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Abstract

Biological systems exhibit two structural features on many levels of organization: sparseness, in which only a small fraction
of possible interactions between components actually occur; and modularity – the near decomposability of the system into
modules with distinct functionality. Recent work suggests that modularity can evolve in a variety of circumstances,
including goals that vary in time such that they share the same subgoals (modularly varying goals), or when connections are
costly. Here, we studied the origin of modularity and sparseness focusing on the nature of the mutation process, rather than
on connection cost or variations in the goal. We use simulations of evolution with different mutation rules. We found that
commonly used sum-rule mutations, in which interactions are mutated by adding random numbers, do not lead to
modularity or sparseness except for in special situations. In contrast, product-rule mutations in which interactions are
mutated by multiplying by random numbers – a better model for the effects of biological mutations – led to sparseness
naturally. When the goals of evolution are modular, in the sense that specific groups of inputs affect specific groups of
outputs, product-rule mutations also lead to modular structure; sum-rule mutations do not. Product-rule mutations
generate sparseness and modularity because they tend to reduce interactions, and to keep small interaction terms small.
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Introduction

Biological systems show certain structural features on many

levels of organization. Two such features are sparseness and

modularity [1–10]. Sparseness means that most possible interac-

tions between pairs of components are not found. For example,

less than 1% of the possible interactions are found in gene

regulation networks of bacteria and yeast [11]. The second

feature, modularity, is the near-decomposability of a system into

modules - sets of components with many strong interactions within

the set, and few significant interactions with other sets. Each

module typically performs a specific biological function. Modu-

larity is found for example in protein structure (functional

domains) [12], in regulatory networks (gene modules, network

motifs), and in body plans (organs, systems) - for reviews see

[2,8,10,13]. While modular networks are essentially sparse –

sparse networks are not necessarily modular. Even if interactions

are few, they could be evenly distributed and therefore not form

modules.

Computer simulations of evolution are used to understand the

origin of these structural features. The simulations begin with a set

of structures, the elements of the structures are mutated, the fitness

of each structure is evaluated according to a given goal, and then

the structures with the highest fitness are selected. The most

commonly used form of mutation in these simulations is the sum-

rule mutation: adding a random number to the value of each

element. Such simulations typically find optimal structures which

satisfy the goal. However, they generally do not yield modular or

sparse structures. Even when starting with a modular solution the

simulations typically drift towards non-modular solutions, which

are usually much more prevalent and are sometimes better at

performing given the goal [14]. This leaves open the question of

how and why sparseness and modularity evolve in biology.

Several studies have addressed this question by employing

different approaches. For example, neutral models suggest that

duplicating parts of a network can increase its modularity

(‘‘duplication-differentiation’’ model [15]) or similarly that muta-

tion, duplication and genetic drift [16] can lead to modularity.

Modularity in metabolic networks was suggested to arise from a

neutral growth process [17,18]. On the other hand, other studies

suggest that modularity can be selected for, either indirectly or

directly. Modularity has been suggested to be beneficial because it

provides dynamical stability or robustness to recombination [19],

improves the ability to accommodate beneficial foreign DNA [20],

breaks developmental constraints [21], evolves due to selection for

environmental robustness [22,23] or because the same network

supports multiple expression patterns [24]. Horizontal gene

transfer, together with selection for novelty can lead to modularity

in the polyketide synthase system [25]. It was recently suggested by

Clune, Mouret and Lipson that network sparseness and modular-

ity can evolve due to selection to minimize connection costs, as is

thought to occur for example in neuron networks [26]. Kashtan

et al. [27–29] found that when goals change with time, such that

goals are made of the same set of subgoals in different
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combinations - a situation termed modularly varying goals (MVG)

- the system can evolve modular structure. Each module in the

evolved structure solves one of the subgoals, and modules are

quickly rewired when the goal changes. Modularly varying goals

tested in several model systems, with sum-rule mutations used

when applicable [14], showed modularity under a range of

parameters. Modularly varying goals also speed up evolution

relative to unchanging goals [30], a phenomenon evaluated using

analytically solvable models [14]. Due to the importance of

sparseness and modularity in biology, it is of interest to see if

additional mechanisms for their evolution exist. In particular,

though attention has been given to the goals and cost functions,

little attention has been given to the type of mutation rule used.

Here, we address the role of the mutation rule on the evolution

of modularity and sparseness. Most studies that use simulations to

study evolution employ a simple rule to specify how mutations

change the parameters in the structure that is evolved - namely the

‘sum rule’, in which a parameter is mutated by adding a random

number drawn from a specified distribution. Here, we note that

this sum rule is usually not a good description of the effect of

cumulative genetic mutations on a given biological parameter.

