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Abstract

High Mobility Group A proteins (HMGA1 and HMGA2) are architectural nuclear factors involved in development, cell
differentiation, and cancer formation and progression. Here we report the cloning, developmental expression and
functional analysis of a new multi-AT-hook factor in Xenopus laevis (XHMG-AT-hook) that exists in three different isoforms.
Xhmg-at-hook1 and 3 isoforms, but not isoform 2, are expressed throughout the entire development of Xenopus, both in the
maternal and zygotic phase. Localized transcripts are present in the animal pole in the early maternal phase; during the
zygotic phase, mRNA can be detected in the developing central nervous system (CNS), including the eye, and in the neural
crest. We show evidence that XHMG-AT-hook proteins differ from typical HMGA proteins in terms of their properties in DNA
binding and in protein/protein interaction. Finally, we provide evidence that they are involved in early CNS development
and in neural crest differentiation.
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Introduction

High Mobility Group A proteins (HMGA1a, HMGA1b and

HMGA2) are chromatin architectural factors involved in embry-

onic development and neoplastic transformation. HMGA are

typically characterized by three highly conserved short basic DNA

binding domains (AT-hooks) and a constitutively phosphorylated

acidic C-terminal tail that is involved in modulating HMGA

interactivity and conformation [1]. HMGA are architectural

chromatin modifiers because by binding to DNA they can affect its

structure, and by interacting with other nuclear proteins they can

participate in the assembling of complexes involved in regulating

the expression of several genes that are crucial for cell growth,

proliferation, and differentiation [2,3]. HMGA are highly

expressed during embryogenesis, but their expression is low or

undetectable in fully differentiated adult tissues; however, after

neoplastic transformation, HMGA are heavily re-expressed [3–6].

Several evidences suggest a role for both genes in cell proliferation

and differentiation. Hmga2 knockdown in Xenopus laevis abrogates

in vivo cardiogenesis [7]. Hmga2 knockout in mice leads to the pygmy

phenotype, characterized by reduced body size due to a decrease

in mesenchymal cell proliferation [8] and by a deficit in myoblast

proliferation and in myogenesis [9]; besides, these mice are sterile

because of impaired testis maturation [10] and are affected in

normal neural stem cell self-renewal [11]. In mice, haploinsuffi-

ciency of the Hmga1 gene causes cardiac hypertrophy and myelo-

lymphoproliferative disorders [12]; besides, Hmga1 is required for

normal sperm development and a role for both Hmga1 and Hmga2

genes has been demonstrated in adipogenesis [10]. In humans,

HMGA2 haploinsufficiency is associated with growth retardation

and reduced height [13,14]. Altogether these reports underline an

involvement of HMGA in development and in cell commitment.

We and others have previously reported the identification and

developmental expression of Xenopus laevis hmga2 [7,15,16]; we here

report the identification of a new multi-AT-hook factor, that we

named XHMG-AT-hook, whose biochemical properties differ

from those of the HMGA family, suggesting that it might have

different functions. We describe its developmental expression

pattern and show that its knock-down in anterior regions results in

abnormal development of the eye and of the neural crest cell

(NCC) derived pharyngeal skeleton.

Materials and Methods

All animal work has been conducted according to relevant

national and international guidelines. In particular, all protocols

involving the use of animals were approved by the Bioethical
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Committee of Pisa University, according to EU Directive 2010/

63/ EU.

Computational Analysis of DNA
A search in the database for proteins homologous to human

HMGA1, using the TBLASTN tool as described [15], has led to

the initial identification of several overlapping EST sequences.

These were joined together in a virtual ORF encoding a putative

protein with 8 AT-hooks that we named Xhmg-at-hook1. Other

sequences related to Xhmg-at-hook1, that we named Xhmg-at-hook2

and Xhmg-at-hook3, were also found in the database. Mapping of

Xhmg-at-hook sequences was performed with the Ensembl genome

browser.

Plasmids
Cloning of Xhmg-at-hook1 was performed by RT-PCR as

described [15], using the following PCR primers (with EcoRI

linkers), derived from the Xhmg-at-hook1 sequence: Start-

XATH1:59-GGGAATTCAATGGTCAGAGGTGAAGCG 39

and 59UTRXATH1:59-GGGAATTCCTTTACTTCGGCAAT-

TATCCACTTATAGTGTC-39(forward primers); Stop

XATH1:59-GGGAATTCCGCATAATTGTCATTGGTT-

GATCTCTATG-39 (reverse primer).

