kz�e{3:5

a

� �2
( )zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{constriction

|
1zbe{½(½Kz�e{10)=c�2
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dilation

1zbe{ 6:5=cð Þ2
,

ð10Þ

which is a product of constricting and dilating terms. The

parameter a (mM) controls the constriction response, b controls

the amount of maximal dilation in the vessel, and c (mM) controls

the dilation response. We found values of a~50 mM, b~0:18,

c~3 mM in Eq. (10) to mimic the plot of Farr and David, given

by Fig. 3. We can use this expression in Eq. 9 to give a simple

Figure 2. Oxygen availability affects the Na+/K+–ATPase. Shown
is the relationship between tissue oxygen concentration and the
oxygen-dependent portion of the pump rate (Eq (7)). Since some ATP is
generated even in the absence of oxygen, the pump rate does not
completely go to zero as the oxygen concentration approaches zero.
The steady state oxygen concentration is 0.2 mM.
doi:10.1371/journal.pone.0070469.g002

Figure 3. Relationship between vascular caliber and [K+]e.
Effective vascular radius r as a function of ECS potassium concentration
[K+]e.
doi:10.1371/journal.pone.0070469.g003

Model of Metabolic and Perfusion Effects on CSD
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relationship for the CBF in terms of the extracellular potassium

concentration.

We model the temporal evolution of the tissue oxygen

concentration ½O2�, using a reaction-diffusion equation

L½O2�
Lt

~DO2

L2½O2�
Lx2

zS ð11Þ

with nonlinear source term given by

S~ CBF
½O2�b{½O2�
½O2�b{½O2�0

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{vascular supply

{ CBF0|P(½O2�)|(1{c)
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{background oxygen consumption

{

CBF0|P(½O2�)|c( cs,pump,1(½Kz�e,½Naz�i,s)zcd,pump,1(½Kz�e,½Naz�i,d )

cs,pump,1(½Kz�e,0,½Naz�i,0)zcd,pump,1(½Kz�e,0,½Naz�i,0 )|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tissue oxygen consumption due to Naz=Kz{ATPase

where

P(½O2�)~
cpump,2(½O2�){cpump,2 0ð Þ
cpump,2(½O2�0){cpump,2 0ð Þ :

The first term on the right hand side of Eq. (12) is the amount of

oxygen transferred from the blood stream to the tissue and is given

by the product of CBF and the normalized concentration

difference in oxygen tension between the blood and the tissue.

The second term on the right represents the consumption of

oxygen by the sodium-potassium exchange pump and other

cellular processes that are assumed to remain steady during CSD.

The pump consumption is given by the product of the equilibrium

CBF and pump rate normalized by the steady-state pump rate. A

fraction 0vcv1 of the total oxygen consumption at steady-state is

due to the pump. Experimental estimates of this parameter have

ranged from as low as 0:10 [37] to as high as 0:70 [38]. The final

term in the source term is the consumption of tissue oxygen

beyond their steady state value by Naz=Kz–ATPase. We include

simulations over the full spectrum for thoroughness. Note that we

have S~0 at steady-state.

Results

We performed one-dimensional simulations by breaking up our

model into a system of ODEs solved using Matlab routine ode15s

with reflecting boundary conditions. The computational domain

was set to a length of 5:52 cm and discretized into 46 grid points.

This domain was sufficiently long for the propagating wave to

become stable and for boundary effects to remain insignificant. We

used a minimal amount of potassium to induce CSD, finding that

for injections of Gaussian boluses with 120 micron width, a Kz

concentration of 15 mM was sufficient to induce CSD. This

concentration is near the previously-reported ceiling for potassium

concentration in a non-CSD brain [39,40] and confirmed to us

that our phenomenological potassium buffer was behaving in a

physiologically realistic manner.

Throughout these results, we report the duration of the CSD

event. We measured the duration of potassium elevation by taking

the total amount of time that ½Kz�e is above 6 mM. The transient

sodium channel had negligible effect on the ionic currents during

CSD (data not shown), so we chose to omit it from these

simulations.

