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Abstract

In the present article, we considered two-dimensional steady incompressible Oldroyd-B nanofluid flow past a stretching
sheet. Using appropriate similarity variables, the partial differential equations are transformed to ordinary (similarity)
equations, which are then solved numerically. The effects of various parameters, namely, Deborah numbers b1 and b2,
Prandtl parameter Pr, Brownian motion Nb, thermophoresis parameter Nt and Lewis number Le, on flow and heat transfer
are investigated. To see the validity of the present results, we have made the comparison of present results with the existing
literature.
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Introduction

The flow over a stretching sheet has been premeditated because

of its numerous industrial applications such as industrialized of

polymer sheet, filaments and wires. Through the mechanized

process, the stirring sheet is assumed to extend on its own plane

and the protracted surface interacts with ambient fluid both

impulsively and thermally. Only Navier Stokes equations are

deficient to explain the rheological properties of fluids. Therefore,

rheological non-Newtonian fluid models have been proposed to

overcome this deficiency. Sakiadis [1] was the first who discussed

the boundary layer flow over a stretching surface. He discussed

numerical solutions of laminar boundary-layer behavior on a

moving continuous flat surface. Experimental and analytical

behavior of this problem was presented by Tsou et al. [2] to

show that such a flow is physically possible by validating Sakiadis

[1] work. Crane [3] extended the work of Sakiadis [1] for both

linear and exponentially stretching sheet considering steady two-

dimensional viscous flow. Free convection on a vertical stretching

surface was discussed by Wang [4]. Heat transfer analysis over an

exponentially stretching continuous surface with suction was

presented by Elbashbeshy [5]. He obtained similarity solutions

for the laminar boundary layer equations describing heat and flow

in a quiescent fluid driven by an exponentially stretching surface

subject to suction. Viscoelastic MHD flow heat and mass transfer

over a stretching sheet with dissipation of energy and stress work

was discussed by Khan et al. [6]. Ishak et al. [7] studied heat

transfer over a stretching surface with variable heat flux in

micropolar fluids. Nadeem et al. [8] coated boundary layer flow of

a Jeffrey fluid over an exponentially stretching surface with

radiation effects. Recently in another article Nadeem et al. [9]

investigated the magnetohydrodynamic (MHD) boundary layer

flow of a Casson fluid over an exponentially permeable shrinking

sheet.

The term ‘‘Nanofluids’’ is used for the fluids having suspension

of nano-sized metallic or non-metallic particles. The main idea of

using nanoparticles is to enhance the thermal properties of a base

fluid. Invokement of nanofluids with improved heat distinctiveness

can be noteworthy in stipulations of more competent cooling

systems, consequential in higher productivity and energy savings.

Several prospective applications for nanofluids are heat exchang-

ers, radiators for engines, process cooling systems, microelectron-

ics, etc. Choi [10] was the first who have made the analysis on

nanoparticles in 1995. Xuan and Roetzel [11] presented

cautiously the flow of a nanofluid in a tube using a dispersal

replica. Heat transfer enhancement in a two-dimensional flow

utilizing nanofluids is presented by Khanafer et al. [12]. They

discussed the problem physically for various flow parameters. The

Cheng–Minkowycz problem of natural convection past a vertical

plate, in a porous medium saturated by a nanofluid is studied

analytically by Nield and Kuznetsov [13]. The use of nanofluid

model incorporates the effects of Brownian motion and thermo-

phoresis parameter. The natural convective boundary layer flow of

a nanofluid over a vertical plate is studied analytically by

Kuznetsov and Nield [14]. They found that the reduced Nusselt

number is a decreasing function of thermophoresis number and

Brownian motion number. The boundary-layer flow and heat

transfer in a viscous fluid containing metallic nanoparticles over a

nonlinear stretching sheet are analyzed by Hamad and Ferdows

[15]. They studied different types of nanoparticles and found that

the behavior of the fluid flow changes with the change of the
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nanoparticles type. Numerous recent studies on nanofluids can be

found in Refs. [16–25].