Instead, the effects of mutations are better approximated by

product-rule processes. For example, the effect of cumulative

mutations on an enzyme’s activity is found to be multiplicative

[31]. Similarly, the effect of mutation on binding of proteins to

DNA [32,33] and proteins to proteins [34–36] is thought to be

multiplicative to a first approximation, such that the change in

affinity caused by several genetic mutations is approximately the

product of the effects of each mutation.

One fundamental reason for the use of product rule to describe

the effect of genetic mutations is that mutations affect molecular

interactions such as hydrogen bonds. This affects the free energy in

an approximately additive way, assuming that the different

molecular interactions are independent to a first approximation.

Since affinity and reaction rate are exponential in free energy, the

effects of cumulative genetic mutations on these parameters are

approximately multiplicative. Note that in population genetics,

there are different meanings to ‘additive’ and ‘multiplicative’

mutations [37], and thus we chose the terms ‘sum-rule’ and

‘product-rule’ to avoid confusion.

A related feature of mutations is that they more often reduce the

absolute strength of the interaction or activity parameter than

increase it [38–40]. This asymmetry can be captured using

product-rule mutations: for example, multiplying by a random

number normally distributed N(1,s) gives equal probability to

multiply by 0.5 or 1.5, which tends to reduce the absolute size of

the element; in order to revert a 0.5-mutation, one needs to

multiply by a 2-mutation, which is less likely to occur.

To study the role of product-rule mutations, we compare

evolution of simple and widely used model structures under sum-

rule and product-rule mutations in computer evolution simula-

tions. This is of interest because most simulations of evolution use

sum-rules for mutations. We found that product-rule mutations

lead to evolution of sparseness without compromising fitness. This

relates to the study of Burda et al. which used a mutation rule that

is approximately product-rule [41]. In contrast, we found that

sum-rule mutations only lead to sparseness under special

conditions, such as when the model parameters are constrained

to be non-negative. Furthermore, when the goal is modular, we

found that product-rule mutations led to modular structures,

whereas sum-rule mutations generally do not. Unlike Kashtan

et al., [14,27,28] here modularity arises from modular goals

without need to change goals over time, and when there is no

cost for connections. We study the speed and scaling laws of this

process. The basic reason that product-rule mutations lead to

sparseness and modularity is that they tend to reduce interaction

terms and to keep small interaction terms small and thus cause the

evolutionary dynamics to approach structures that have optimal

fitness with minimal number of interactions. When goals are

modular, this effect, in turn, leads to modular structure.

Results

A simple Matrix-multiplication Model of Transcription
Networks
To study the effect of the mutation rule on evolved structures,

we use a standard evolutionary simulation framework [42,43].

Briefly, the evolutionary simulation starts with a population of N

structures, duplicates them, and mutates each structure with some

probability according to a mutation rule (the mutation rules

described below will be our main focus). Fitness is evaluated for

each structure in comparison to a goal. The fittest individuals are

selected by a selection criterion, and the process is repeated, until

high fitness evolves (Fig. 1A).

We consider, for simplicity, structures described by continuous-

valued matrices. These serve as simple models for biological

interactions, where the elements of the matrix Aij are the

interaction strengths between components i and j in the system.

Evolution entails varying the matrix elements to reach defined

goals. Linear matrix models have a long history in modeling of

biological systems [41,44–49]. Use of a matrix to describe gene

expression is a standard approach. Several studies use matrices to

reverse-engineer the underlying network [50]. Matrix models have

also been used to understand developmental gene regulation, as in

the pioneering work of Reinitz in Drosophila [51–53]; matrix

models were recently used by De-Pace et al. to relate the strengths

of regulation to the level of gene expression across fruit fly species

using detailed gene expression measurements [54].

In the field of modularity, matrix models have been extensively

used. Matrix models were used in the pioneering work of Lipson

et al. [55] and also Wagner et al. [24]. We previously used a matrix

model to analytically study a different route to modularity [14].

We evolved the matrix A to satisfy the goal Au~v, where u and v

are vectors. The fitness is the distance to the goal, F~{DDAu{vDD
where DD:DD denotes sum of squares of elements (related to Fisher’s

geometric model [56]).

Often, biological systems have multiple layers [57] where

components in one level – e.g. receptors, send signals to

components in the next level, e.g. transcription factors. We model

this situation using a matrix multiplication model in which we

evolve two matrices A and B towards the goal AB~G, where G is

a specified matrix that represents an evolutionary goal (Fig. 1B).

