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Abstract

We provided a cross-tissue comparative analysis of between-subtype molecular commonality for ovarian cancer,
breast cancer, hepatocellular carcinoma, glioma, lung squamous carcinoma and nasopharyngeal carcinoma. Our
analysis showed that molecular subtypes with similar phenotype or similar clinical outcome could be correlated by
their transcriptional profile and pathway profile. Pathway dysregulation across multiple cancer subtypes was also
revealed by Gene Set Enrichment Analysis. Dysregulation of ‘complement and coagulation cascades’ was observed
in a total of eleven subtypes across five tissues, implicating that the role of this process in personalized immune-
based therapy may be worth further exploring.
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Introduction

Based on high-through genomewide transcriptome data,
molecular subtypes of human cancer have been identified and
characterized by different biology. For example, distinct
subtypes of breast cancer were associated with different
patterns of therapeutic response [1], different preferential sites
of relapse [2]. In head and neck cancer, different molecular
subtypes were associated with distinct patterns of copy-number
alteration of canonical cancer genes [3]. In colorectal cancer,
subtypes shared similarities to distinct cell types within the
normal colon crypt and shows differing degrees of ‘stemness’
and Wnt signaling [4].

A recent study depicted the molecular commonality between
basal-like breast cancer and ovarian cancer by correlation
analysis of transcriptional profile [5], but it was unclear whether
the basal-like breast cancer had a ‘friendship’ with any
particular subtype of ovarian cancer. Actually, molecular cancer
subtypes with similar biological characteristics were already
found at different tissue sites. For example, both the Mes
subtype of glioma and claudin-low intrinsic subtype of breast
cancer were characterized by expression of mesenchymal
markers and immune response [6–8]. Taking together, a
question was raised that whether subtypes with similar
phenotype, or similar clinical outcome, would show correlation
at a molecular level? To answer this question, we performed
correlation analysis of transcriptional profile and pathway
profile of ovarian cancer, breast cancer, hepatocellular
carcinoma (HCC), glioma, lung squamous carcinoma (lung
SCC) and nasopharyngeal carcinoma (NPC). Furthermore, we

analyzed pathway activities for each subtype and identified
pathway frequently perturbed across different tissues.

Materials and Methods

Microarray dataset
All microarray datasets were downloaded from GEO. For

Affymetrix data, we recalculated gene expression signal
intensities by RMA [9] using Dai’s EntrezGene-center chip
description file [10]. For two-color data, the normalized data
matrix was used directly as provided and probes for the same
gene were merged by averaging. The description of all
microarray data in this study could be found in Table S1.
Dataset GSEA10186 was not used for correlation analysis of
transcriptional profile due to too less common genes with other
datasets. Nasopharyngeal carcinoma was classified into two
subtypes based on our previous work (unpublished data).

Published Mesenchymal transition signature
Three published gene expression signature of Epithelial-

Mesenchymal Transition (EMT) or Mesenchymal Transition
(MT) were used in our analysis. The Taube’s ‘EMT core
signature’ represent genes that shared by independent gene
expression signatures (GESs) in human mammary epithelial
cells (HMLE) induced to undergo an EMT by expressing Gsc,
Snail, Twist, or TGF-β1 or by knocking down expression of E-
cadherin [11]. The Groger’s signature included genes that were
either up- or down-regulated in at least 10 independent GES of
EMT [12]. The Cheng’s signature was suggested to represent a
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more general biological process of mesenchymal transition
because it was also found in non-epithelial cancer including
gliomas, neuroblastoma and Ewing’s sarcoma [13].

Correlation analysis of transcriptional profile and
pathway profile

Data was median-centered by genes in each cohort
separately at first [5]. Then all gene expression values for a
sample were regarded as its transcriptional profile. The
adjusted datasets were submitted to GenePattern [14] for
single-sample GSEA analysis [15]. The resulting pathway
enrichment scores were used as the pathway profile. Positive
scores indicated genes in a particular gene set are coordinately
upregulated within a sample, and vice versa. Spearman rank
correlation of transcriptional profile and pathway profile was
calculated as the between-sample similarity metric.

Phylogeny of cancer subtypes
The median of spearman rank correlation of transcriptional

profile between two subtypes was minus by 1 and then
adopted as the dissimilarity distance. Average-linkage
hierarchical clustering of the resulting dissimilarity matrix was
performed in R.