Oxygen-clamped simulations
First, we simulated our model with a fixed oxygen concentra-

tion, i.e., c~0 (see Eq (12)). Thus, the Naz=Kz–ATPase does not

consume any oxygen, and we assume that the tissue oxygenation is

held at its steady state value. In this situation, we obtain CSD

waves with a velocity of 3:2 millimeters per minute and with ECS

potassium concentration increasing to a maximum value of

45:7 mM. This result is similar to ECS elevations reported

elsewhere in the literature [41]. The total duration of the elevated

ECS potassium concentration is 65:4 seconds (Fig. 4).

The potassium buffer acts similar in that in Kager et al. [17]. It

saturates rapidly, after which it is responsible for a net re-release of

potassium into the extracellular environment. The buffer acts this

way in all simulations as it is independent of the oxygen level in

our model. For this reason, we omit further mention of the

potassium buffer.

Blood vessel-clamped simulations
Next, we simulated our theoretical CSD where the effective

blood vessel diameter remained fixed, thereby fixing the maximal

oxygen flux rate into the tissue. We varied the oxygen coupling

parameter c between 0 (no oxygen consumption by pump) and 1
(maximal oxygen coupling) in increments of 0:025.

The results shown in Fig. 5 illustrate the response of CSD to

oxygen coupling. By increasing c, we increase the velocity,

duration, and amplitude of the CSD waveform. To get a deeper

understanding of these results, Fig. 6 shows the macroscopic

observables, with curves parameterized by c. One sees that

(12)

Figure 4. CSD in absence of oxygen consumption. Shown are the
time-courses of the propagating waves of ECS potassium concentra-
tion, free buffer capacity, membrane potential, and Na+/K+–ATPase
pump rate at positions 120 microns apart for simulations performed in
the absence of oxygen consumption by the Na+/K+– ATPase. The Na+/
K+–ATPase operates at rates determined solely by [K+]e and [Na+]i.
doi:10.1371/journal.pone.0070469.g004

Model of Metabolic and Perfusion Effects on CSD
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increases in c lead to greater drops in oxygenation. This

deoxygenation results in decreases in the magnitude of the

sodium-potassium–ATPase pump current, resulting in longer tails

of recovery for both membrane potential and extracellular

potassium concentration.

Coupled vasculature
From the previous results, one sees that oxygenation has a

definite impact on susceptibility of the tissue to CSD, as defined by

its wave propagation speed, and on its recovery. The next question

is whether vasoconstriction has an impact on CSD. We performed

a series of simulations where we activated the vascular coupling

that we defined in Eqs. (10) and (12). We simulated an idealized

vascular response, using parameters mimicking the vascular

behavior of Farr and David [36]. In these simulations, we varied

the oxygen coupling parameter, c, in order to see the variability in

behavior one might expect to see in an idealized CSD experiment.

The results, shown in Fig. 7, illustrate the effects of vascular

coupling. One can see that the effective blood vessel radius drops

rapidly to approximately 40% of its original value. This drop leads

to steep sustained reductions in the oxygen concentration during

the metabolic challenge from the CSD wave. The deoxygenation

is reflected in the pump rate, where a large increase in inward

potassium current at the beginning of CSD is rapidly diminished

as oxygen is depleted. The implications of this chain of events are

visible in the ECS potassium profile.

As we noted earlier, the vascular response is variable and

depends on factors such as species, individuals, and metabolic

states. In Fig. 8, the effects of this variability are seen in simulations

across a grid of values for the parameters a,b,c in Eq. (10). The

duration of the CSD event decreases as the parameter a (ECS Kz

concentration at 63% constriction) and the parameter b (percent

maximal dilation) are increased. In Fig. 9, we have plotted the

speed of CSD waves across a spectrum of possible vascular

responses. These vascular responses are parameterized mainly by

the two parameters, a and b.

Discussion

Since its discovery, CSD has been known to involve massive

changes in vascular caliber, and hence, perfusion [6]. Up to now,

these vascular changes, which can have profound effects on

cortical function and thus on CSD itself, have not been

incorporated into CSD models. Using our model, we were able

to examine the effects of vascular activity on CSD.