The fitness in this case is F~{DDAB{GDD. Note that there is an

infinite number of matrix pairs A and B that satisfy a given goal G.

As one concrete biological case, which may be kept in mind to

guide the reader, the model can be interpreted in the context of a

transcription network: if A is the matrix connecting transcription

factor (TF) activities to gene expression, the relationship Au~v

means that a vector of TF activities u leads to a vector of gene

expression v. The matrix element Aij thus represents the

regulatory strength of gene i by TF j. Similarly, if B is a matrix

of interactions between external signals s and TF activities, one

finds that the TF activities are u~Bs. The matrix element Bij

represents the effect of signal j on TF i. In total, the output gene

expression vector that results from an input vector of signals s is

ABs. The goal AB~G means that for every set of signals s, the

gene expression at the output of the system is ABs~Gs, where Gs

Mutation-Rules and the Evolution of Modularity
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is the desired gene expression profile for input signals s (see

Fig. 1B).

Product-rule Mutations Lead to Sparse Structures, Sum-
rule Mutations do not
We compared sum and product mutation rules in evolving the

model systems using an evolutionary simulation. The sum-rule is

the commonly used addition of a normally distributed random

number to a randomly chosen element of the matrices, which

represents a mutation in the intensity of a single interaction

between network components,

Sum-rule Aij?AijzN(0,s) or Bij?BijzN(0,s):

We also tested product-rules, in which an element of the matrix

is multiplied by a random number. We tested

Product-rule Aij?Aij
:N(m,s) or Bij?Bij

:N(m,s):

We study the case of m~1, and also cases in which mv1 and

mw1. We also tested symmetric multiplication rules where the

random number is log-normally distributed with m~0 (see Text

S1 for details), and thus has equal chance to increase or decrease

the absolute strength of the interaction:

Symmetric product-rule Aij?Aij
:1LN(0,s) or

Bij?Bij
:1LN(0,s):

.

All cases gave qualitatively similar results, and most of the data

below is for multiplying by N(1,s). We also tested other forms of

mutation distributions, including long tailed distributions that

describe experimental data on sizes of mutation effects [Gamma

distributions [39], see also [40,58,59] and references there], and

found that the results are insensitive to the type of distribution used

(see Movies S1, S2). Similarly, we tested the effect of mutation size,

that is the parameter s, which we varied between 0.01 and 3, and

found that the results are insensitive to this parameter. The

evolutionary simulation and parameters are described in the

Methods Section below.

To demonstrate the effect of the mutation rule, we begin with a

very simple model, namely a structure with two elements, x and y,

with fitness F~{(xzy{1)2. The optimal solutions lie on a line

in the (x,y) plane, namely xzy~1 (Fig. 2A). Evolutionary

simulations reach this line regardless of the mutation rule.

Populations under sum-rule mutations evolve and spread out over

the line. In contrast, product-rule mutations lead to solutions near

the axes, either (x~0,y~1), or (x~1,y~0). In other words, they

lead to solutions in which one of the elements is close to zero –

these are the sparsest solutions that satisfy the goal (see Fig. 2A,

Movies S1, S2 and Figs. S10–S11 in Text S1).

Figure 1. Evolutionary simulation scheme, and definition of model. (A) Simulation was initiated by randomly choosing N population
members each consisting of 2 matrices A and B. The next steps were repeated at each generation until the stopping condition was satisfied: the
population was duplicated, one copy was kept unchanged and the other was mutated with probability p. Mutation could be either sum-rule or
product-rule. Fitness of all 2N members (original and mutated) was evaluated by the distance of the product AB from a desired goal matrix G,
F~{DDAB{GDD, where DD:DD denotes the sum of squares of terms which is the square of L2 (Frobenius) norm.N individuals were selected according to
their fitness. Several selection methods were employed (see Text S1 for details). The simulation was stopped when the mean population fitness
reached a value which was within a preset difference from the optimal fitness (usually 0.01). (B) Model represents a three layer network with a linear
transformation function. Input signals s are transformed to intermediate layer activities (transcription factors) u with u~Bs. The intermediate layer is
then transformed to output layer (gene expression) v~Au~ABs. Modularity means block or diagonal structure of the matrices, corresponding to
signals that affect only subsets of intermediate and output nodes.
doi:10.1371/journal.pone.0070444.g001

Mutation-Rules and the Evolution of Modularity
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The intuitive reason for the sparseness achieved by product-rule

mutations is that once they are near a zero element, the size of the

next mutation will be small (since it is a product of the element

with a random number). Thus, the effective diffusion rate

decreases (see Text S1). Strictly zero terms are fixed-points and

near-zero terms remain small under mutations - so that the

population becomes concentrated near zero elements. Sum-rule

mutations, in contrast, show a constant drift rate regardless of the

value of the elements. A full analytical solution of the dynamics of

this simple model can be obtained by means of Fokker-Planck

equations (see Text S1, Section 1), in excellent agreement with the

simulations.