Main objective of the present article is to discuss the Oldroyd B

nanofluid flow model over a stretching sheet. Mathematical model

of the proposed study has been constructed after applying the

boundary layer approach. Then, invoking the similarity transfor-

mation, we reduce the system of nonlinear partial differential

equations into the system of nonlinear ordinary differential

equations. The reduced couple nonlinear ODEs are solved

numerically. Excellent comparison of the present approach has

presented with the previous literature. The effects of various flow

controlling parameters on the velocity, temperature and mass

fraction function profiles are discussed. Moreover, variation of the

local Nusselt and Sherwood number for various nanoparticles

parameters has been constructed. The formulation of the paper is

designed as follow. The problem formulation is presented in

section two. The numerical solutions graphically with physical

interpretation are incorporated in section three. Section four

contains the summary of the whole analysis.

Problem Formulation

Consider two-dimensional steady incompressible Oldroyd-B

fluid past a stretching sheet. In addition, nanoparticles effects are

saturated, while sheet is stretching along the plane y~0. The flow

is assumed to be confined to yw0. Here we assumed that the sheet

is stretched with the linear velocity u(x)~ax, where aw0 is

constant and x{axis is measured along the stretching surface.

The boundary layer equations of Oldroyd-B fluid model along

with the thermal energy and nanoparticles equations for nano-

fluids are
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Figure 1. Variation of velocity, temperature and nanoparticles
fraction for various values of b1.
doi:10.1371/journal.pone.0069811.g001
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Figure 2. Variation of velocity, temperature and nanoparticles
fraction for various values of b2.
doi:10.1371/journal.pone.0069811.g002

Figure 3. Variation of temperature and nanoparticles fraction
for various values of Pr.
doi:10.1371/journal.pone.0069811.g003
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where u and v denote the respective velocities in the x{ and y{

directions respectively, r
f

is the density of the base fluid, n is the

kinematic viscosity of the fluid, s is the electrical conductivity, L1

and L2 are the relaxation and retardation times, a is the thermal

diffusivity, T the fluid temperature, C the nanoparticle fraction,

Tw and Cw are the temperature of fluid and nanoparticle fraction

at wall respectively, DB the brownian diffusion coefficient, DT is

the thermophoretic diffusion coefficient, t~
(rc)p

(rc)f

is the ratio

between the effective heat capacity of the nanoparticle material

and heat capacity of the fluid, C is the volumetric volume

expansion coefficient and rp is the density of the particles. When y

tends to infinity then the ambient values of T and C are denoted

by T? and C?. The associated boundary conditions of Eqs. (2)–(4)

are

u~uw(x)~ax, v~0, T~Tw, C~Cw at y~0,

u~0, v~0, T~T?, C~C? as y??:
ð5Þ

Introducing the following similarity transformations

y~(an)1=2xf (g), h(g)~
T{T?

Tw{T?
, (g)~

C{C?

Cw{C?
,

g~

ffiffiffi
a

n

r
y,

ð6Þ

where the stream function y is define as u~
Ly

Ly
and v~{

Ly

Lx
.

Making use of Eq. (6), Equation of continuity is identically satisfied

and Eqs. (2) to (4) along with (5) take the following form
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� �

zb2 ff ’’’’{(f ’’)
2

� �
~0, ð7Þ

h’’zPr f h’zNb h’w’ð ÞzNt h’ð Þ2
� �

~0, ð8Þ
Figure 5. Variation of temperature and nanoparticles fraction
for various values of Nb.
doi:10.1371/journal.pone.0069811.g005

Figure 6. Variation of temperature and nanoparticles fraction
for various values of Nt.
doi:10.1371/journal.pone.0069811.g006

Figure 4. Variation of temperature and nanoparticles fraction
for various values of Le.
doi:10.1371/journal.pone.0069811.g004
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w’’zLePr f w’ð Þz Nt