Hierarchical clustering of pathway profile
Hierarchical clustering of the pathway profile matrix (rows for

pathway and columns for subtype) was performed in Cluster
3.0 [16] using Spearman correlation as similarity metric and
average linkage as clustering method. Scores generated by
ssGSEA were used directly without any further data
adjustment. The heatmap was generated in R with positive
pathway enrichment scores colored by yellow while negative
score colored by blue.

Gene set enrichment analysis (GSEA)
GSEA analysis [17] was performed between tumors of a

particular subtype and those of other subtypes in each cohort
separately. For Affymetrix gene expression profile and the
GSE10186 dataset which were represented by absolute signal
intensities, signal-to-noise ratio was used as metric to calculate
gene’s differential expression. For the GSE17710 dataset
whose data was in log-ratio scale, difference of class means
was used to calculate fold change and as metric of differential
expression. KEGG pathways provided by MSigDB 3.1 were
used and only pathways that significantly enriched in at least
one cancer subtype at a FDR q-value < 25% were retained.

Results

Correlation analysis of molecular profile connected
cancer subtypes

We first asked whether subtypes with similar phenotype or
similar clinical outcome could be correlated by transcriptional
profile and/or pathway profile. To answer this question, we
measured between-subtype commonality by correlation
analysis of transcriptional profile and pathway profile. A similar
landscape was found for both two molecular profiles but the

overall level of spearman rank correlation coefficients of
pathway profiles was higher than that of transcriptional profiles
(Figure S1). This may be explained by the fact that overlap of
members between gene sets could add to the similarity of their
statistical behavior.

Here we demonstrated molecular commonality between
cancer subtypes using breast cancer as an example (Figure 1).
The basal-like breast cancer tend to be positively correlated
with glioma prolif, HCC proliferation, lung SCC primitive and
type II NPC all of which were characterized by enhanced
proliferation signature. This was consistent with the fact that
basal-like breast cancer was also featured by high expression
of genes associated with cell proliferation. In addition, basal-
like breast cancer showed correlation with only subtypes C2,
C4 and C5 of ovarian cancer [18].

Comparing with basal-like, luminal A had an almost opposite
pattern of correlation. It clearly showed correlation with other
better-survival subtype such as glioma PN, lung SCC secretory
and ovarian cancer C3, C6. Claudin-low breast cancer was
characterized by high enrichment for epithelial-to-mesenchymal
transition markers and immune response genes [7]. The
correlation analysis successfully captured the similarity
between claudin-low and glioma Mes, which was also a
mesenchymal subtype [6] with overexpression of inflammatory
genes and increased density of tumor infiltrating lymphocytes
[8]. Unexpectedly, an anti-correlation between claudin-low and
the mesenchymal ovarian subtype C5 was observed.
Heatmaps depicting between-subtype molecular commonality
from the view of other cancers were also provided as
supplementary figures (Figure S2-S6).

To further gain a systematic view of between-subtype
similarity, we used the median of correlation coefficients of
transcriptional profiles between two subtypes as the similarity
metric and calculated the phylogeny of cancer subtypes (Figure
2). We found that better-survival subtypes breast cancer
luminal A and ovarian cancers C3, C6 were clustered close to
glioma PN which displayed neuronal lineage markers and
showed longer survival [6]. Ovarian cancer C3 and C6
represented predominantly serous low malignant potential and
low-grade endometrioid subtypes [18]. Another subgroup was
found which consisted of breast cancer basal-like, breast
cancer claudin-low, glioma prolif and HCC Chiang’s
proliferation. The former three subtypes were all with poor
survival while the Chiang’s proliferation was significantly
correlated with overexpression of alpha-fetoprotein (AFP) and
macrovascular invasion [19]. Ovarian C1, C2 and glioma Mes
were grouped with HCC Chiang’s inflammation. The former
three ones were associated with higher density of tumor
infiltrating lymphocytes while Chiang’s inflammation was an
interferon-related subclass [19]. The phylogeny of cancer
subtype also captured histology-related similarity, as subtypes
of two squamous carcinoma, lung SCC and NPC, were
clustered together.

Linking cancer subtypes with pathway activities
We next sought to provide a global map of pathway activities

across six types of human cancer (Figure 3). Another HCC
dataset was added which was classified into three subtypes by
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Hoshida et al (denoted as S1, S2 and S3) [20]. Unsupervised
hierarchical clustering of pathway profiles showed that samples
of different cancers were mixed instead of being grouped by
tissues, indicating that pathway activities in cancer were not
regulated in a tissue-specific manner. It was observed that
subtypes characterized by immune-related biology, including
claudin-low, C1, C2, HCC Chiang’s inflammation, lung SCC
secretory and type I NPC, were overrepresented in the group
K1. On the other hand, luminal A, C5, S3, C3 and type II NPC
were overrepresented in group K2. An obvious difference in
immune-related pathway activities between these two groups
was found.