We tested product-rule mutations also in the matrix-multipli-

cation model, using as goals full rank matrices G. In numerical

simulations, we refer to terms that are relatively small (,0.1% of

the average element in G) as ‘‘zero terms’’, because strictly zero

terms are not reached in finite time. We find that product-rule

mutations lead to sparseness: matrices A and B with the highest

number of zeros possible while still satisfying the goal. In contrast,

sum-rule mutations result in non-sparse solutions A and B with

non-zero elements (Fig. 3).

The sparse solutions found with product-rule mutations have

many zero terms, whose number can be computed by means of

the LU decomposition theorem of linear algebra. The LU

decomposition expresses a nonsingular matrix as a product of an

upper triangular matrix and a lower triangular matrix [60]). The

total number of zeros in A and B is the number of zero elements in

the LU decomposition of G. This number can be calculated

exactly: for a given full rank matrix G of dimension D with no zero

elements, the maximal number of zeros in A and B together is

D2{D (for proof see Text S1). This result is found in our

simulations.

The zeros are distributed between A and B in various ways in

the different simulations: Sometimes A and B are both (upper and

lower) triangular, each with (D2{D)=2 zero elements. Other runs

show one full matrix with no zeros and the other a diagonal matrix

with D2{D zeros. All other distributions of zeros are also found

(Fig. 2B–C; Fig. S16 in Text S1 for comparison with sum-

mutations). When G is full rank and has k zeros, the total number

of zeros in the evolved matrices A and B is D2{Dzk, again the

maximal possible number of zeros in matrices that show optimal

fitness (for proof see Text S1).

We note that there is a special situation in which sum-rule

mutations can also lead to sparseness in the present models. This

occurs when the models are constrained to have only non-negative

terms Aij ,Bij§0. In this case, the sum rule, constrained to keep

terms non-negative – for example, by using

Aij?max(0,AijzN(0,s)), can also lead to sparseness. This relates

to known results from non-negative matrix factorization [61].

However, in general biological models, structural terms are

expected to be both negative and positive, representing, for

example, inhibition and activation interactions between compo-

nents. Our mechanism for the evolution of sparseness and

modularity is different from non-negative matrix factorization

and works regardless of the sign of the interaction terms (see for

examples Fig. S15 in Text S1 and Movies S1, S2).

Figure 2. Product-rule mutations reach sparse solutions, sum-
rule ones do not. (A) We demonstrate the difference between sum-
rule and product-rule mutations in a simple 2–variable system (x,y),
where the goal is that xzy~1. The optimal solutions lie on the line
y~1{x. We compare solutions to this problem achieved by 3 different
mutational schemes. Sum-rule mutations (zN(0,0:5) red circles)
provide solutions that are spread along the line. In contrast, solutions
achieved with both Gaussian product-rule (|N(1,0:5) blue diamonds)
and log-normal product-rule (|LN(1,0:5) green squares) are concen-
trated near the intersection with the axes, i.e. near either (0,1) or (1,0).
Since one coordinate is near zero, these are sparse solutions. Inset
illustrates the solutions obtained with Gaussian product-rule mutations,
demonstrating that matrix values can be negative as well as positive.
Evolutionary simulation parameters were p~0:5, N~500, selection
scheme was Boltzmann-like selection with b~10. Simulations initiated
utilizing random matrices with elements U(0,0.05). (B) Sparse solutions
evolve in the matrix-multiplication model under product-rule mutations
in response to a full-rank non-zero goal matrix G. The solutions have
the maximal number of zeros while still satisfying the goal. Zeros are
distributed between the two matrices A and B. Shown are the possible
configurations of A and B for matrices of dimension D~3, in which 6

zeros are distributed between the two matrices A and B. (C) In general,
if the goal is block diagonal and full-rank, each of its blocks can be
decomposed separately into blocks of A and B, such that each block
has the maximal number of zeros possible. Here we show an example in
D~4, where G has 2 blocks of 262. The evolved A and B are such that
each of their blocks is either an upper or a lower triangular matrix. Color
represents numerical value (white = zero).
doi:10.1371/journal.pone.0070444.g002
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When the Goal is Modular, Product-rule Mutations Lead
to Modular Structure; Sum-rule Mutations do not
Up to now, we considered goals G which are described by

general matrices. We next limit ourselves to the case where the

goals G are described by matrices which are modular, for example,

diagonal or block diagonal matrices. The main result is that when

the goals are modular, the evolved structures A and B are also

modular if mutations are product-rule; in contrast, sum-rule

mutations lead to A and B that are not modular despite the fact

that the goal is modular.