For PCR cloning we used Sigma AccuTaq with the following

conditions: 1 cycle at 94uC for 29; 3 cycles at 94uC for 300, 56uC
for 300, 68uC for 19, followed by 32 cycles at 94uC for 300, 58uC
for 300, 68uC for 19. The Xhmg-at-hook1 coding region was

amplified by RT-PCR from stage 37 embryo mRNA and cloned

into the pGEM-T-easy vector to generate pGEM-Xhmg-at-hook1.

For the production of recombinant proteins, pAR3038

XLHMGA2ba and pAR3038 XHMG-AT-hook1 were obtained

by inserting their ORF in the NdeI and BamHI sites of pAR3038.

For the GST-pull down assays, the following plasmids (with the

coding regions in fusion with GST ORF) were used: pGEX-Rb

(PR), only the pocket region [17]; pGEX-PTB [18]; pGEX-

PRMT6 [19]; pGEX-NPM [20]; pGEX-p53 (CT), only the C

terminal region [21]; pGEX-SP1 (ZnF), only the Zinc finger

region [17]; pGEX-hnRNPK [17]; pGEX-mHMGA1b and

pGEX-hHMGA2 [17]. pGEX-XLHMGA2ba was obtained by

cloning the XLHMGA2ba coding region in frame with GST ORF

in the bacterial expression vector pGEX-4T2 (GE Healthcare).

pcDNA3HA-hHMGA2 was previously described [22];

pcDNA3HA-XLHMGA2ba and pcDNA3HA-XHMG-AT-

hook1 were obtained by inserting their ORF in the BamHI and

XhoI sites of pcDNA3HA.

RT-PCR and in situ Hybridizations
Total RNA was extracted from embryos with the NucleoSpin

RNAII kit (Macherey-Nagel) and in vitro reverse-transcribed using

the GoScript Reverse Transcription System (Promega) and

oligodT primers. To analyse the temporal expression of Xhmg-at-

hook1, Xhmg-at-hook2 and Xhmg-at-hook3 by semiquantitative RT-

PCR, we used specific 59 primers for each of the three forms

(XATH1SpecFw 59-GCTTCCAGCCTCTCCTTGGATCA-

TATGCC-39; XATH2SpecFw 59-GCACAGAA-

GACCTGCTGCTGCTGACTAAG-39; XATH3SpecFw 59-

CCTGTGTCTTGTAGTCTTTGAAGG-39) and a shared 39

primer (XATHInt1R 59- CCCTCTTGGCCTTTTGGGAAC-

CACAGTACCATTAG-39). In these PCRs we amplified RT-

generated cDNAs with 1 cycle at 94uC for 29and 30 cycles at 94uC
for 300, 52uC for 300, 72uC for 500. As an internal control we used

ornithine decarboxylase (ODC) primers [23].

For whole-mount in situ hybridization (WISH), Xenopus laevis

embryos were staged and processed as previously described [15].

Digoxygenin (DIG) labelled antisense and sense probes were

generated from pGEM-Xhmg-at-hook1 template. Xotx2 [24], nrp-1

[25] and Twist [26] were used as molecular markers of rostral

brain, neural tube and neural crest, respectively.

Morpholino Injections
Antisense morpholinos (MO) (Gene-Tools, Corvallis, OR) were

co-injected unilaterally at 4-cell stage in the animal part of one

dorsal blastomere along with synthetic beta-gal mRNA as a tracer,

as described [27]. Typically, we injected 4 ng of each MO in

either single or combined injections. As a control, we used the

standard MO provided by Gene-Tools. The sequence of the MOs,

respectively targeting mRNA for Xhmg-at-hook1, 2 and 3, were as

follows: MoXat1: CGCTTCACCTCTGACCATTCCCTAA;

MoXat2: GTACTCATCATTACCCTTAGTCAGC; MoXat3:

ACCTATTTAGAACAGCTACTCCCAC. Cartilage staining

was performed as described [28].

Recombinant HMGA Protein Production and Purification
hHMGA2, XLHMGA2ba and XHMG-AT-hook1 proteins

were produced using the bacterial expression vector pAR3038

under the bacteriophage T7 promoter [29], purified and

quantified essentially as previously described [30].