We found that both Hoshida’s S1 and Chiang’s Proliferation
were enriched in group K1 while Hoshida’s S3 and Chiang’s
CTNNB1 were enriched in group K2. This is consistent with the
observation that both Hoshida’s S1 was significantly enriched
with gene signature of Chiang’s Proliferation while Hoshida’s
S3 was significantly enriched with gene signature of Chiang’s
CTNNB1. Thus, subtypes with similar gene expression

signature could also be similar in the global landscape of
pathway activities.

We also performed Gene Set Enrichment Analysis to identify
pathways that associated with each subtype. As our particular
interest in mesenchymal transition, published EMT signatures
were also taken into analysis. At a FDR cutoff of 0.25, a total of
161 KEGG pathways were found to be significantly
upregulated/downregulated in at least one subtype (Table S2).
42 pathways were only dysregulated in one tissue and may
represent tissue-specific processes. For example, 14
metabolism-associated pathways were found upregulated/
downregulated only in subtypes of hepatocellular carcinoma.
On the other hand, 22 pathways were dysregulated in at least
five tissues and therefore may represent common underlying
mechanisms of carcinogenesis. ‘Complement and coagulation
cascades’ was the most frequently perturbed pathway, as it
was dysregulated in eleven subtypes.

GSEA of EMT signatures was consistent with the
mesenchymal phenotype of claudin-low, Mes and argued that

Figure 1.  Comparison of breast cancer and other cancer. .  Tumor samples were grouped by subtype. Yellow grids represented
positive correlation while blue grids represented negative correlation. The number of samples per subtype was inside the brackets.
doi: 10.1371/journal.pone.0069747.g001
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Hoshida’s S1 and ovarian cancer C1 could also be
mesenchymal subtypes (Table S2). Interestingly, down-
regulated arm of two EMT signatures were found significantly
downregulated in C5. DAVID functional analysis showed that
all the EMT signatures we used did not overlap with any
immune-associated pathway (Table S3). When considering

these five subtypes only, eleven pathways were downregulated
only in C5 but upregulated in all other four mesenchymal
subtypes. ‘Complement and coagulation cascades’ was
downregulated in both C5 and Hoshida’s S1, but upregulated in
C1, Mes and claudin-low.

Figure 2.  Phylogeny of cancer subtypes. .  The median of spearman rank correlation of transcriptional profile between two
subtypes was minus by 1 and then adopted as the dissimilarity distance. Calculation of tumor phylogeny was then done by applying
average linkage clustering in R.
doi: 10.1371/journal.pone.0069747.g002
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Discussion

In general, biological characteristics of molecular cancer
subtypes could be defined by their gene expression signatures.
For example, mesenchymal subtypes were usually defined by
the overexpression of mesenchymal markers and
underexpression of epithelial markers. Thus it may not be
surprised to find common signature genes for cancer subtypes
with similar biology. Instead of comparing signature genes, our
study provided a systematic analysis focusing on genomewide
transcriptional profile and pathway profile. Our results
suggested that for subtypes characterized by similar biological
characteristics, their commonality could be detected at a
molecular level, indicating that the biological process
alterations may play in a genomewide manner instead of only
limiting to a subset of genes.

The difference between claudin-low, glioma Mes and C5 was
revealed by anti-correlation of transcriptional profile and
pathway profile, distinct pattern of EMT signature enrichment
and opposite pattern of pathway enrichment. Such difference
may be explained by the fact that C5 had strikingly low CD3+
and CD45+ cell infiltration in both tumor and stroma [18].
Immune-related processes may be relatively less involved in
the acquisition of a mesenchymal trait in C5. For two potential

mesenchymal subtypes, C1 was associated high stromal
response and high number of stromal CD3+ cells [18] while S1
was characterized by TGF-beta induced Wnt activation and
enrichment of an EMT-related gene set [20]. The type, location
and level of tumor infiltrating lymphocytes remained unclear in
Hoshida’s S1. Whether S1 and C1 were truly mesenchymal
subtype required experimental validation.

