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Abstract

Aims: The goal of our study is to investigate the combined contribution of 10 genetic variants to diabetes susceptibility.

Methods: Bibliographic databases were searched from 1970 to Dec 2012 for studies that reported on genetic association
study of diabetes. After a comprehensive filtering procedure, 10 candidate gene variants with informative genotype
information were collected for the current meta-anlayses. Using the REVMAN software, odds ratios (ORs) with 95%
confidence intervals (CIs) were calculated to evaluate the combined contribution of the selected genetic variants to
diabetes.

Results: A total of 37 articles among 37,033 cases and 54,716 controls were involved in the present meta-analyses of 10
genetic variants. Three variants were found to be significantly associated with type 1 diabetes (T1D): NLRP1 rs12150220
(OR = 0.71, 95% CI = 0.55–0.92, P = 0.01), IL2RA rs11594656 (OR = 0.86, 95% CI = 0.82–0.91, P,0.00001), and CLEC16A
rs725613 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01). APOA5 21131T/C polymorphism was shown to be significantly associated
with of type 2 diabetes (T2D, OR = 1.27, 95% CI = 1.03–1.57, P = 0.03). No association with diabetes was showed in the meta-
analyses of other six genetic variants, including SLC2A10 rs2335491, ATF6 rs2070150, KLF11 rs35927125, CASQ1 rs2275703,
GNB3 C825T, and IL12B 1188A/C.

Conclusion: Our results demonstrated that IL2RA rs11594656 and CLEC16A rs725613 are protective factors of T1D, while
NLRP1 rs12150220 and APOA5 21131T/C are risky factors of T1D and T2D, respectively.
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Introduction

The prevalence of diabetes is soaring up in the recent decades.

The global number of diabetes patients was 173 million in 2002

and will increase to 350 million by 2030. As a group of metabolic

diseases characterized with high blood sugar, most diabetes is

caused by either a lack of insulin for type 1 diabetes (T1D) or a

blockage in the insulin signaling pathway for type 2 diabetes

(T2D). The classical symptoms of diabetes consist of polyuria,

polydipsia, polyphagia and weight loss. Diabetes also causes

damages to blood vessels and capillaries that may eventually lead

to coronary heart diseases and blindness, respectively.

T1D and T2D are two major types of diabetes [1]. Microbial

exposures and sex hormones together with lifestyle factors have

been shown to be important to the development of this complex

disease [2,3]. Besides environmental factors, twin studies have

demonstrated a strong heritability for diabetes [4,5] and insulin

related phenotypes [6–8]. A handful of candidate genes have been

found for both the risk and complex traits of the two major types of

diabetes [3,9–12].

T1D is an autoimmune disease. Little or no insulin is

produced by pancreatic beta cells that may be mistakenly

attacked after an infection or some other triggers. The present

meta-analyses of T1D focus on four immunomodulatory genes

including IL2RA, NLRP1, IL12B and CLEC16A. IL2RA gene

encodes the a-chain of IL-2 receptor (IL-2R) complex which

acts as an important modulator to regulate T-cell immune

response [13]. NLRP1 gene encodes a member of the Ced-4

family of apoptosis proteins that can stimulate innate immunity

[14]. IL12B gene encodes a subunit of an important immuno-

modulatory cytokine, IL-12. IL-12 induces production from NK

and T cells of interferon c (IFN-c) which favors Th1 cell

differentiation [15]. CLEC16A encodes C-type lectin domain

family 16 (CLEC16A) protein highly expressed on B-lympho-

cytes, natural killer (NK) and dendritic cells [16].
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The impairment of insulin signaling in T2D is complex. Insulin

signaling is involved in both glucose and lipid metabolism. In the

present meta-analyses of T2D, we selected 2 genes in glucose

metabolism (SLC2A10 and CASQ1), 2 genes in lipid metabolism

(APOA5 and KLF11), and 2 genes in signal transduction (ATF6 and

GNB3). SLC2A10 gene encodes a member of the facilitative glucose

Figure 1. Flow diagram of selecting studies for meta-analysis.
doi:10.1371/journal.pone.0070301.g001
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transporter family with an effect on maintaining glucose homeo-

