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Abstract

Disease Systems Biology is an area of life sciences, which is not very well understood to date. Analyzing infections and their
spread in healthy metabolite networks can be one of the focussed areas in this regard. We have proposed a theory based on
the classical forest fire model for analyzing the path of infection spread in healthy metabolic pathways. The theory suggests
that when fire erupts in a forest, it spreads, and the surrounding trees also catch fire. Similarly, when we consider a
metabolic network, the infection caused in the metabolites of the network spreads like a fire. We have constructed a
simulation model which is used to study the infection caused in the metabolic networks from the start of infection, to
spread and ultimately combating it. For implementation, we have used two approaches, first, based on quantitative
strategies using ordinary differential equations and second, using graph-theory based properties. Furthermore, we are using
certain probabilistic scores to complete this task and for interpreting the harm caused in the network, given by a ‘critical
value’ to check whether the infection can be cured or not. We have tested our simulation model on metabolic pathways
involved in Type I Diabetes mellitus in Homo sapiens. For validating our results biologically, we have used sensitivity analysis,
both local and global, as well as for identifying the role of feedbacks in spreading infection in metabolic pathways.
Moreover, information in literature has also been used to validate the results. The metabolic network datasets have been
collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
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Introduction

An important aspect of metabolic pathway analysis is studying

the impact of infections or disease spread in healthy metabolic

pathways. Tackling the growth of infection in a healthy metabolic

pathway as well as curing it simultaneously is rather complex. Let

us consider a scenario, wherein, a metabolite in a healthy

metabolic network becomes infected due to some mutation or

external perturbation. Moreover, a metabolite is said to be

infected if its formation, in a metabolic pathway, is somehow

impaired. The major problem lies in tracking the progress of this

infection to other non-infected neighboring metabolites and

understand the nature of this spread [1]. The result of such an

infection may further give rise to in improper production of certain

metabolites leading to improper functioning of the entire

metabolic pathway. In case of a healthy metabolic network,

tracking this path is very difficult. The reason is that prior

probability of a healthy metabolite to be infected is difficult to

predict. Moreover, once the metabolite is infected, it can infect its

neighbors with an infection rate, and can also be cured with a

curing rate. Once cured or healthy, the metabolite is again prone

to the infection. However, both infection and curing process may

occur independently [2].

In this study we have implemented the forest fire strategy for

analyzing the infection spread in a healthy metabolic pathway.

The classical forest fire algorithm suggests that when fire erupts in

a forest, it spreads to its surrounding trees, resulting in their further

burning. At each step of this process, the burning trees have a

probability of staying on fire and burning out, whereas the

surrounding trees also have a probability of ignition [3]. This

fundamental idea can be taken into consideration for studying the

spread of infection in metabolic networks that are represented as

directed graph format. Infection can be caused in the healthy

metabolites via an infected metabolite, which can spread further

and hence can be used to study the harm caused to the overall

metabolic network [4]. In such cases, there is a possibility that

either the metabolites are infected, safe or cured. Also, infections

can be caused either by its nearest neighbors or its next-nearest

neighbors. We have constructed a simulation model which can be

used to study the infection caused in a network from infection
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initiation, to spread and ultimately combating it. Moreover, we

have used certain probabilistic scores to complete this task that

results in interpreting the harm caused in a healthy metabolic

network, given by certain ‘critical value’ for checking whether the

infection can be cured or not [5]. Thus, any harm caused to any

metabolite in the pathway can provide a clear picture of the

overall infection spread. But, the difference between a metabolic

pathway and forest is that in the former, there are no direct

contact links, wherein contacts are linked as reaction links. Also,

there are many other factors involved, such as, feedback links,

presence of topological units, to name a few, which must be

considered for predicting the cause and nature of the path of

infection spread. We have used strategies such as feedback link

prediction, sensitivity approaches for handling such instances

(discussed in details later).