Electrophoretic Mobility Shift Assay (EMSA)
EMSAs were performed essentially as previously described [30]

either with purified recombinant or with in vitro translated (IVT)

proteins. DNA plasmids (pcDNA3) containing HA-tagged

hHMGA2, XLHMGA2ba, and XHMG-AT-hook1 ORFs were

in vitro translated using a commercial in vitro transcription-transla-

tion kit (TNT Promega Madison, WI, USA) according to the

manufacturer’s instructions. IVT proteins were checked by

western blot using an anti-HA antibody (Sigma). The sequences

of the probes are (only the upper strand sequence is shown):

E3:59-AGAAAAACTCCATC-

TAAAAAAAAAAAAAAAAAAAAAAAAAAACA-39.

HCRII: 59-GACACATTAATCTATAATCAAATAC-39.

NRDI: 59-GAAAGTGGAAATTCCTCTGAATAGAGAG-39.

GST pull-down Assay
GST and recombinant GST-fused proteins were expressed and

purified following manufacturer’s instructions (Glutathione Se-

pharose 4B; GE Healthcare). Their purity, molecular mass and

concentration were checked by SDS-PAGE and blue coomassie

staining. GST pull-down assays were performed essentially as

previously described [17].

Results

HMGA and Multi AT-hook Factors in Xenopus
We and others previously reported the identification of Xenopus

cDNA sequences homologous to human HMGA2, namely

Xlhmga2ß (with two splicing variants Xlhmga2ßa and Xlhmga2ßb)

[7,15,16]. We performed additional database searches to look for

other HMGA homologues in Xenopus. Despite extensive searches,

and even though we found HMGA sequences in many Deutero-

stome and Protostome species, we could not find any sequence

orthologous to mammalian HMGA1, either in Xenopus laevis or in

the close species Xenopus tropicalis, whose draft genome sequence

was announced to include 97.6% of known genes [31].

However, we identified overlapping cDNA sequences defining

an ORF coding for a protein containing several AT-hooks that,

following HMG nomenclature rules [http://www.nlm.nih.gov/

Multi-AT-Hook Factors in Xenopus
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mesh/hmg.html] and considering the biochemical data reported

below, we named XHMG-AT-hook1 (Fig. 1A).

The cloned Xhmg-at-hook1 cDNA sequence contains an ORF

coding for a 327 aa protein with 8 AT-hooks, but no acidic C-

terminal tail, therefore appearing divergent from classical HMGA

proteins that are usually about 100 aminoacid residues long with 3

AT-hooks and an acidic C-terminal tail. Database searches with

the deduced protein sequence from our cDNA identified one

almost identical sequence in Xenopus laevis (accession number

NM_001114793) and another one shared by both Xenopus laevis

and Xenopus tropicalis (NM_001110735 and NM_ 001079207,

respectively). Alignment of the proteins deduced from the 4

Figure 1. XHMG-AT-hook proteins and organization of their transcripts and loci. (A) ClustalW alignment of XHMG-AT-hook protein
isoforms. The amino acid sequences of the three different XHMG-AT-hook1-3 protein sequences (XATH1–3) found in X. laevis and of the one (XATH3)
found in X. tropicalis are shown. The conserved AT-hooks are shown in bold; internal repeats are boxed in different shades of yellow or brown
respectively. The C-terminal region is boxed in orange. (B) Genomic organization of the Xhmg-at-hook locus in Xenopus tropicalis. The exon/intron
organization is indicated together with the proposed mechanisms of generation of the different Xhmg-at-hook1-3 (XATH1-3) transcripts in Xenopus
laevis, based on homology with the genomic sequences of Xenopus tropicalis (see also description in the text).
doi:10.1371/journal.pone.0069866.g001

Multi-AT-Hook Factors in Xenopus
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different cDNAs shows that their sequences are highly similar