stasis. CASQ1 gene encodes acidic glycoprotein calsequestrin 1

(CASQ1) that is a calcium storage protein and calcium is

considered to regulate the expression of the insulin-responsive

glucose transporter GLUT4 [17]. APOA5 is located on human

chromosome 11q23, in the APOA1/APOC3/APOA4 gene

cluster [18]. KLF11 encodes Kruppel-like factor 11 with the

function of regulating hepatic lipid metabolism [19]. ATF6

encodes UPR transducer unfolded protein that is related to the

endoplasmic reticulum stress in the b-cell pathogenesis of type 2

diabetes [20]. GNB3 encodes the b3 subunit of hetero-trimeric G

proteins in insulin signaling [21].

Associations between single-nucleotide polymorphisms (SNPs)

of the above 10 genes and diabetes (including T1D and T2D) have

been reported in different ethnic populations [16,22–57]. Here we

performed a series of meta-analyses for these SNPs whose allelic

frequencies are often substantially different among multiple ethnic

populations. The goal of our study is to evaluate the overall

contribution of these SNPs to diabetes susceptibility in combined

populations using a meta-analysis approach.

Materials and Methods

Search Strategy and Study Selection
An initial search was performed through online databases

including PubMed, Embase, SpingerLink, Web of Science,

Chinese National Knowledge Infrastructure (CNKI), and Wan-

fang. The keywords comprise the terms including ‘‘diabetes’’

together with ‘‘SNP’’ or ‘‘polymorphism’’ or ‘‘variants’’ or

‘‘mutation’’. The selection of studies in our meta-analysis was

abided by the criteria as follows: (1) case-control studies; (2)

selected studies have sufficient data to calculate ORs with the

corresponding 95% CIs; (3) every polymorphism has at least 3

independent datasets from the retrieved articles; (4) selected

polymorphisms have not been addressed in previous meta-analysis

of diabetes. Finally, the current meta-analysis involved a total of 10

genetic variants comprising NLRP1 rs12150220, IL2RA

rs11594656, CLEC16A rs725613,APOA5 21131T/C, SLC2A10

rs2335491, ATF6 rs2070150, KLF11 rs35927125, CASQ1

rs2275703, GNB3 C825T, and IL12B 1188A/C.

Statistical Analysis
All the analyses were performed in Review Manager (version

5.0, The Cochrance Collaboration [58]). The combined ORs and

the corresponding 95% CIs were calculated and demonstrated in

the forest plots using the fixed or the random effects model.

Heterogeneity was measured in our meta-analysis using Cochran’s

Q and the inconsistency index (I2) statistic [59]. Funnel plots were

used to detect whether there were obvious publication bias among

the involved studies. An I2 value of equal to or greater than 50%

indicates a substantial heterogeneity among the studies in the

meta-analysis that used a random-effect model for the analysis. For

I2 value less than 50%, a fixed-effect model will be applied for the

meta-analysis. The combined ORs and the corresponding 95%

CIs were calculated using the fixed-effect model or the random-

effect model if I2 is less than 50%. P values less than 0.05 were

considered to be significant.

Results

As shown in Figure 1, our initial search for the genetic studies of

diabetes retrieved 6,452 articles from PubMed, Embase, Web of

Science, CNKI and Wanfang from 2000 to 2012. Among them,

4,021 studies were involved with genes reported in previous meta-

analyses and thus discarded for further analysis. A total of 504

articles were again filtered out because they failed to accumulate at

Table 1. Characteristics of individual T1D studies in the meta-analyses.