Nb

h’’~0, ð9Þ

f (0)~0, f ’(0)~1, f ’(?)~0, f ’’(?)~0, ð10Þ

h(0)~1, h(?)~0, ð11Þ

w(0)~1, w(?)~0, ð12Þ

in which prime indicates the differentiation with respect to g,

b1~aL1 and b2~aL2 are the Deborah numbers in terms of

relaxation and retardation times, respectively, Pr~
n

a
is Prandtl

number, Nb~
(rc)PDB(ww{w?)

n(rc)P

Brownian motion,

Nt~
(rc)PDT (Tw{T?)

n(rc)P

thermophoresis parameter, Le~a=DB

the Lewis number. Expressions for the local Nusselt number Nu

and the local Sherwood number Sh are

Nux~
xqw

a(Tw{T?)
, Shx~

xqm

DB(Cw{C?)
, ð13Þ

where qw and qm are the heat flux and mass flux, respectively.

q
w
~{a

LT

Ly

� �
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, qm~{D
B

LC

Ly
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: ð14Þ

Dimensionless form of Eq. (13) take the form

Re{1=2
x Nux~{h’ 0ð Þ, Re{1=2

x Shx~{w’ 0ð Þ: ð15Þ

where Rex~uw (x)x=n is local Reynolds number based on the

stretching velocity uw(x).

Results and Discussion

The nonlinear coupled ordinary differential equations (7)–(9)

subject to the boundary conditions (10)–(12) have been solved

numerically using the fourth-fifth order Runge-Kutta-Fehlberg

method. Figs. 1, 2, 3, 4, 5, and 6 illustrate the behavior of

emerging parameters such relaxation time constant b1, retardation

time constant b2, Prandtl parameter Pr, Brownian parameter Nb,

thermophoresis parameter Nt and Lewis number Le on velocity

profile f ’(g), temperature profile h(g) and mass fraction function

w(g). Fig. 1, depicts the variation of b1 on f ’(g), h(g) and w(g).

Figure 7. Variation of Nusselt number with Nt for various
values of Nb when PrvLe.
doi:10.1371/journal.pone.0069811.g007

Figure 8. Variation of Nusselt number with Nt for various
values of Nb when PrwLe.
doi:10.1371/journal.pone.0069811.g008

Figure 9. Variation of Sherwood number with Nt for various
values of Nb when PrvLe.
doi:10.1371/journal.pone.0069811.g009
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Since b1 is a function of relaxation time L1 and due to viscoelastic

properties of fluid it always resist the motion of the fluid. As a

result, the velocity profile f ’(g) and boundary layer thickness are

decreasing function of b1. On the other hand, both temperature

profile h(g) and mass fraction function w(g) increases with an

increase in Deborah number b1 (see Fig. 1). Physical behavior of

Fig. 2 is due to an increase in retardation time of any material

enhances the flow. Consequently, with an increase of b2 velocity

profile increases and both temperature and mass fraction function

decreases (see Fig. 2). Thus, it concluded that b1 and b2 have

opposite results on f ’(g), h(g) and w(g) due to relaxation and

retardation times, respectively (see Fig. 1 and 2).

Physically it is observed that an increase in the elastic

parameter, the resistance to fluid flow will increase. Table 1

illustrates an excellent agreement of the present results with Khan

and Pop [17] in the absence of non-Newtonian parameters b1 and

b2. As expected, it is found from Fig. 3, that both temperature and

nanoparticle concentration profiles exert the decreasing behavior

with the influence of Pr. Fig. 4 shows that both temperature and

nanoparticle concentration have the same behavior when it is

compared with Fig. 3 for higher values of Le. Consequently,

boundary layer thickness decreases indefinitely with an increase in

Pr. Effects of Brownian motion and thermophoresis parameters on

temperature profile h(g) and mass fraction function w(g) are

shown in Figs. 5 and 6. It is observed that for higher values of both

Nb and Nt, the temperature profile rises. On the other hand Fig. 5,

shows opposite behavior for mass fraction function when it is

compare with Fig. 6, for increasing values of both Nb and Nt. In

the absence of both nanoparticles and non-Newtonian effects there

is an excellent agreement of the present results with Wang [4] (see

Table 2). The effects of elastic parameter, Prandtl parameter,

Brownian parameter, thermophoresis parameter and Lewis

number on the Nusselt number and Sherwood number are

presented in Figs. 7, 8, 9, and 10. It is seen from Fig. 7, 8 and

Table 3 that the Nusselt number decreases with increasing Nt for

both cases when Pr is less or greater than Le for Nb~0:3,0:5,0:7.