(Fig. 1A). In particular, the protein encoded by NM_001114793

(XHMG-AT-hook2) is 298 aa long and differs from XHMG-AT-

hook1 by a deletion of 27 aa from the N-terminal sequence,

another small deletion of 2 aminoacids and a P to L change. On

the other hand, the two other sequences (NM_001110735 and

NM 001079207) code for a conserved protein, that we named

XHMG-AT-hook3, of 276 aa in Xenopus laevis and 278 aa in

Xenopus tropicalis, that is clearly related to XHMG-AT-hook1 and 2

but contains 6 instead of 8 AT-hooks (Fig. 1A). From inspection of

XHMG-AT-hook1 protein sequence we found stretches of amino

acid sequences that are repeated. In particular, box 1, containing

the first AT-hook, is repeated almost identically around the second

AT-hook, and box 2, containing the fifth and sixth AT-hooks, is

also repeated (see color-shaded boxes in Fig. 1A). These repeated

sequences are conserved in XHMG-AT-hook2, while in XHMG-

AT-hook3 only the first box is repeated, thus resulting in a protein

with only 6 AT-hooks (Fig. 1A). It is therefore possible to speculate

that box 1 and 2 repeats of XHMG-AT-hook3 occurred from

internal DNA duplications within an ancestral sequence and that

duplication of box 2 further occurred in Xenopus laevis, giving rise to

XHMG-AT-hook1 and XHMG-AT-hook2. This hypothesis is

supported by the intron-exon organization of the genomic locus in

Xenopus tropicalis (Fig. S1).

Comparison of Xhmg-at-hook3 with Xhmg-at-hook1 and 2

sequences at the nucleotide level (data not shown) shows that the

three Xhmg-at-hook sequences represent closely related cDNA and

that only Xhmg-at-hook3 is present in both species. When the three

Xhmg-at-hook sequences are searched in the Xenopus tropicalis

genome using the Ensembl genome browser, they all map to the

genomic location GL173032.1, suggesting that they may represent

divergent versions of a single gene present in Xenopus tropicalis (Fig.

S1). Besides, this location also contains sequences matching the

59UTR and the 39UTR of Xenopus laevis Xhmga-at-hook1 and Xhmga-

at-hook2 that are not present in the Xhmga-at-hook3 transcript (Fig.

S1). In particular, comparison of their sequences with the genomic

sequences of Xenopus tropicalis suggests that the three mRNA

isoforms found in Xenopus laevis may result from differential splicing

and that Xhmga-at-hook1 and Xhmga-at-hook2 contain a duplication

of a region including exon 7 (exon 7bis) that occurred in Xenopus

laevis and encodes the duplicated box 2 of the protein (Fig. 1B). For

example, when the last intron (intron 7–8 in Xenopus tropicalis) is

spliced out and exon 7 is joined to exon 8, translation of the

mRNA results in XHMG-AT-hook3, characterized by its specific

C-terminal part (aa VKGSSVQKNEKTSGTDGP in Xenopus

laevis). In addition, in Xenopus laevis both exon 7 and exon 7bis may

be included in the mRNA and in this case translation results in

XHMG-AT-hook1 and XHMG-AT-hook2, with their specific C-

terminal part (aa VRSIEINQ) (Fig. 1A and B, Fig. S1). Finally,

sequences present at the 59UTR of Xhmg-at-hook1 and Xhmg-at-

hook2 and the extra aminoacid sequence at the N-terminal encoded

by Xhmg-at-hook1 show high homology with sequences located

upstream of exon I of Xenopus tropicalis. Therefore, the Xenopus

tropicalis genome contains at this location all the sequences that in

Xenopus laevis are used to assemble the three isoforms, with the

exception of the duplicated exon. Because the Xenopus laevis

genome has not been sequenced yet, we cannot be sure about the

organization of this locus, but it seems likely that in the

pseudotetraploid genome of this species there are diverged Xhmg-

at-hook genes showing an internal duplication that can generate the

different transcripts.

Extensive database searches did not allow us to identify

sequences similar to XHMG-AT-hook in other species.

In conclusion, only HMGA2 sequences may be present in

Xenopus, while HMGA1 seems missing; instead, in Xenopus laevis, we

found three different transcript forms (Xhmg-at-hook1, Xhmg-at-hook2

and Xhmg-at-hook3) coding for a new protein containing 6–8 AT-

hooks depending on internal duplications occurred within the

gene; one of these (Xhmg-at-hook3) is present also in Xenopus tropicalis.