We first define modular structures and modular goals in the

context of the present study. Modular structures are structures that

can be decomposed into sets of components, where each set shows

strong interactions within the set and weak interactions with other

sets [1,2,10,62] (Fig. 1B). Here, modular structure means block-

diagonal matrices. For ease of presentation, we first consider the

most modular of structures – namely diagonal matrices. We define

modularity by M~1{SDnDT=SDd DT where SDnDT and SDd DT are the

mean absolute value of the non-diagonal and diagonal terms

respectively, and where we permute rows/columns to maximize

modularity M (same permutation for rows of A and columns of B,
see Text S1). Thus, a diagonal matrix has M~1, and a matrix

with diagonal and non-diagonal terms of similar size has M close

to zero.

Modular goals are goals which can be satisfied by a modular

structure. Modular goals in the present models are represented by

diagonal or block-diagonal goal matrices G. These goals, in the

biological interpretation of transcription networks (Fig. 1B), are

goals in which each small set of signals affects a distinct set of

genes, and not the rest of the genes. For example, the signal lactose

affects the lac genes in E. coli, whereas a DNA damage signal affects

the SOS DNA-repair genes, with little crosstalk between these sets.

Other examples for biological goals that are modular are sugar

metabolism [63] and the tasks of chemotaxis and organism

development (see detailed discussion in [27]). All are composed of

several sub-tasks that are associated with different sets of genes.

We note that a modular goal does not necessarily lead to

modular structures. For example the goal G~I is modular since I

is the diagonal identity matrix. This modular goal can be satisfied

by a product of infinitely many pairs of non-modular matrices AB.

In fact, for every invertible A, the inverse B~A{1 satisfies the

goal. As a result, the vast majority of the possible solutions are non-

modular (modular solutions have measure zero among possible

solutions to AB~G). In line with this observation, we find that

simulations with sum-rule mutations lead to solutions with optimal

fitness (AB~G), but with non-modular structure A and B (Fig. 3,

Fig. S16 in Text S1).

In contrast, we find that product-rule mutations lead to modular

structures A and B, for a wide range of parameters. For the goal

G~I , the evolved A and B are both diagonal matrices, with

elements on the diagonal of A that are the inverse of the

corresponding elements on the diagonal of B. Thus AB~G.

Similar results are found if the goal is nearly modular (e.g. diagonal

with small but nonzero off-diagonal terms): in this case, the

evolved A and B are both nearly diagonal (Fig. S14 in Text S1).

We also studied block-modular goals. In this case, product-rule

mutations led to block-modular matrices A and B, with the same

block structure as the goal matrix G (Fig. 2C). Each of the blocks

in the matrices A and B had the maximal number of zeros possible

so that the product of the two blocks is equal to the corresponding

block in the goal matrix G (the total number of zeros is equal to

Figure 3. Product-rule mutations lead to modular structure under modular goal, sum-rule mutations do not. (A) Both sum-rule and
product-rule mutations reach high fitness towards the goal G~2I . (B) Product-rule mutations reach high modularity, but sum-rule mutations do not.
Simulations are in the matrix-multiplication model, matrix dimension D~4. Examples of matrices drawn from the simulations are shown, with gray
scale corresponding to element absolute value (white = zero). Fitness reaches a value of 0.01 due to constantly occurring mutations. Evolutionary
simulation parameters are: sum-rule mutation size N(0,0.05), product-rule mutation size N(1,0.27), p~ 0.0031, tournament selection s~4:.
doi:10.1371/journal.pone.0070444.g003

Mutation-Rules and the Evolution of Modularity
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that in the LU decomposition of each block) – compared to Fig.

S16 in Text S1 (block-diagonal goal with sum-rule mutations).

It is important to note that in order to observe the evolution of

modularity in the present setting, the selection criteria should not

be too strict, otherwise non-modular solutions cannot be escaped

effectively (Text S1). In other words, overly strict selection does not

allow the search in parameter space needed for product-rule

mutations to reach near-zero elements. In the present simulations,

we find evolution of modularity using standard selection methods

including tournament, elite (truncation) and continuous Boltz-

mann-like selection (see Methods, and Text S1 for analysis of

sensitivity to parameters).