Recent literature shows that some basic disease models have

been developed to analyze the spread of certain diseases in real-

world networks. These models describe the susceptibility, infection

scenario and recovery rates of populations from a particular

disease. In all these models information related to infection

progress is not taken into account because of the differences in

response among individuals in a specific population. Moreover,

based on the epidemiological studies of individuals, two standard

models, namely, susceptible-infectious-recovered (SIR) and sus-

ceptible-infectious-susceptible (SIS), have been proposed (discussed

in section ‘Methodology’) for analyzing the study of disease spread

in populations [6]. These models work on determining the source

of infection and then linking each infected individual to one

another, as well as to a variable number of others to whom they

transmitted the disease. It generated a network of individuals

consisting of all the links through which infection spreads in course

of a single disease outbreak. Furthermore, some contact-tracing

approaches were also developed to identify all potential transmis-

sion contacts from a source individual. These approaches

identified a new set of individuals who might have the tendency

to get infected from some already infected individuals. It has been

applied in cases of sexually transmitted diseases (STDs) where a

contact is most easily defined. But, all these network-based studies

are limited by fact that there is no simple way to relate the

sensitivity of the results to the details of the network structure. We

have studied the path of infection spread by developing an

algorithm based on SIS model (discussed in section ‘Methodology’)

[7].

To understand the feature of fire spread, we have selected two

strategies, first, based on quantitative studies, and second, based on

graphs. The first strategy implements the fire spread using

mathematical models and expressions. We have used ordinary

differential equations (ODEs) for this purpose. We use ODEs for

representing the complete metabolic pathway, its constituents as

well as their ongoing interactions. As these metabolic processes are

dynamic in nature, modeling them using ODEs is extremely useful

[8]. The second strategy, based on graph theory, considers

connectivity patterns and other structure-based properties among

metabolites for implementing the fire spread in the metabolic

pathway. Here, we represent the metabolic pathways in the form

of directed graphs. Since, we are proposing a computational

strategy for understanding the fire spread process, it is essential to

validate it biologically. The reason is that the strategy may work in-

silico but may fail when implemented on a real dataset. For this

purpose, we have modeled and analyzed a prevalent property of

metabolic pathways, namely, occurrence of feedback reactions and

studied its role in disease spread [9]. Again, for this analysis, we

have proposed a quantitative method. Furthermore, we have

found that certain metabolites play a key role in disease spread and

combat. For biological validation, we have used the technique of

sensitivity analysis to understand the nature and property of these

metabolites and their role in disease spread. Sensitivity analysis is a

mathematical implementation of understanding the systematic

change in the metabolic pathway due to perturbations, both

internal and external (discussed in details in section ‘Methodology’)

[10].

For testing our simulation tool, we have selected Type I Diabetes

mellitus in H. sapiens. Diabetes mellitus is a metabolic disorder of

multiple aetiology that is characterized by chronic hyperglycaemia

affecting carbohydrate, fat and protein metabolism, which results

from improper insulin production. Diabetes mellitus affects in various

manners, which include long-term damage, dysfunction and

failure of multiple organs. Furthermore, certain genes play a vital

role in the development of Diabetes mellitus. To date, more than 250

candidate genes have been investigated, and results have shown a

very high variability in gene association with Diabetes mellitus [11].

But, it is yet to be identified all the gene mutations that put a

person at risk for Diabetes mellitus. Even if mutations are known,

some investigations have found that people with low risk genes can

still develop Diabetes mellitus. Moreover, it has been observed that

the combination of susceptible genes and environmental factors

may initiate this disease process that is associated with the

formation of an autoimmune response to the insulin-producing

cells. This autoimmune reaction is reflected by the presence of

antibodies against prominent antigens in the pancreatic b-cells

[12].

Type I is usually characterized by the presence of anti-Glutaric

acid decarboxylase (GAD), islet cell or insulin antibodies which

identify the autoimmune processes that lead to b-cell destruction.