Gene SNP Year Author Ethnic Group Case/Control (n)
Allele 1 (Case/
Control)

Allele 2 (Case/
Control)

IL2RA rs11594656 T A

2007 Christopher E Lowe Caucasian 2874/2484 4482/3726 1266/1242

2007 Christopher E Lowe Caucasian 5259/6809 8199/10248 2319/3370

2008 Deborah J Smyth Caucasian 8064/9339 12548/14083 3580/4595

2009 Eiji Kawasaki Japanese 881/606 1715/1175 47/37

2012 M. Fichna Caucasian 445/671 701/994 189/348

NLRP1 rs12150220 T A

2009 NF Magitta Caucasian 1067/3177 929/2987 1205/3367

2010 A. PONTILLO Brazilian 196/192 248/255 144/129

2011 Magdalena Zurawek Caucasian 221/254 230/270 212/238

IL12B 1188 A/C A C

2002 Lorenza Nistico Caucasian 470/544 662/787 278/301

2002 RM McCormack Caucasian 120/330 194/533 46/127

2005 José L. Santiago Caucasian 300/516 453/773 147/259

2010 A.E.Altinova Turks 91/87 133/120 49/54

CLEC16A rs725613 A C

2007 Hakon Hakonarson Caucasian 561/1143 785/1395 337/891

2009 M Zoledziewska Caucasian 1037/1706 969/1473 1105/1939

2009 Xiao pan Wu Chinese 205/422 352/643 58/201

doi:10.1371/journal.pone.0070301.t001
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least three independent genotypic datasets for the same genetic

variants. Among the rest 1,927 studies, 1,882 studies with

unconcerned SNPs were removed. At last, there were 42 case-

control studies from 37 articles (including 35 articles in English

and 2 in Chinese) for the current meta-analyses. There were four

SNPs of T1D (Table 1) and six SNPs of T2D (Table 2) involved in

our present study.

No evidence of statistical heterogeneity was observed for

7 SNPs (Figures 2 and 3, and Table 3), including rs11594656 of

IL2RA gene (I2 = 0%), rs12150220 of NLRP1 gene (I2 = 0%),

1188A/C of IL12B gene (I2 = 0%), 21131T/C of APOA5 gene

(I2 = 1%), rs2335491 of SLC2A10 gene (I2 = 0%), rs2070150 of

ATF6 (I2 = 0%), and rs35927125 of KLF11 gene (I2 = 7%). No

visual bias was showed in the meta-analyses of these 7 SNPs

(Figure 4 and Table 3). Our data also demonstrated a significant

heterogeneity of the rest 3 SNPs that comprise rs725613 of

CLEC16A gene (I2 = 69%), rs2275703 of CASQ1 gene (I2 = 65%),

and C825T of GNB3 gene (I2 = 82%). Therefore random-effect

tests were applied for the meta-analyses of the above 3 SNPs.

Their funnel plots were demonstrated in Figure 4 and no visual

bias was observed for the 3 meta-analyses.

Meta-analysis of rs12150220 of NLRP1 gene was involved with

3 studies [23,25,32] among 833 T1D cases and 3,623 controls. As

shown in Figure 2, our result indicated that rs12150220 of NLRP1

gene was significantly associated with T1D risk in the Caucasian

and Brazilian populations (the overall OR = 0.71, 95% CI = 0.55–

0.92, P = 0.01). Meta-analysis of rs11594656 of IL2RA gene among

17,523 T1D cases and 19,909 controls [22,30,31,37] indicated

that rs11594656 of IL2RA gene was significantly associated with

T1D risk in the Caucasian and Japanese populations (Figure 2, the

overall OR = 0.86, 95% CI = 0.82–0.91, P,0.00001). Meta-

analysis of rs725613 of CLEC16A gene [16,28,38] included

1,803 T1D cases and 3,271 controls. As shown in the Figure 2,

there was significant association between rs725613 of CLEC16A

Table 2. Characteristics of individual T2D studies in the meta-analyses.