Figure 5. Oxygen coupled to Na+/K+–ATPase. Fixing the effective
vascular radius while coupling oxygen to the Na+/K+–ATPase gives a
purely consumption-based view of oxygen during CSD. Defining
coupling as the fraction of oxygen consumed by the pump at steady-
state, these simulations show that all of the CSD characteristics – speed,
duration, maximum [K+] – increase with an increase in the coupling
constant. The duration of the wave increases linearly from c= 0 to
c<0.4 before increasing linearly at a different rate when c.0.4.
doi:10.1371/journal.pone.0070469.g005

Figure 6. Fixed vascular caliber. Time courses at a fixed position,
780 mm downstream of the original stimulus. These simulations show
the effects of oxygen consumption on CSD for a range of the oxygen
coupling parameters, c. Increasing c prolongs the duration and
magnifies the amplitude of the CSD because it implies that the pump
consumes more of the available oxygen, thereby resulting in larger
oxygen depletions.
doi:10.1371/journal.pone.0070469.g006
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Relationship between vascular activity and CSD
Our numerical experiments confirmed that oxygen delivery

plays a significant role in the dynamics of CSD. Even in the

absence of constriction, oxygen depletion is seen. Additionally,

vasoconstriction and vasodilation were seen to further modify the

characteristics of the CSD wave, particularly in the low-c regime.

By varying the relationship between vasoconstriction and ECS

potassium, we achieved a continuum of CSD responses that could

explain real physiological variability across species, within

members of the same species, and for the same animal.

CSD uncoupled from vascular activity. Our model of

CSD with fixed oxygen concentration resembles current CSD

models, which rely on similar assumptions and conductances.

Such models are relevant to CSD in ex vivo brain slices, where the

perfusing medium has contact with an essentially unlimited source

of oxygen. In this case, the pump is always able to perform at a

rate determined by ½Kz�e and ½Naz�i, and the total pump current

is constrained only by the total number of available pumps

present, provided that there is sufficient nutrient available. Our

model predicts that CSD waves propagate more slowly and

recover more quickly in slices than in vivo.

CSD coupled with vascular activity. Coupling an inert

vasculature with CSD, one obtains a sense of the metabolic

demands that CSD places on the cortex. The large displacements

of sodium and potassium require the use of energy to return the

cortex to homeostasis. The physical constraints placed on blood

delivery by the physiologically reasonable assumption of finite

volume-flow-rate were seen to result in depletion of oxygen and

reduction in potassium flux through the pumps. This finding is

consistent with in vivo measurements of tissue oxygen and

mitochondrial redox state – even with mild dilation. Several

studies have found that both variables moved into a more-reduced

oxidative state [21,42]. In our model, the depletion of oxygen is

due to increased metabolic demand driven by the Naz=Kz–

ATPase.

The effects of vasoconstriction/vasodilation.

Furthermore, we show that vasoconstriction can both decrease

the tissue’s ability to slow down the CSD wave, and impair its

ability to recover. These effects are due to the reductions in blood

flow causing a significant additional drop in cortical oxygenation

levels. In Fig. 7, the vessel is seen to constrict to approximately

40% of its original radius. This constriction is within the

experimental range reported in Chang et al. [10]. Due to the

power law relationship between blood flow and effective blood

vessel radius, even a small reduction in effective radius has large

blood flow implications. A 60% constriction results in blood flow

dropping to 2.6% of its original value. This effect is visible in the

oxygenation level, which undergoes further decreases. Our

simulations show that both wave speed and recovery time increase

when vascular caliber is reduced.

Figure 7. ‘‘Typical’’ vascular coupling. Time courses at a fixed
position, 780 mm downstream of the original stimulus. Simulations
performed using vessel of Farr and David [36]. After a short dilation
period, the vessels constrict significantly to about 40% of their rest radii,
before recovering.
doi:10.1371/journal.pone.0070469.g007

Figure 8. Duration of CSD for different vascular responses. Shown are CSD durations plotted against percent dilation b (the maximum
vasodilation), constriction parameter a (this parameter from Eq. (10) has the units of mM and is the width of a Gaussian curve that controls how fast r
drops as [K+] increases), and oxygen coupling constant c. Duration is defined by the length of time that potassium concentration is elevated to a level
greater than 6 mM. Increasing a, (shown from 30–80 mM) decreases the amount of constriction, resulting in quicker recovery from CSD. Likewise,
increasing b, which increases the maximum dilation of the vessels, also reduces the duration of CSD.
doi:10.1371/journal.pone.0070469.g008
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Our simulations also show that vasodilation plays a role in CSD.