Figs. 9 and 10 and Table 3 show the variation in dimensionless

mass transfer rates vs Nt parameter for the selected values of other

parameters. The dimensionless mass transfer rates decrease with

the increase in Nt. Finally, high Prandtl fluid has a low thermal

conductivity reducing conduction which results in an increase in

the heat transfer rate at the surface of sheet.

Conclusions

In this study we have presented the Oldroyd-B fluid model for

nanofluid over a stretching sheet. The effects of elastic parameter,

Brownian motion and thermophoresis parameters on flow and

heat transfer are discussed numerically. The main results of

present analysis are listed below.

N Effects of b1 and b2 have opposite behavior for velocity,

temperature and mass fraction function. These phenomena

Figure 10. Variation of Sherwood number with Nt for various
values of Nb when PrwLe.
doi:10.1371/journal.pone.0069811.g010

Table 1. Comparison of Numerical Values for local Nusselt
number Re{1=2

x Nux and the local Sherwood number

Re{1=2
x Shx in the absence of non-Newtonian parameters

when Pr~10 and Le~1.

Nt
Present results Khan and Pop [17]

{h’(0) {w’(0) {h’(0) {w’(0)

0.1 0.9524 2.1294 0.9524 2.1294

0.2 0.6932 2.2732 0.6932 2.2740

0.3 0.5201 2.5286 0.5201 2.5286

0.4 0.4026 2.7952 0.4026 2.7952

0.5 0.3211 3.0351 0.3211 3.0351

doi:10.1371/journal.pone.0069811.t001

Table 2. Comparison of Numerical Values for local Nusselt
number Re{1=2

x Nux in the absence of non-Newtonian
parameters and nanoparticle.

{h’(0)

Pr Present results Wang [4]

0.7 0.4582 0.4539

2.0 0.9114 0.9114

7.0 1.8954 1.8954

20 3.3539 3.3539

70 6.4622 6.4622

doi:10.1371/journal.pone.0069811.t002

Table 3. Numerical Values for local Nusselt number

Re{1=2
x Nux and the local Sherwood number Re{1=2

x Shx in
the presence of nanoparticle with b1~b2~0:3,Le~1 and
Pr = 6.

Nt
Nb~0:3 Nb~0:5 Nb~0:7

{h’(0) {w’(0) {h’(0) {w’(0) {h’(0) {w’(0)

0.3 0.33988 1.83935 0.14820 1.87035 0.06012 1.84885

0.5 0.24099 1.95862 0.10486 1.94572 0.04255 1.90081

0.7 0.17918 2.06659 0.07792 2.00568 0.03163 1.94018

doi:10.1371/journal.pone.0069811.t003

Numerical Study of Oldroyd-B Nanofluid

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e69811



only occur due to the effects of viscoelastic parameters b1 and

b2.

N Both temperature and mass fraction function give same

behavior for Pr and Le. Since Pr is the ratio of kinematic to

dynamic viscosity. Indeed for higher values of Pr, temperature

profile remains under control.

N Effects of Nb and Nt for temperature profile are similar. Since

both Nb and Nt causes to enhance the temperature.

N Effects of Nb and Nt for mass fraction function are opposite.

Mathematically, it is seen that both Nb and Nt appeared in the

function in Eqn. (9). Consequently, behavior of mass fraction

function profile will be opposite for various values of both Nb

and Nt.

N The magnitude of the local Nusselt numbers decreases for

higher values of Nb.

N The magnitude of the local Sherwood numbers increases for

higher values of Nb.
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