Expression of Xhmg-at-hook Transcripts
We have then analyzed the expression of the newly discovered

Xhmg-at-hook transcripts. RT-PCR experiments were performed

selecting specific primers able to distinguish between the three

different forms. Fig. 2A shows that Xhmg-at-hook1 mRNA is present

at very early stages (2-cell stage), and therefore is maternally

contributed, while in the following developmental stages (late

blastula and early neurula) it is still detectable, though at a lower

level. Xhmg-at-hook1 expression is subsequently increased during

tailbud stages and still persists at tadpole stage 42 (Fig. 2A). Xhmg-

at-hook2 mRNA was not detectable under our experimental

conditions. Xhmg-at-hook3 mRNA is expressed at levels higher

than Xhmg-at-hook1; it is present, though not abundant, as a

maternal transcript, then it gradually increases following stage 9

(late blastula) during the neurula and tailbud stages up to the

swimming tadpole stage 42, the latest stage that we have analyzed.

By WISH we studied the distribution of the Xhmg-at-hook

transcripts within the developing embryo (Fig. 2B-G). In these

experiments, we used the Xhmg-at-hook1 entire coding region as a

probe. Because at the nucleotide level all three sequences are very

conserved in the coding regions (data not shown), we may not be

able to distinguish between the different Xhmg-at-hook transcripts;

however, given the results of RT-PCR experiments, the observed

signal may mainly result from Xhmg-at-hook1 and Xhmg-at-hook3

transcripts. At the 2-cell stage, Xhmg-at-hook mRNAs are detected

in the animal pole of the embryo. During late blastula/gastrula

stages, localized mRNAs fail to be detected. In parallel with the

increase of mRNA levels revealed by RT-PCR, localized

transcripts are again detectable at early tailbud stage (st. 22),

when staining is evident in the anterior region of the embryo, in

the central nervous system and eye, and declines towards the

posterior end of the embryo; a low level of expression is also

detected in the pharyngeal region. After stage 25, Xhmg-at-hook

expression is maintained in the head region, where staining of the

pharyngeal region is increased, and extended in the posterior part

of the CNS. Sections from hybridized embryos confirm expression

in the neural crest-derived pharyngeal arches, and in the neural

tube, at different tailbud stages (Fig. 2 H, I and data not shown).

Study of Xhmg-at-hook1-3 Developmental Role
To clarify the developmental role of Xhmg-at-hook genes, we have

injected two different morpholinos (MoXat1 and MoXat3),

targeting the two mRNA forms expressed during development,

Xhmg-at-hook1 and Xhmg-at-hook3, respectively. MOs were injected

in the dorsal animal blastomere at the 4-cell stage, to target the

presumptive anterior neural plate and neural crest. Injection of

4 ng of either MoXat1 or MoXat3 did not produce any visible

morphological effect. On the other hand, when MoXat1 and

MoXat3 were injected together (4 ng each), embryos showed clear

developmental alterations. In particular, at the swimming tadpole

stage, the neural crest derived pharyngeal skeleton was clearly

reduced on the injected side compared to the uninjected side (Fig. 3

I, R; Table 1); this was confirmed by Alcian staining of branchial

cartilages in about 30% of embryos (referred to as strong

phenotypes); also the eye was often reduced. Besides, another

35% of these embryos displayed a weaker reduction of these

skeletal derivatives (referred to as weak phenotypes). Therefore, a

Multi-AT-Hook Factors in Xenopus
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total of about 65% of the MoXat1 and MoXat3 injected embryos

showed some alteration in the pharyngeal skeleton. On the other

hand, only a minority of the embryos injected with either MoXat1

or MoXat3 (about 10% for MoXat1 and 15% for MoXat3),

showed a weak reduction in the pharyngeal skeleton (Fig. S2;

Table 1).

The phenotypic effects observed at tadpole stage were

anticipated, in MoXat1 and MoXat3 injected embryos, by the

alteration of molecular marker expression in the developing CNS

and in NCC. In fact, consistent with eye reduction, stage 28

embryos injected with both MOs, showed reduced Xotx2

expression in the eye vesicle in 63% of tested embryos, compared

to the contralateral uninjected side; reduction of Xotx2 expression

was also observed in the developing brain region (Fig. 3 A–C).