Predictably, vasodilation appears to precondition the tissue so that

it is better able to withstand the increase of ECS Kz that

accompanies the CSD wave. Due to the power law relationship,

an increase of 14% in the vessel radius results in a 70% increase in

blood volume flow rate. The result shown in Fig. 9 is a tissue that is

better able to withstand potassium elevations, thereby causing

slow-downs in the CSD wave. Vasodilation (beyond the effective

resting radius) seems to play a significant role in the recovery from

CSD, causing decreases in the recovery time (Fig. 8).

Clinical and translational implications
If a major goal of CSD modeling is to understand its role in

human disease, incorporation of perfusion and metabolism is an

essential step. CSD is a near-complete leveling of ionic gradients

which challenges the ability of homeostatic mechanisms to

compensate. CSD is also triggered by changes in perfusion and

metabolism. Finally, during CSD, the relationships between brain

activity, perfusion, and metabolism - neurovascular coupling - are

altered. These complex relationships can be expected to lead to a

variety of responses, depending on the state of the brain tissue

surrounding the depolarization. Biological data from animals and

humans bear out this complexity and variability. Spreading

depolarizations can be relatively innocuous - repetitive CSD in

mouse over several days appears to cause no overt injury [43].

However, they can also be quite harmful, enlarging infarct and

contusion areas in both animals and humans [14,44]. These

deleterious effects are almost certainly due to alterations in the

vascular response to tissue depolarization, and thus cannot be

understood from a modeling standpoint without explicit incorpo-

ration of perfusion and metabolism.

Our model more realistically represents conditions observed in

the brain during experimental CSD and the spreading depolar-

izations of migraine and brain injury. Though it simplifies a

complex vascular/metabolic response, it has the distinct advantage

of making specific, quantifiable predictions which can be used to

generate hypotheses for further experimentation. A particular

advantage is the ability to explore the whole ‘‘CSD/metabolic

parameter space,’’ which is not possible in biological experiments.

This modeling could have important implications for study of the

role of CSD in migraine, as the conditions which could generate

such a massive depolarization in an awake behaving person

remain obscure.

Assumptions, limitations, and future directions
In this study, in order to make our model as widely applicable as

possible, we have not considered the geometry of any particular

vascular network. Our lumped model is assumed to be a good

approximation of oxygen delivery dynamics in the brain, in

general, for gray-matter. Further insight into the system may be

gained by targeting specific tissue types for simulation.

Our simplified model relating arterial effective diameter to Kz

is likely applicable during CSD but does not mechanistically

explain all the subtleties of neurovascular coupling under more

normal conditions. Though Kz is involved in the coupling of

neural and astrocytic activity to blood flow [45], other mediators

including arachidonic acid derivatives, purines, nitric oxide, and

possibly neurotransmitters are involved as well [7,30,46]. For the

purposes of CSD, however, the supra-physiological swings in ECS

potassium likely provide a good leading-order approximation of

vascular behavior. Many of these other mediators also work via

their effects on potassium channels [36].

Swelling of individual cells [17,18,21,22,47] and the tissue as a

whole [10] appears to occur during CSD. Whether cell-swelling

plays an important role in CSD is a controversial topic, as recent

computational studies have cast some doubt on its impact [19,23].

For this reason, we have omitted cell swelling from our model.

Finally, this model is not equipped to account for the complexity

of the post-CSD state. Chang et al. [10] found that extracellular

Kz levels remained constant during a long–lasting hypoperfusion

and depolarization that was found to follow CSD. As this phase

may be clinically relevant, future modeling will focus on trying to

understand the Kz–independent mechanisms involved in the

etiology of this period.
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Figure 9. Speed of CSD for different vascular responses. Increasing the constriction parameter a makes the vessel less sensitive to potassium,
weakening the resulting constriction. The speed decreases as a increases from 30 mM up to 80 mM, but increasing the amount of dilation by
increasing b seems to have a greater effect.
doi:10.1371/journal.pone.0070469.g009
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