Time to Evolve Modular Structure Increases Polynomially
with Matrix Dimension
We studied the dynamics of the evolutionary process in our

simulations with product-rule mutations. We found that over time,

fitness and modularity both generally increase, until a solution

with optimal fitness and maximal modularity is achieved. We

found that the matrix multiplication model often shows plateaus

where fitness is nearly constant, followed by a series of events in

which fitness improves sharply (Fig. 4) [22,64]. In these events,

modularity often drops momentarily. Analysis showed that the

plateaus represent non-modular and sub-optimal structures. A

mutation occurs which reduces modularity but allows the system

to readjust towards higher fitness, and then to regenerate

modularity.

We also tested the time to reach high fitness solutions, and its

dependence on the dimension of the matrices D. The time to high

fitness solutions depends on the settings of the simulations: initial

conditions, selection criteria and mutation rates and size, and the

stopping criteria of the simulations. Here we present results in

which time to high fitness was measured as the median time over

repeat simulations to reach within 0.01 of optimal fitness, with

product mutation rule :N(1,0.1) and probability of mutation per

element that is dimension-independent (p~5|10{4). Initial

conditions were matrices with small random elements

(U(0,0.05)). The time to high fitness increased approximately as

Dh1 with h1~1.40+/20.01 and the time to modularity (see

Methods for definition) increased as Dh2 with h2~1.21+/20.04

(Fig. 5).

Discussion

We found that product-rule mutations lead evolution towards

structures with the minimal number of interaction terms that still

satisfy the fitness objective. Thus, product-rule mutations lead to

sparseness. When the goal is modular, product-rule mutations lead

to modular structure. This is in contrast to sum-rule mutations,

which lead, under the same conditions, to non-sparse and non-

modular solutions.

The mechanism by which product-rule mutations lead to

sparseness and modularity is that near-zero interaction terms are

kept small by product-rule (but not sum-rule) mutations. A second

effect is mutation asymmetry, where it is more likely to reduce an

interaction than increase it. However, using a symmetric product-

rule (multiplying by a number drawn from a symmetric log-normal

distribution) combined with selection still leads to sparseness and

Figure 4. Escape from a fitness plateau entails a temporary decrease in modularity. Mean distance from maximal fitness as a function of
time in the matrix-multiplication model with product-rule mutations, towards a diagonal goal. Note the plateau in the dynamics. Matrices and their
modularity drawn from the simulations at different time-points (designated by black points) are shown, with gray scale corresponding to element
absolute value (white = zero). Inset: mean modularity of population (red curve), showing a sharp decrease at the time of escape from the plateau
(same time points are shown). In order to escape the plateau (‘‘break point’’), the circled terms in A and B are changed. This occurs through a
simultaneous increase of the new term and decrease of the old one, such that temporarily modularity is decreased (see inset). Finally, the correct
arrangement of terms is attained (‘‘escape’’) and modularity increases again. Fitness reaches a value of 0.01 due to constantly occurring mutations.
doi:10.1371/journal.pone.0070444.g004

Mutation-Rules and the Evolution of Modularity
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modularity, because selection also breaks the symmetry. Once a

parameter becomes small, product rule mutations keep it small (as

opposed to sum-rule mutations). This creates a dynamic ‘trap’ in

which the steady state distribution of phenotypes is highly enriched

with near zero parameters. Thus, the mutational asymmetry effect

is not essential for the present conclusions (see Figs. S10–S11 in

Text S1 and Section 2 in Text S1). Furthermore, in special

situations a sum-rule can also lead to sparseness, namely if the

structural terms in the model are constrained to be non-negative.

We note that sparseness can also be enhanced in some networks

due to physical constraints such as spatial/geometric limitations in

networks that describe protein structure [12] or neuron wiring

networks [65].

We used a simple but general model of biological systems,

namely linear matrix models, and matrix multiplication models.

These models have been widely used to describe gene regulation,

neuronal networks, signal transduction and other systems [41,44–

49,66,67]. The matrix multiplication model is a commonly used

model for three layer systems, such as signals ? transcription

factors ? genes. As in many biological models, many combina-

tions of parameters can achieve the same goal.

We believe that the present mechanism has generality beyond

the particular model used here. Consider a general map H
between a coarse-grained genotype G (described as a set of

biochemical parameters and interaction parameters) and pheno-

type P, P~H(G). The optimal phenotype P� is obtained by a

manifold of different genotypes G�. Given reasonably strong

selection relative to genetic drift and mutation, evolutionary

dynamics will reach close to this manifold. One can then ask how

the mutation rule affects evolutionary dynamics along this

manifold. Sum-rule mutations lead to a random walk on the

manifold that does not prefer regions with small parameters,

whereas product-rule mutations lead to solutions with the maximal

number of zero (very small) parameters: once evolution comes

close to a zero parameter, product-rule mutations keep that

parameter small.