Combined MO injections also altered the expression of the general

neural marker nrp-1, that was reduced on the injected side (Fig. 3

Figure 2. Xhmg-at-hook1-3 expression analyses. (A) RT-PCR analysis of Xhmg-at-hook and ODC transcription during Xenopus laevis development.
Numbers refer to embryo stages. (B–G) Results of WISH on Xenopus laevis embryos. (B–B’) Stage 2: Xhmg-at-hook maternal transcripts are localised in
the animal pole (ap). (C) Stage 22: faint staining is detectable in both the developing eye (white arrowhead) and CNS (black arrowhead). (D) Stage 25:
Xhmg-at-hook expression is in the anterior half of the embryo around branchial pouches (black arrows). (E, F, G) At tailbud stages 31, 35–36, 39
respectively, labelling is present in the brain, eye, neural tube (nt), somites (som) and branchial region (f, forebrain; m, midbrain; h, hindbrain; ov, otic
vesicles; cg, cement gland; vp, vegetal pole). (H) Transversal section of a stage 28 hybridised embryo showing Xhmg-at-hook mRNA presence in the
brain region, eye vesicles (white arrowhead) and NCC derived-mesenchyme around the pharynx (arrows) (H). (I) Horizontal section of a stage 33
hybridised embryo showing Xhmg-at-hook mRNA presence in the NCC derived pharyngeal arches (arrows).
doi:10.1371/journal.pone.0069866.g002

Multi-AT-Hook Factors in Xenopus
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D, E). Furthermore, consistent with the pharyngeal skeleton

phenotype, a clear reduction in the expression of Twist (Fig. 3 H,

I), a key gene expressed in NCC and promoting epithelial

mesenchymal transition and migration [26,32], was observed in

26% of embryos. This percentage is in good agreement with that

of tadpole larvae showing a strong phenotype in the pharyngeal

arches; another 60% of embryos showed a weak reduction of Twist

expression (Table 2).

On the other hand, injection of single MOs had a weak effect on

these molecular markers: a strong reduction was observed in less

than 10% of cases, and a weak reduction in about 18–28% of

embryos (depending on the marker) (Fig. S2; Table 2).

As a control, around 95% of embryos injected with a standard

control MO (8 ng) had no skeletal phenotype, and only a few had

a weak reduction in pharyngeal arches (Fig. S3I; Table 1); when

similarly injected embryos were scored for molecular marker

expression, about 85% of them showed no alteration, 12–14%

displayed a weak reduction and very few a strong reduction (Fig.

S3A–H; Table 1).

The distributions of the diverse skeletal phenotypes obtained in

these experiments were significantly different in combined

Table 1. Analysis of cartilage phenotype by Alcian staining.

Phenotype (%)

Samples n Strong Weak No effect

Std CO-Mo I exp 56 7 93

II exp 37 5 95

Moxat1 I exp 76 8 92

II exp 46 11 89

Moxat3 I exp 50 16 84

II exp 38 13 87

Moxat1+3 I exp 107 30 35 35

doi:10.1371/journal.pone.0069866.t001

Figure 3. Results of combined antisense MoXat1 and MoXat3 injections in Xenopus embryos. Reduction of Xotx2 (A–C or J–L, respectively
for strong or slight reduction), nrp-1 (D–F, strong; M–O, slight) and Twist (G–H, strong; P–Q, slight) expression is observed on the injected side of
embryos (inj), compared to uninjected side (un). Strong or weak reduction (I, R respectively) of pharyngeal skeleton is observed on the injected side
of antisense MO treated swimming tadpoles compared to control side. Beta-gal red staining traces injected side of embryos.
doi:10.1371/journal.pone.0069866.g003

Table 2. Results of morpholino microinjection experiments (2
experiments for each combination).

Expression level alteration (%)

Sample n Strong
reduction

Slight
reduction

Increase No effect

Std CO–MO Otx2 81 14 86

Nrp1 75 4 12 84

Twist 91 3 12 85

MoXat1 Otx2 68 1 19 1 78

Nrp1 72 1 25 74

Twist 74 9 28 8 54

MoXat3 Otx2 89 8 24 68

Nrp1 79 9 18 73

Twist 80 11 18 71

MoXat1+3 Otx2 94 31 32 37

Nrp1 93 29 42 29

Twist 117 26 60 14

doi:10.1371/journal.pone.0069866.t002

Multi-AT-Hook Factors in Xenopus
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Moxat1+Moxat3 injected embryos compared to embryos injected

with either standard or Moxat1 or Moxat2 morpholinos (Table

S1); similar statistical support to our conclusions was observed also

for the effects on molecular markers (Table S2).