Gene SNP Year Author Ethnic Group Case/Control (n)
Allele 1 (Case/
Control)

Allele 2 (Case/
Control)

APOA5 21131 T/C T C

2005 Sheng kai Yan Chinese 172/155 231/224 113/86

2006 P. J. Talmud Caucasian 142/2438 273/4401 11/295

2007 Guang hua Zhai Chinese 71/152 81/214 61/90

2008 Xue feng Li Chinese 256/340 322/468 190/212

2008 Yan Qiao Chinese 154/206 222/313 86/99

SLC2A10 rs2235491 G A

2005 Karen L. Mohlke Caucasian 784/401 1476/746 92/56

2005 Jennifer L Bento Caucasian 296/305 568/592 24/18

2006 W. H. Lin Chinese 375/377 691/683 59/71

ATF6 rs2070150 C G

2006 Farook Thameem Pima Indian 561/399 913/626 209/172

2007 Steven J. R. Meex Caucasian 367/377 670/693 64/61

2007 Winston S. Chu Caucasian 191/188 364/350 18/26

2011 Cheng Hu Chinese 1892/1808 1181/1088 2603/2528

KLF11 rs35927125 A G

2005 Bernadette Neve Caucasian 313/313 562/517 64/109

2006 Jose C. Florez Caucasian 469/468 850/854 88/82

2006 Jose C. Florez Caucasian 504/503 906/910 102/96

2006 Jose C. Florez Canadian 111/109 195/188 27/30

2006 Jose C. Florez Caucasian 1207/1198 2129/2103 285/293

2006 Jose C. Florez Caucasian 1000/997 1789/1779 211/215

2008 T. Tanahashi Japanese 925/893 1850/1786 0/0

2008 Lijun Ma Pima Indian 1455/1816 2780/3457 130/175

CASQ1 rs2275703 A C

2004 Mao Fu Caucasian 145/358 90/305 200/411

2004 Swapan Kumar Das Caucasian 190/119 205/117 175/121

2007 Thomas Sparsø Caucasian 1391/4575 1452/4841 1330/4309

GNB3 rs5443 C T

2005 Jawad G. Kiani Arab 256/254 178/246 334/262

2006 G. Andersen Caucasian 1358/4723 1855/6574 861/2872

2007 Tetsuo Hayakawa Japanese 427/388 445/338 409/388

2008 Makoto Daimon Japanese 230/2576 259/2740 201/2712

doi:10.1371/journal.pone.0070301.t002
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gene and T1D in Caucasian and Chinese populations (the overall

OR = 0.71, 95% CI = 0.55–0.92, P = 0.01). Meta-analysis of

21131T/C of APOA5 gene [27,29,39,44,50] among 795 T2D

cases and 3210 controls indicated that 21131T/C of APOA5 gene

was associated with T2D in Chinese and Caucasian populations

(Figure 3, the overall OR = 1.27, 95% CI = 1.03–1.57, P = 0.03).

For the rest 6 SNPs, our meta-analyses were unable to find

significant associations of them with T1D or T2D.

Discussion

In the present study, a comprehensive systematic overview of

genetic association studies was performed for the susceptibility of

T1D and T2D. We scrutinized all the candidate case-control

studies to identify the eligible SNPs with at least three independent

datasets. Our meta-analyses of 10 polymorphisms showed

significant evidence for 3 T1D-associated SNPs (NLRP1

rs12150220, IL2RA rs11594656, and CLEC16A rs725613) and 1

T2D-associated SNP (APOA5 21131T/C). Our meta-analyses

were unable to find significant associations of the rest 6 SNPs with

T1D or T2D. Moreover, power analysis showed that there might

be a lack of power for the meta- analysis of SLC2A10 rs2335491

(1,455 cases and 1,083 controls, 39%) under a moderate risk of

diabetes (OR = 1.2). These might partly explain our failure to

observe significant results for the meta-analyses of some polymor-

phisms.