The insulin gene (INS) is the second well established susceptible

locus in Diabetes mellitus. It contributes about 10% toward Diabetes

mellitus susceptibility [13]. We have analyzed the onset of Type I

Diabetes mellitus in H. sapiens by studying the role of GAD and INS

genes in metabolic pathways involving Type I Diabetes mellitus from

a Systems Biology perspective. For this purpose, we have used the

SBML format of metabolic pathway datasets under Type I Diabetes

mellitus of H. sapiens for our study. We have downloaded the

metabolic pathway datasets which have shown role in the

expression of GAD and INS genes, known from Kyoto

Encyclopedia of Genes and Genomes (KEGG) [14], and used

KEGG2SBML tool for converting them in SBML format [15].

Materials and Methods

Here we describe the method we have developed for

implementing fire spread in healthy metabolic networks in H.

sapiens, analyzing their tendency to become infected giving rise to

Type I Diabetes mellitus. We have collected the metabolic pathway

datasets involving GAD and INS genes from Kyoto Encyclopedia

of Genes and Genomes (KEGG). One of the criteria for handling

our algorithm requires input to be given in Systems Biology

Markup Language (SBML) format. We used the KEGG2SBML

tool for converting the metabolic pathway datasets from KEGG to

SBML format [15]. Systems Biology Markup Language (SBML) is

an XML-based language for representing biological network-

based models. Any biochemical reaction in a metabolic pathway

can be represented into a number of XML-based elements like

reactant species, product species, reactions, stoichiometric rates,

Infection Growth Model in Metabolic Pathways
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and some other parameters necessary for the reactions to occur

[16]. Similarly, a network of reactions can also be represented in

the same manner. An SBML representation consists of certain

standard modules, like compartment which acts as a container of

finite volume where reactions take place, species which represents

an entity that takes part in a reaction, reaction which describes some

transformation process converting one or more species, parameter

which describes a quantity taking part in a reaction process, unit

definition which specifies a name of a unit used in the expression of

quantities in a reaction model, and rule which acts as a

mathematical expression that is added to the model equations

constructed from the set of reactions.

The complete methodology is divided into five steps, which are

performed one after another in successive manner. The first step is

quantitative formulation of the metabolic pathways using ordinary

differential equations (ODE), which deals with conversion of the

entire metabolic pathways in the form of ODEs. This is one of the

preliminary aspects of quantitative modeling. The second step is fire

spread analysis, which involves modeling the fire spread mathe-

matically using information from the first step and implementing it

into the healthy metabolic pathway. The third step is handling the

presence of feedback reactions, analyzing their role in fire spread

and combat. This step has two sub-steps, namely, modeling

feedback reactions and identifying them in the metabolic

pathways. The fourth step deals with analyzing the sensitivity

threshold of metabolic pathways against this fire spread. We

performed both local as well as global sensitivity analysis. The fifth

and last step is damage analysis, which calculates the extent of

infections that spread throughout the metabolic pathway and the

metabolites that remain uneffected/healthy or which have become

cured after becoming susceptible to infection attack. For imple-

mentation purpose, we selected glutamate metabolism for further

explanation.

Quantitative formulation of metabolic pathways using
ordinary differential equations (ODEs)

Here, we have used ODEs to model the entire glutamate

metabolism in terms of the metabolites participating in various

reactions as shown below. Our intention of performing this step

was to model the spread of infection mathematically, for which

initial structure of the healthy glutamate metabolism needs to be

converted into ODE form. For this purpose, we assumed some

notations, namely, a to i, which represent genes, and Vdef , default

volume of the compartment. The unit-wise representation of the

metabolites is mol=l. The other parameters involved are the

kinetic parameters whose initial values are assumed to be 1 [17].

The ODEs of glutamate metabolism in terms of its participating

non-pool metabolites are as given below.