Product-rule is a more realistic description of the effect of

cumulative genetic mutations on a biochemical parameter than

sum-rule mutations, because of the nature of biological interac-

tions. The effect of genetic mutations was also shown in several

experimental studies to be asymmetric (for example [38–40]), with

bias to decrease interactions, enzymatic activity [38] or body size

[40]. The discussion of symmetric product rule mutations (that is -

multiplying by log-normally distributed random numbers) is given

here for completeness, and not because of biological relevance.

Further studies can use other microscopic models for mutations

(such as Ising-like models for bonds between macromolecules

[41,68]), and explore the effect of mutations that set interactions to

near-zero with large probability. Due to the inherent product-rule

nature of biological mutations, we could not think of experimental

tests that can compare sum-rule to product-rule mutations, beyond

computer simulations or experiments in the realm of electronics

[69,70] or mechanics [71].

The present mechanism does not exclude previous mechanisms

for the evolution of modularity. In fact, it can work together with

other mechanisms and enhance them. For example, in Kashtan

Figure 5. Time to high fitness and modularity grows polynomially with dimension. (A) Normalized distance to maximal fitness
DF D=(DGDzDABD) as a function of generations in the matrix-multiplication model evolved towards G~2I , for matrix dimensions D~3 to 10. Each color
represents a different value of D. Curves typically have D ‘‘steps’’, where each step corresponds to the build-up of an additional significant term. (B)
Modularity in the same simulations. (C) Median time (generations) to high fitness (distance from maximal fitness ,0.01) as a function of the
dimensions of the matrices D goes as T*Dh1 with h1~1.41 [1.40, 1.42] [CI 5%, 95%]. (D) Median time (generations) to modular structure (see
methods for dimension dependent criterion for high modularity) goes as Dh2 with h2~1.20 [1.16, 1.23]. Initial conditions are random matrices with
small elements drawn from U(0,0.1). Element-wise mutation rate p at all simulations was 0.0005; product-rule mutations normally distributed N(1,0.1):
See Text S1 for details on error calculation in C–D.
doi:10.1371/journal.pone.0070444.g005
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et al. [14,27,29,30], modularity evolved when the modular goal

changed over time (MVG mechanism). In the present study, no

change of the goal over time is required. Using product-rule

mutations in the models of Kashtan et al. (instead of the original

sum-rule mutations) is expected to enhance the range of

parameters over which modularity evolves. Supporting evidence

was recently provided by Clune et al. [26] that demonstrated how

a different mechanism for the evolution of sparseness significantly

enlarges the range of parameters over which the MVG mechanism

produces modular structures. Another difference from some

previous studies is that modularity evolves here with no need for

an explicit cost for interaction terms in the fitness function

[14,27,29,30,72]. Adding such a cost, as in Clune et al., [26] would

likely enhance the evolution of sparseness and modularity. It

would be intriguing to search for additional classes of mechanisms

to understand the evolution of sparseness, modularity, and other

generic features of biological organization [73].

Materials and Methods

Evolutionary Simulation
Simulation was written in Matlab using standard framework

[42,43]. All source codes, data and analysis scripts are freely

available in a permanent online archive at http://dx.doi.org/

doi:10.5061/dryad.75180. We initialized the population of matrix

pairs by drawing their N:2D2 terms from a uniform distribution.

Population size was set as N=500. In each generation the

population was duplicated. One of the copies was kept unchanged,

and elements of the other copy had a probability p to be mutated –

as we explain below. Fitness of all 2N individuals was evaluated by

F~{ AB{Gk k, where :k k denotes the sum of squares of

elements [56]. The best possible fitness is zero, achieved if

AB=G exactly. Otherwise, fitness values are negative. In the

figures we show the absolute value of mean population fitness,

which is the distance from maximal fitness (Fig. 3–4, Fig. S12 in

Text S1), or the normalized fitness DF D=(DGDzDABD) (Fig. 5). The
goal matrix was either diagonal , nearly-diagonal (diagonal matrix

with small non-diagonal terms), block-diagonal or full rank with no

zero elements. N individuals are selected out of the 2N population

of original and mutated ones, based on their fitness (see below).

This mutation–selection process was repeated until the simulation

stopping condition was satisfied (usually when mean population

fitness was within 0.01 of the optimum).