Finally, although we did not detect Xhmg-at-hook2 mRNA in our

RT-PCR experiments, we have also designed and injected a MO

(MoXat2) targeting this mRNA. Either when injected alone or

when injected in combination with MoXat1 or MoXat3, MoXat2

did not elicit any phenotype or increased the effects of the other

two MOs, in agreement with Xhmg-at-hook2 negligible level of

expression (data not shown) and further strengthening the

specificity of the effects obtained with MoXat1 and MoXat3.

XHMG-AT-hook1 Biochemical Properties are Distinct
from Those of Xenopus XLHMGA2ba and Human HMGA

The newly described Xhmg-at-hook transcripts code for non-

canonical HMGA proteins since they have multiple AT-hooks and

no C-terminal acidic tail. To characterize their biochemical

properties we compared the DNA/and protein/protein-interac-

tion of these new XHMG-AT-hook proteins with classical HMGA

proteins: human and Xenopus HMGA2. Among the different

XHMG-AT-hook forms we decided to test XHMG-AT-hook1

because it contained a higher number of AT-hooks; for

XLHMGA2 we used XLHMGA2ßa because previous RT-PCR

experiments [15] demonstrated that it is the most abundant

isoform expressed and also because we could confirm in vivo its

expression by mass spectrometry (Fig. S4).

XLHMGA2ßa was readily expressed, extracted, and purified

with the conventional strategy currently used for HMGA proteins.

On the contrary, we were not able to produce XHMG-AT-hook1

with this approach and were therefore forced to use in vitro

translated proteins, both to perform DNA/and protein/protein-

binding assays.

To compare the DNA binding properties of XLHMGA2ßa and

XHMG-AT-hook1 with those of human HMGA proteins we

performed electrophoretic mobility shift assays (EMSAs), using

different double strand DNA probes deriving from gene regulatory

sequences known to be specifically recognized by HMGA with

different affinities (E3.HCRII.NRDI). In a first set of experi-

ments, both human HMGA1a and HMGA2 were compared with

XLHMGA2ßa. The results clearly show that XLHMGA2ßa is

able to bind to all the sequences bound by human HMGA in a

very comparable way (Fig. S5). These data enforce the fact that

XLHMGA2 can be considered the orthologue of human

HMGA2.

EMSA experiments performed with comparable amounts of

XHMG-AT-hook1 and XLHMGA2ßa proteins using DNA

probes with the highest affinities for HMGA proteins (Fig. 4A)

clearly indicate that XHMG-AT-hook1 is not able to bind to AT-

rich DNA probes (compare lanes 6–8 with lanes 10–12); therefore,

XHMG-AT-hook1 has different DNA binding specificities com-

pared to HMGA proteins. Fig. 4B shows that both proteins are

efficiently translated.

Because HMGA proteins share their molecular partners [17],

we tested whether XLHMGA2ßa and XHMG-AT-hook1 are able

to bind to the same molecular partners of human HMGA proteins.

To this end, GST pull down experiments were performed using

in vitro translated XLHMGA2ßa, human HMGA2, and XHMG-

AT-hook1 and several molecular partners of HMGA produced as

GST-fused proteins: pRB (PR), PTB, PRMT6, NPM, p53 (CT),

Sp1 (ZnF), and hnRNPK (Fig. 5A). Data obtained from these

experiments clearly show that human and Xenopus HMGA2

proteins are similar, as can be appreciated from the results shown

in Fig. 5B. Indeed, in addition to binding to the same molecular

partners, also the affinities for these partners are similar. On the

contrary, XHMG-AT-hook1 is able to bind only to a subset of

HMGA partners (p53 CT, hnRNPK, PTB, and NPM), thus

Figure 4. XLHMGA2 and XHMG-AT-hook1 DNA-binding prop-
erties. (A) Electrophoretic mobility shift assay performed with in vitro
transcribed and translated (IVT) HA-tagged XLHMGA2ba (HA-XLA2ßa)
and XHMG-AT-hook1 (HA–XATH1) proteins. Two different DNA probes
were used: upper panel, E3 (0.1 pmoles); lower panel HCRII (0.1 pmoles);
EMSAs were performed incubating 2, 4, and 6 mL of IVT proteins. (B)
Western blot analysis of IVT proteins is shown (red ponceau stained
membrane (left) and a-HA antibody recognition (right) to assess the
production of the XLHMGA2ba and XHMG-AT-hook1 proteins.
doi:10.1371/journal.pone.0069866.g004
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suggesting, in agreement with data regarding DNA interactions,

that this protein has biochemical functions different from

conventional HMGA. This conclusion is further supported by

bioinformatic prediction of disordered sequences with the Predic-

tor Of Naturally Disordered Regions (PONDR) software [33],

showing that XHMG-AT-hook1 has only 75.5% of disordered

structure, while human HMGA2 and Xenopus XLHMGA2ßa are

prototypes of intrinsically disordered proteins having 100% of

disordered structure (data not shown).