Figure 1. Analyzing the spread of infection and combat process in a hypothetical metabolic network; nodes represent metabolites,
edges represent reaction links, bold lines signify infection, dotted lines signify combat.
doi:10.1371/journal.pone.0069724.g001
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d

dt
(½L{glutamate�:Vdef )~

zVdef : ½g�:
1:½5{phosphoribosylamine�:Vdef :½L{glutamate�:Vdef

1z½5{phosphoribosylamine�:Vdef :½L{glutamate�:Vdef {½5{phospho{a{D{ribose{1{diphosphate�:Vdef

� �

zVdef : ½h�:
1:½L{glutamate�:Vdef

1z½L{glutamate�:Vdef

� �
{Vdef :

1:½b�:½L{glutamine�:Vdef

1:1z½L{glutamine�:Vdef :½D{fructose{6{phosphate�:Vdef {½L{glutamate�:Vdef :½D{glucosamine{6{phosphate�:Vdef

� �

{Vdef :
1:½c�:½L{glutamine�:Vdef

1:1z½L{glutamine�:Vdef {½L{glutamate�:Vdef

� �
d

dt
(½L{glutamine�:Vdef )~

zVdef : ½b�:
1:½L{glutamine�:Vdef :½D{fructose{6{phosphate�:Vdef

1z½L{glutamine�:Vdef :½D{fructose{6{phosphate�:Vdef {½D{glucosamine{6{phosphate�:Vdef

� �

zVdef : ½c�:
1:½L{glutamine�:Vdef

1z½L{glutamine�:Vdef

� �
zVdef : ½d�:

1:½L{glutamate{5{semialdehyde�:Vdef

1z½L{glutamate{5{semialdehyde�:Vdef

� �

{Vdef :
1:½z�:½L{glutamate�:Vdef

1:1z½L{glutamate�:Vdef {½4{aminobutanoate�:Vdef

� �

{Vdef :
1:½a�:½L{glutamate�:Vdef

1:1z½L{glutamate�:Vdef {½2{oxoglutarate�:Vdef

� �

d

dt
(½4{aminobutanoate�:Vdef )~zVdef : ½z�:

1:½L{glutamate�:Vdef

1z½L{glutamate�:Vdef

� �

{Vdef :
1:½x�:½4{aminobutanoate�:Vdef :½2{oxoglutarate�:Vdef

1:1z½4{aminobutanoate�:Vdef :½2{oxoglutarate�:Vdef {½succinatesemialdehyde�:Vdef :½L{glutamate�:Vdef

� �

d

dt
(½5{phosphoribosylamine�:Vdef )

~{Vdef :
1:½g�:½5{phosphoribosylamine�:Vdef :½L{glutamate�:Vdef

1:1z½5{phosphoribosylamine�:Vdef :½L{glutamate�:Vdef {½L{glutamine�:Vdef :½5{phospho{a{D{ribose{1{diphosphate�:Vdef

� �

d

dt
(½D{glucosamine{6{phosphate�:Vdef )~zVdef : ½b�:

1:½L{glutamine�:Vdef :½D{fructose{6{phospate�:Vdef

1z½L{glutamine�:Vdef :Vdef :½D{fructose{6{phospate�:Vdef {½L{glutamate�:Vdef

� �

d

dt
(½succinatesemialdehyde�:Vdef )~

zVdef : ½x�:
1:½4{aminobutanoate�:Vdef :½2{oxoglutarate�:Vdef

1z½4{aminobutanoate�:Vdef :½2{oxoglutarate�:Vdef {½L{glutamate�:Vdef

� �

{Vdef :
1:½y�:½succinatesemialdehyde�:Vdef

1:1z½succinatesemialdehyde�:Vdef :½succinate�:Vdef

� �

d

dt
(½succinate�:Vdef )~zVdef : ½y�:

1:½succinatesemialdehyde�:Vdef

1z½succinatesemialdehyde�:Vdef

� �

d

dt
(½2{oxoglutarate�:Vdef )~zVdef : ½a�:

1:½L{glutamate�:Vdef

1z½L{glutamate�:Vdef

� �

zVdef : ½f �:
1:½2{oxoglutarate�:Vdef

1z½2{oxoglutarate�:Vdef

� �

{Vdef :
1:½x�:½2{oxoglutarate�:Vdef :½4{aminobutanoate�:Vdef

1:1z½2{oxoglutarate�:Vdef :½4{aminobutanoate�:Vdef {½succinatesemialdehyde�:Vdef :½L{glutamate�:Vdef