Mutation. We mutated individual elements in the matrix. We

set mutation rate such that on average 10% of the population

members were mutated at each generation, so the element-wise

mutation rate was This relatively low mutation rate enables

beneficial mutants to reproduce on average at least 10 generations

before they are mutated again. In simulations where we compared

dependence on matrix dimension (Fig. 5) we used the same

mutation rate at all dimensions, generally the one that pertains to

the highest dimension used in the simulation.

We randomly picked the matrix elements (in both A and B) to
be mutated. Mutation values were drawn from a Gaussian

distribution (unless otherwise stated). For sum-rule mutations, this

random number was added to the mutated matrix value:

Aij?AijzN(0,s) or Bij?BijzN(0,s), and for product-rule

mutation, the mutated matrix element was multiplied by the

random number: or Bij?Bij
:N(m,s). Mean mutation value m was

usually taken as 1, however we also tested other values of m (both

larger and smaller than 1) and other mutation distributions

(Gamma and log-normal) and results remained qualitatively

similar, although the time-scales changed. In most simulations

shown here we used s~0:1 (unless stated otherwise). Fitness

convergence and its time scale depend on the mutation frequency

and size, as demonstrated in our sensitivity test (Text S1).

Selection methods. We tested 3 different selection methods

and all gave qualitatively very similar results with only a difference

in time scales. Most results presented here were obtained with

tournament selection with group size S= 4 (see [43] chap. 9). We

also tested truncation-selection (elite) [42] and proportionate

reproduction with Boltzmann-like scaling [41,55,74]. For a

detailed description see Text S1.

Definition of modularity. If the goal is diagonal, we define

modularity as M~1{SDnDT=SDd DT where SDnDT and SDd DT are the

mean absolute value of the non-diagonal and diagonal terms

respectively. At each generation, the D largest elements of each

matrix (both A and B), were considered as the diagonal SDd DT and

the rest D2{D terms as the non-diagonal ones SDnDT. Averages
were taken over matrix elements and over the population. This

technique copes with the unknown location of the dominant terms

in the matrices, which could form any permutation of a diagonal

matrix. Thus, 0ƒMƒ1: a diagonal matrix has M~1, and a

matrix whose terms are all equal has M~0. Since we choose the

largest elements to form the diagonal, negative values of M do not

occur. When the goal is non-diagonal, one can use standard

measures for modularity such as (49) [not used in the present

study].

Calculation of time to modular structure. To estimate the

time when modular structure is first obtained, we used the

following approximation for fitness value with diagonal goal.

Assume that A and B are D- dimensional matrices consisting of 2

types of terms: diagonal terms all with size d and non-diagonal

terms all with size n and that the goal is G~g|ID|D. The fitness

then equals:

{F~D½d2z D{1ð Þn2{g�2zD D{1ð Þ(2dnz(D{2)n2)2:

We collect terms by powers of n, and obtain a constant term and

terms with powers n2,3,4. Modular structure is obtained when the

solution has the correct number of dominant terms at the right

location and their size is approximately d2%g. At the beginning of
the temporal trajectory, when non-diagonal elements are relatively

large, F is dominated by the O(n4) term. When a modular

structure emerges, non-diagonal elements become relatively small,

and the dominant term remaining in F is O(n2). Our criterion for

determining time to modular structure was the time when the

O(n2) term first became dominant, i.e. when

F{n2 � � �ð Þvn2( � � � ).
Supplementary movies. Movies demonstrate the simulation

dynamics in the problem under product-rule mutations with

various distributions of mutations. All distributions converge to

either of the sparse solutions.

Supporting Information

Text S1 Contains the following additional data: 1.

Analytical solution and simulations of toy model, 2; 2. Mutation

properties: product vs. sum mutation, mutation symmetry, 11; 3.

Evolutionary simulations – detailed dexcription, 16; 4. Evolution-

ary simulation parameter sensitivity test, 18; 5. Modularity:

definitions and error calculation, 20; 6. LU decomposition –

proofs, 21; 7. Nearly modular - supplementary figure, 23; 8.

Mutation sign and distribution – supplementary figure, 24; 9.

Block diagonal goal – supplementary figure, 25.

(PDF)
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Movie S1 Mutations had Gamma distribution with parameters

Gamma(1, 40.25). In addition, each mutation value was multiplied

by21 with probability 0.1, so that matrix values could also change

their sign. - selection was used with.

(AVI)

Movie S2 Mutations had log-normal distribution with param-

eters LN(20.11, 0.47). In addition, each mutation value was

multiplied by 21 with probability 0.1, so that matrix values could

also change their sign. - selection was used with.

(AVI)
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