After Bonferroni correction, only the association of SNP

rs11594656 with T2D remains significant. However, false

discovery rate (FDR) test, a less conservative correction for

multiple hypothesis testing, shows that the q values are 5.11E-5 for

IL2RA rs11594656, 0.051 for NLRP1 rs12150220, 0.026 for

CLEC16A rs725613, and 0.051 for APOA5 21131T/C. This

Figure 2. Forest plots of the association studies between four SNPs and T1D.
doi:10.1371/journal.pone.0070301.g002
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Figure 3. Forest plots of the association studies between six SNPs and T2D.
doi:10.1371/journal.pone.0070301.g003
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suggests the robustness of our positive results in the meta-analyses,

although we can’t exclude a chance of false positive results for

NLRP1 rs12150220, CLEC16A rs725613 and APOA5 21131T/C.

Sensitivity analysis demonstrated there were no significant

differences of four significant genetic variants after exclusion,

suggesting that the results of our meta-analyses was robust. In

addition, we have performed a comprehensive analysis for the Fst

values of the involved SNPs. Our results show there are moderate

ethnic differences for ATF6 rs2070150 (Fst = 0.13), although there

are minimal heterogeneity among the involved studies from

different ethnic groups (I2 = 0). And KLF11A rs35927125 is

monomorphic in Asians, however, its minor allele frequency in

Caucasian populations ranges from 8.8–12.2% (Fst = 0.0232). On

the contrary, there were little ethnic difference for CLEC16A

rs725613 and GNB3 rs5443 (Fst ,0.1), although there exist large

heterogeneity in the involved studies (I2.60%). For CASQ1

rs2275703, the heterogeneity might come from the discrepancies

of the samples in the case-control studies.

Pancreatic b-cell inflammation and apoptosis plays a pivotal

role in the pathogenesis of T1D [60]. As a member of the Ced-4

family of apoptosis proteins, NLRP1 is an important mediator of

programmed cell death [61]. NLRP1 plays a pivotal role in the

pathogenesis of some inflammatory diseases [62,63]. In the present

research, we combined three independent datasets and performed

a meta-analysis to evaluate the association between NLRP1

rs12150220 polymorphism and T1D susceptibility. Although large

ethnic differences of allele frequency were found for NLRP1

rs12150220 (T allele frequency: 47–53.1% in Caucasians versus

66.4% in Brazilians), minimal heterogeneity was observed in the

meta-analysis of this polymorphism (I2 = 0%). Our results support

NLRP1 rs12150220 as a protective genetic factor of T1D and

Figure 4. Funnel plots of the studies involved in the 10 meta-analyse .
doi:10.1371/journal.pone.0070301.g004

Table 3. Additional characteristics of individual T1D and T2D
studies in the meta-analyses.

T1D Gene SNP Model
Heterogeneity
index P values

IL2RA rs11594656 Fixed effect
model

0% ,0.00001

NLRP1 rs12150220 Fixed effect
model

0% 0.04

IL12B 1188 A/C Fixed effect
model

0% 0.86

CLEC16A rs725613 Random effect
model

69% 0.01

T2D Gene SNP Model Heterogeneity
index

P values

APOA5 21131 T/C Fixed effect
model

1% 0.03

SLC2A10 rs2235491 Fixed effect
model

0% 0.48

ATF6 rs2070150 Fixed effect
model

0% 0.26

KLF11 rs35927125 Fixed effect
model

7% 0.27

CASQ1 rs2275703 Random effect
model

65% 0.53

GNB3 rs5443 Random effect
model

82% 0.82

doi:10.1371/journal.pone.0070301.t003
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provide hints to clarify the mechanistic role of NLRP1 gene in the

pathogenesis of T1D.

Evidence from both genetic and animal model studies has

shown a crucial role of IL-2/IL-2RA in the pathogenesis of T1D

[37,64–67]. IL-2/IL-2RA regulates CD4+CD25+ regulatory T

cells so as to maintain immune homeostasis [67]. IL-2RA

rs12722495 was shown to contribute to the risk of T1D by

lowering IL-2 signaling and diminishing the function of

CD4+CD25+ regulatory T cells [64]. Interestingly, there is a

significant association of IL-2RA rs11594656 as a protective factor

with the risk of T1D in Polish population [22]. These two SNPs

were 24.726 kb away and not in the same linkage disequilibrium

block. Expansion of CD4+CD25+FOXP3+ regulatory T cells

through maternal insulin treatment was shown to reduce the risk

of T1D in children [68]. Increased resistance to CD4+CD25hi

regulatory T cell-mediated suppression was showed in T1D

patients [69]. Our meta-analysis established a significant associ-

ation between IL-2RA rs11594656 polymorphism and T1D,

although the influence of rs11594656 polymorphism on the

regulation of IL-2RA gene remains to be unveiled in the future.