� �

d

dt
(½2{oxoglutaramate�:Vdef )

~{Vdef :
1:½f �:½2{oxoglutaramate�:Vdef

1:1z½2{oxoglutaramate�:Vdef {½2{oxoglutarate�:Vdef

� �

d

dt
(½D{fructose{6{phosphate�:Vdef )~

{Vdef :
1:½b�:½D{fructose{6{phosphate�:Vdef

1:1z½D{fructose{6{phosphate�:Vdef :½L{glutamate�:Vdef {½D{glucosamine{6{phosphate�:Vdef

� �

d

dt
(½5{phsopho{a{D{ribose{1{diphosphate�:Vdef )

~zVdef : ½g�:
1:½5{phosphoribosylamine�:Vdef :½L{glutamate�:Vdef

1z½5{phosphoribosylamine�:Vdef :½L{glutamate�:Vdef {½L{glutamine�:Vdef

� �

d

dt
(½L{glutamate{5{semialdehyde�:Vdef )~

{Vdef :
1:½d�:½L{glutamate{5{semialdehyde�:Vdef

1:1z½L{glutamate{5{semialdehyde�:Vdef {½L{glutamine�:Vdef

� �

d

dt
(½L{aspartate�:Vdef )~{Vdef :

1:½i�:½L{aspartate�:Vdef

1:1z½L{aspartate�:Vdef {½N{carbamoyl{L{aspartate�:Vdef

� �

d

dt
(½N{carbamoyl{L{aspartate�:Vdef )~zVdef : ½i�:

1:½L{aspartate�:Vdef

1z½L{aspartate�:Vdef

� �
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PLOS ONE | www.plosone.org 4 2013 | Volume 8 | Issue | e697249September



Now, considering the ODE for L{aspartate, we observe that it

participates in reaction 12 only, where it acts as a reactant species.

Thus, 1:½i�:½L{aspartate�:Vdef in ODE stands for reactant contri-

bution whereas 1:1z½L{aspartate�:Vdef {½N{carbamoyl {

L{aspartate�:Vdef stands for product as well as contribution of

L{aspartate associated with carbamoylphosphate as reactants [18].

Similarly, the ODE representations of other metabolites have also been

constructed in identical manner. Thus, modeling metabolic pathways

quantitatively helped us to understand the initial structure of healthy

metabolic pathways before being subjected to disease spread. Also, now

we are in a position to understand the spread of disease in this healthy

metabolic pathway and represent it mathematically for further

simulation studies.

Fire spread analysis
One of the widely analyzed epidemic models is the susceptible-

infected-removed or SIR models [16]. In this work, we imple-

mented the SIR model with certain modifications in four healthy

metabolic pathways of H. sapiens to analyze their susceptibility for

T1D. The original SIR model was first proposed by Lowell Reed

and Wade Hampton Frost in 1920. It discussed the growth of an

epidemic in a population of individuals, where the population is

divided into three states, namely, susceptible (S), infection (I) and

removed (R). Susceptible individuals are those who have higher

chance of getting infected from some already infected individuals,

whereas removed state corresponds to those individuals who are

either dead or removed from the populations [19]. We have

discussed this section under two sub-headings, namely, mathe-

matical modeling of fire and implementation of fire spread. In

mathematical modeling of fire, we discuss the various notations

regarding the SIR model in the form of ODEs, which we generate

from the already generated schema of ODEs of healthy metabolic

pathways. The second subSection S4eals with the actual imple-

mentation of the fire spread in glutamate metabolism of H. sapiens

for checking its susceptibility against infection spread. Fig. 1

represents the architecture of the path of infection spread in a

hypothetical pathway.

Mathematical modeling of fire. In the previous section, we

generated the ODEs for the healthy metabolites in glutamate

metabolism which are still uneffected from infection spread. Now,

we focus on the structure of the same metabolic pathway after it

gets infected. For the same purpose, certain notations have been

considered, namely, M = network size, N = total number of

metabolites getting inserted randomly into M, P = total number

of metabolites that are susceptible to infection spread, Iact = total

number of metabolites that are actively infected, Ipas = total

number of metabolites that are passively infected, NP = probability

that a susceptible metabolite is not cured, Cact = curing rate

(active), Cpas = curing rate (passive), I = total number of infected

metabolites, q = number of infected metabolites getting degener-

ated, b = breakdown rate, a = infection rate, m = susceptibility rate,

E= degeneracy rate, and I ’= number of cured metabolites.