Discussion

In this paper we report the cloning and developmental

expression of a new gene, distantly related to HMGA1 and

HMGA2, that we named Xhmg-at-hook. We have analyzed Xhmg-at-

hook pattern of expression during Xenopus development and found

that its main domains of expression are in the developing CNS,

NCC and eye.

The deduced XHMG-AT-hook protein shares with typical

HMGA the AT-hook DNA binding domain, but, differently from

HMGA1 and HMGA2, has 6 or 8 of such motifs. In our case, the

comparison of XHMG-AT-hook1 DNA binding activity with that

of typical HMGA shows a clear difference: XHMG-AT-hook1

protein does not bind the typical sequence targets recognized by

both human and Xenopus HMGA proteins. Besides, also the

protein-protein interaction activity of XHMG-AT-hook1 is

different from those of typical HMGA. These results suggest that

XHMG-AT-hook factors do not share the typical characteristics of

the HMGA family and therefore should not be included in this

family. Multi-AT-hook proteins have been described in other

organisms: some highly divergent HMGA proteins (like D1 in

Drosophila) and other proteins containing several AT-hooks (in

plants) have been shown to behave as canonical HMGA. On the

contrary, other AT-hook-containing proteins have been reported

to exert different functions from HMGA proteins and classified as

non-canonical HMGA proteins [34]. XHMG-AT-hook1–3 should

therefore be included in this last category.

Figure 5. XLHMGA2ba, but not XHMG-AT-hook1, interacts with the same molecular partners of mammalian HMGA. (A) Blue
coomassie stained analysis of different HMGA molecular partners produced as GST-fused protein and of GST alone. PR: pocket region; CT: C-terminal
region; ZnF: Zinc finger region. (B) GST-pull down assays performed with the GST-fused HMGA molecular partners shown in panel A and IVT and [35S]-
methionine radiolabeled XHMG-AT-hook1 (HA–XATH1), hHMGA2 (HA–hA2), and XLHMGA2ba (HA–XLA2ba). For each IVT protein used input is shown
in lanes 1, 6, and 10 (10% of the amount used in GST-pull down experiments). GST alone is used as a negative control.
doi:10.1371/journal.pone.0069866.g005
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By MO injection experiments, we have shown that they play a

possibly redundant role in Xenopus laevis development. In fact,

consistent with the pattern of mRNA expression, combined

injection of MOs against the two mRNA forms expressed in early

embryogenesis, Xhmg-at-hook1 and Xhmg-at-hook3, leads to reduc-

tions in the eye and parts of the pharyngeal skeleton. These effects

are at least in part consistent with the reduced expression of the

rostral brain marker Xotx2, of the neural marker nrp-1, and of the

NCC marker Twist observed in MO injected embryos. In fact, in

all embryos injected with both MOs, Xotx2 and nrp1 expression

was reduced in the developing eye, though some effects were also

seen in other parts of the CNS. It is interesting to note that while

injection of single MOs only produced weak phenotypic effects in

a minority of embryos, upon combined injections of MoXat1 and

MoXat3 there is a definite shift towards an increase of both the

weak and the strong phenotype frequency; this is consistent with

the fact that both Xhmg-at-hook1 and Xhmg-at-hook3 mRNAs are

expressed during early embryogenesis. Notably, the frequency of

embryos showing a strong cartilage phenotype (30%) matches well

with that of embryos displaying a strong reduction in Twist

expression (26%), as should be expected given that pharyngeal

arches derive from NCCs.

On the whole, we report the identification of a new multi-AT-

hook factor, Xhmg-at-hook, and provide data that it is involved in

the development of CNS and NCC derivatives of Xenopus. Future

work will be required to address the precise biochemical role of

XHMG-AT-hook proteins within the cell context.
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