CLEC16A gene is located in the major histocompatibility

complex class II region (16p13), and it encodes a member of the

C-type lectin domain containing family. CLEC16A gene variants

were associated with multiple autoimmune diseases such as T1D

[38,70–72]. CLEC16A gene variants were shown to be associated

with the alternative splicing event in the CLEC16A transcription

[73]. Our results suggested a significant association between

CLEC16A rs725613 and T1D among 5,074 samples from

Caucasian and Chinese populations (P = 0.01). A significant

heterogeneity (I2 = 69%) among these ethnic samples warranted

a replication in additional populations.

High level of glucose was shown to induce expression of APOA5

[74,75] that is an efficient regulator of plasma triglycerides (TGs)

by enhancing the catabolism of TG-rich lipoproteins [76] and

prohibiting the transportation of TGs [77]. APOA5 could probably

play a role in the pathogenesis of T2D by regulating the

cholesterol homeostasis [44,76]. APOA5 gene variants were also

reported to be associated with the lipid levels [50,78,79] and the

risk of coronary heart disease [80,81] in T2D patients. Since both

environmental factors [82,83] and other genes [84] interact with

APOA5 gene, our significant observation for APOA5 21131T/C

polymorphism may only partly explain the risk of T2D. Minimal

heterogeneity among the involved studies in our meta-analysis

(I2 = 1%), however, along with previous results [85,86], in which

ethnic differences were observed for the T allele frequency of

APOA5 21131T/C among the studies in our meta-analysis (68.8–

76% in Chinese versus 93.7% in Caucasians).

There are some limitations in the present study. Firstly,

publishing bias might exist in this meta-analysis. Case-control

studies with a lack of significant results were much harder to be

published than those with positive findings. In addition, only

publications in English and Chinese were included in the current

meta-analyses. All these may distort the results in our meta-

analyses. Secondly, some of the involved case-control studies [22–

24,26,28,31,34,35,37–39,41,43–46,49,51–57] didn’t provide in-

formation on the exclusion of other diseases (such as coronary

artery diseases, hypertension, and etc.) during recruitment.

Thirdly, the effects of genetic factors on diabetes risk were

confounded by other phenotypic parameters such as body mass

index. Therefore, case-control studies with better design are

warranted to avoid these confounding factors and replicate our

findings in future. Fourthly, due to a lack of enough independent

datasets, subgroup analysis and meta-regression were not applied

to identify differences in effect and sources of heterogeneity. Lastly,

our meta-analysis focused on gene loci with at least three

independent studies, and this might prevent those gene loci in

two large scale case-control studies from being included in the

current meta-analysis.

In conclusion, we identify significant associations between

4 SNPs (NLRP1 rs12150220, IL2RA rs11594656, CLEC16A

rs725613 and APOA5 21131T/C) and diabetes. Meta-analysis

among 4,456 samples has confirmed that rs12150220 of NLRP1

gene is a risk factor of T1D in Caucasian and Brazilian

populations. Meta-analysis among 37,432 samples has confirmed

that rs11594656 of IL2RA gene is a risk factor of T1D in

Caucasian and Japanese populations. Meta-analysis among 5,074

samples has confirmed that rs725613 of CLEC16A gene is a risk

factor of T1D in Caucasian and Chinese populations. Another

meta-analysis among 4,005 samples indicates that 21131T/C of

APOA5 gene is a risk factor of T1D/T2D in Chinese and

Caucasian populations.
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