First, we model the rate of change of the structure of pathway

with time against possible infection attack. Thus, we have

Change in number of metabolites that are susceptible to

infection attack

= Current pathway architecture2metabolites that are infected

directly or actively with a certain infection rate2susceptible

metabolites getting infected with a certain susceptibility rate+
metabolites that are cured actively with active curing rate+
metabolites that are cured passively with passive curing rate [20]

i:e:,
dP

dt
~
X

(M,N){a:Iact:P{m:PzCact:IactzCpas:Ipas Next,

we find change in number of passive infected metabolites with time,

i.e.,

Change in number of infected metabolites in passive manner

= Number of susceptible metabolites that are actively infec-

ted2breakdown of already actively infected metabolites2curing of

infected metabolites with passive curing rate2susceptibility of

Figure 2. Directed graph-based representation of glutamate metabolism, as generated by our simulation model; nodes represent
metabolites and edges represent reaction links.
doi:10.1371/journal.pone.0069724.g002
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cured metabolites getting infected again [20] i:e:,
dIpas

dt
~

(I{q):a:Iact:P{bact:Ipas{Cpas:Ipas{m:Ipas Similarly, for identi-

fying the change in number of actively infected metabolites with

time, we have,

Change in number of infected metabolites in active manner

= Number of metabolites getting degenerated due to infection

of metabolites (both susceptible and healthy) in active manner+
breakdown of infected metabolites2curing of infected metabolites

with a certain curing rate2susceptibility of already infected

metabolites to be getting infected again2degeneration of

the infected metabolites with a degeneracy rate [20]
dIact

dt
~q:a:Iact:Pzbact:Ipas{Cact:Iact{m:Iact{E:Iact Further-

more, in case of healthy metabolic pathways, (i.e., in absence

of any infection),
dP

dt
~0,

dIact

dt
~0,

dIpas

dt
~0 i.e.,X

(M,N){a:Iact:P{m:PzCact:IactzCpas:Ipas~0

(I{q):a:Iact:P{bact:Ipas{Cpas:Ipas{m:Ipas~0

q:a:Iact:Pzbact:Ipas{Cact:Iact{m:Iact{E:Iact

Also, in initial state, Iact~0, Ipas~0, and MzN{m:P~0.

Furthermore, we have also considered the various transition events

associated with the healthy metabolic pathways, after getting

infected [20]. They are, P?Pz1,I?1,P?R(recovered);
r1(rate)~r1:M (increase in M) P?P{1,I?1,P?R;
r2(rate)~r2:P (decrease in M)

P?P,I?I{1,P?R; r3(rate)~r2:I ðdecreaseÞ

P?P{1,I?Iz1,R?R; r4(rate)~
r3:I :P

M
ðinfectionÞ

P?P,I?I{1,R?Rz1; r5(rate)~r4:I ðrecoveryÞ

P?P,I?Iz1,R?R; r6(rate)~r3 ðinfectionÞ

r1,r2~force of infection, r3~coefficient of transmission,

r4~M{I ’~critical factor

One of the most important factors associated with this

nomenclature is the critical factor (r4), which represents the

actual number of metabolites that remain uneffected after disease

spread. As r4 increases, the resistivity and robustness of the

metabolic pathway also increases and vice-versa. The next

subSection S4eals with the actual implementation of our model

in glutamate metabolism of H. sapiens.