‘Complement and coagulation cascades’ was an interesting
process since perturbation of this pathway was observed in
eleven subtypes including upregulation in C1, Mes, claudin-low
and downregulation in C5, S1. Complement activation could
potentially be a very important event in anti-cancer immunity
and immunotherapy [21] as it could not only help in tumor
clearance but also promote tumor growth [22]. Previous studies
have also implicated an association between EMT and
complement system. For example, C5b-9 could induce the
expression of Response Gene to Complement-32 (RGC-32)
which could in turn enhance metastatic phenotype by
mediating TGF-β-induced EMT in human pancreatic cancer cell
[23,24]. In addition, Tang Z et al showed that tubular epithelial
cells exposed to complement anaphylotoxin C3a adopted
phenotypic and functional characteristics of mesenchymal cells
[25]. Coagulation disorders are a common problem in
neoplastic patients. A hypercoagulable state could be induced

Figure 3.  Pathway profiles across six human cancers. .  Each grid represents a score of pathway activity calculated by single-
sample GSEA. No further adjustment of the ssGSEA score was performed. Pathways were ordered by category manually and
separated from others using horizontal white lines. Only categories with more than five pathways were labeled. The dendrogram
was split into two groups with group K1 colored by blue and group K2 colored by orange. The upper horizontal color bar marked
subtypes overrepresented in group K1 while the lower horizontal color bar marked subtypes overrepresented in group K2. Most
subtypes were significantly enriched (p-value < 0.05, Chi-squared test) except HCC Chiang’s Proliferation and CTNNB1 (p-value =
7.27e-02 and 7.86e-02, respectively).
doi: 10.1371/journal.pone.0069747.g003
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by malignant cells interacting directly with hemostatic system
and activating the coagulation cascade. Thrombin was formed
by proteolytic cleavage of the coagulation factor II in the
coagulation cascade and acted in turn as a serine protease
that converts soluble fibrinogen into insoluble strands of fibrin,
as well as catalyzing many other coagulation-related reactions.
It was already reported that thrombin could support tumor cell
malignancy [26–28]. Tumor cells could express tissue factor
which consequently interacts with coagulation factor VII (FVII)
and coagulation factor X (FX) to generates thrombin to
enhance tumor progression [29].

In summary, the dysregulation of complement and
coagulation cascades in a total of eleven subtypes across five
tissues implicated that further study of this process could
possibly motivate novel immunity-based strategy for
personalized therapy.

Conclusion

Our work detected molecular commonality between cancer
subtypes by correlation analysis of transcriptional profile and
pathway profile. Molecular classification of human cancer is
just an early step towards personalized medicine. With more
and more data (not limited to transcriptome) become available,
we may expect more and more cancers being classified into
molecular subtypes. Our method, and of course other improved
and enhanced methods, could be applied to construct a more
comprehensive map of cancer subtypes. With such a map,
knowledge for a particular cancer subtype could provide clues
for an extended understanding of its ‘friend’ subtypes in other
cancers and bring potential novel therapeutic opportunities.

Supporting Information

Figure S1.  Scatter plot of correlation coefficient. A linear
model was fit to the data using correlation coefficients by
transcriptional profile as the independent variable. The
resulting p-value and coefficient were showed.
(TIF)

Figure S2.  Comparison of ovarian cancer and other cancer.
Tumor samples were grouped by subtype. Yellow grids
represented positive correlation while blue grids represented
negative correlation. The number of samples per subtype was
inside the brackets.
(TIF)

Figure S3.  Comparison of glioma and other cancer. Tumor
samples were grouped by subtype. Yellow grids represented
positive correlation while blue grids represented negative
correlation. The number of samples per subtype was inside the
brackets.
(TIF)

Figure S4.  Comparison of hepatocellular carcinoma and other
cancer. Tumor samples were grouped by subtype. Yellow grids
represented positive correlation while blue grids represented
negative correlation. The number of samples per subtype was
inside the brackets.
(TIF)

Figure S5.  Comparison of lung squamous carcinoma and
other cancer. Tumor samples were grouped by subtype. Yellow
grids represented positive correlation while blue grids
represented negative correlation. The number of samples per
subtype was inside the brackets.
(TIF)

Figure S6.  Comparison of nasopharyngeal carcinoma and
other cancer. Tumor samples were grouped by subtype. Yellow
grids represented positive correlation while blue grids
represented negative correlation. The number of samples per
subtype was inside the brackets.
(TIF)

Table S1.  A brief description of all the microarray dataset used
in this study. A "*" in the research type column indicated that
the corresponding study defined the molecular subtypes.
(XLSX)

Table S2.  GSEA results for KEGG pathways and published
EMT signature. Only those with q-values less than 0.25 were
included .
(XLSX)

Table S3.  Results of DAVID functional analysis of published
EMT signatures.
(XLSX)
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