Implementation of fire spread. For visual purpose, we

represented the metabolic pathways as directed graphs, where

metabolites are represented as nodes and enzymes are represented

Figure 3. Spread of infection in glutamate metabolism in H. sapiens having infection start site as ‘2’.
doi:10.1371/journal.pone.0069724.g003

Infection Growth Model in Metabolic Pathways
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Figure 4. Combat process in glutamate metabolism in H. sapiens having infection start site as ‘3’.
doi:10.1371/journal.pone.0069724.g004

Figure 5. Schematic representation of certain feedback reactions that are predominant in metabolic pathways in H. sapiens; A–D, X
and Y denote metabolites, and a–d and d’ signify reaction links/genes.
doi:10.1371/journal.pone.0069724.g005

Infection Growth Model in Metabolic Pathways
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as edges [21]. Fig. 2 illustrates the glutamate metabolism in H.

sapiens in directed graph format as generated by our algorithm.

As discussed in the previous subsection, an infected metabolite

can recover back, but may again become susceptible to infection

[4]. In a standard SIR model it is assumed that those which are

getting immunized do not get infected again, whereas in case of

our model we do not consider any metabolite to become

immunized to the infection spread and consider them equally

susceptible to other infected metabolites against infection [22]. In a

metabolic pathway, we consider that the infection spread happens

through the interconnected links among the metabolites [23]. We

also consider that the most important aspect in this case is

designing effective strategies for preventing and restricting the

outbreak of infection. One of the effective approaches in this case

is curing the infected metabolites and vaccinating the uneffected

ones with a probability proportional to their connectivities, so that

a greater proportion of metabolites of high connectivity are

vaccinated than metabolites with low connectivity. Another

strategy is specifically targeting the hub (highly connected)

metabolites by vaccinating all metabolites of connectivity higher

than some threshold value [6].

The graph-theory based implementation initiates with repre-

senting the input metabolic pathway (in SBML format) into a

directed graph G(V ,E,v), where V is a set of metabolites, E is a

set of reaction links and v is a set of mapping functions that maps

every link onto some ordered pair of metabolites (vi, vl
i ). We also

consider two structural attributes, namely, ‘front propagation

dz(vi)’ and ‘back propagation d{(vi)’, i.e., number of outgoing

and incoming links to a metabolite. For initializing the event of fire

or infection, an initial metabolite, vi is selected that acts as the start or

ignition site [7]. Thus, we consider that infection spreads from this

start site to other neighboring metabolites through their connecting

links. Considering glutamate metabolism, the initial pathway

structure before infection spread is, M~14,N~0,P~0,Iact~0,

Ipas~0,Np~0,Cact~0,Cpas~0,I~0,q~0,b~0,a~0,m~0,E~0,

I ’~0. Now, fire spreads from vi, through the links connecting it to its

neighboring metabolites, based upon two factors, namely, ‘Burning

Probability (BP)’ and ‘Combating Probability (CP)’. The neighboring

metabolites for a particular vi is found out from v. ‘BP’ is defined as

the chance of a metabolite to become infected due to a neighboring

infected metabolite where BP(vi)~
1

dz(vi)
. Similarly, ‘CP’ is

defined as the chance of an infected node to become cured, where

CP(vi)~
1

d{(vi)
[23].

Here, we define a metabolite as ‘infected’ when it loses its

functionality, due to some mutation and external perturbation,

and becomes inefficient to form a useful product. Also, a

metabolite is termed to be infected if its formation, in a metabolic

pathway, is somehow impaired. We assume that higher the

connectivity of this metabolite, more the probability that its

neighboring metabolites are infected. Also, if the metabolite is

completely infected, it no longer participates in any other reaction,

thus dz(vi) becomes 0. This state is achieved when curing fails. A

‘cured’ metabolite is that which has large number of alternate and

parallel paths of its production. The reason for considering an

infected metabolite to be cured is that even if it becomes infected

by a path leading to its destruction, it can be produced by an

alternate path. It can be found by keeping a track on the incoming

links, i.e., d{(vi). For example, in Fig. 3, BP(v4) = 0.5, BP(v3) = 1.0,

BP(v2) = 0.5, whereas CP(v4) = 1.0, CP(v6) = 0.5, to name a few.

Infection spreads from initial metabolite till the path ends where

the value of dz(vi) is 0 and ‘BP’ is minimum, i.e., when no further

link is present connecting the infected metabolite to other healthy

metabolites. All the infected metabolites are included in the set vin.

Once the infection has totally spread in the pathway, the factor

taken into consideration is ‘CP’. We also store the metabolites

connected to an infected metabolite in the set vl
in. After a

metabolite vi is infected, combating the infection will take place

when the level of ‘CP’ is high [24]. Here, at each step the

probability of combat for each metabolite changes according to

the spread of infection and their bypasses. For example,

BP(v4) = 0.5, CP(v4) = 1.0. Thus, the probability that v4 will be

cured is always high. The same was the case with v2, where

BP(v2) = 0.5 and CP(v2) = 1.0. Thus, chances of v4 and v2 to be

cured were quite high. The above simulation was with respect to

the structural parameters associated with the pathway. But,

biologically, only structural parameters could not be taken into

consideration for simulation purpose. Thus, for adhering the

biological aspect of our model, we calculated the ODE values too.

Thus taking vi~2, various factors associated with it were

M~14,N~0,P~6 (metabolites that were not directly linked to

vi but are susceptible), Iact~7,Ipas~6,Np~0,Cact~0:14,

Cpas~0:16,I~14,q~0,b~0,a~1,m~0:42,E~0,I ’~0. Thus,

dP
dt

~{28:58,
dIpas

dt
~584:52,

dIact

dt
~{3:92,r4~0. Thus, critical

factor was 0, i.e., size of the pathway did not change and all

infected metabolites were cured (Figs. 3, 4).

Analyzing feedbacks
As we deal with metabolic pathways, there are various ongoing

processes that we need to consider so that our simulation is

successful and biologically relevant. One of the most important

properties in metabolic pathways is the presence of feedback

reactions, which can drastically effect their overall functionality.

So, we studied the existence of feedbacks and related them to our

model. This subsection explains the basic implementation strategy

followed by us for identification of feedbacks [9]. The different

categories of feedback reactions occurring in metabolic pathways

are shown in Fig. 5, 6.

Modeling feedback reactions. We considered a model

Xa?Xb for a metabolic reaction having one substrate and one

Figure 6. Schematic representation of a feedback loop, as found in metabolic pathways in H. sapiens, X1,X2,X3,X4,X5 and Xn denote
metabolites.
doi:10.1371/journal.pone.0069724.g006

Infection Growth Model in Metabolic Pathways

PLOS ONE | www.plosone.org 8 2013 | Volume 8 | Issue | e697249September



product formation. Also, the reaction is inhibited by other

metabolites present in the pathway. Furthermore, we denote the

reaction rate for such a reaction by cab(xa,x½m�), where xa is

concentration of metabolites Xa in cell and x½m� is the vector

containing concentration of other metabolites inhibiting the

reaction Xa?Xb. It may be noted that cab can also represent a

sum of several parallel reactions that may be catalyzed by several

isofunctional enzymes [25]. Moreover, larger the concentration of

inhibitor, the reaction becomes much slower. Thus, we have, Va,b

such that, Xa?Xb, the function cab(xa,x½m�) is locally Lipschitz on

Rz|Rnm

z , satisfying cab(0,x½m�)~0, increasing in xa for xa§0 and

decreasing in x
½m�
i for x

½m�
i §0. Quantitatively, we also study the

presence of feedbacks using ODEs and graphs, especially, the

arborescent property of graphs [25].

A directed graph is known an arborescence if, from a given

node x (root node), there is exactly one elementary path to some

other node y. Thus, in a metabolic pathway the species involved

are x1, x2, :::, xn and the inhibiting reactions descend from the

root x1?xm, inhibited by metabolites from the sub-arborescence

rooted in xm, we define the mass-balance dynamical model in the

form,
dx

dt
~y(x){w:xzp:Q, where y includes all reaction rates,

w§0 represents growth rate of the cell, Q~(1,0,:::,0)T , p = scalar

quantity, denotes constant supply rate of x1 at root,

x~(x1,:::,xn)T ERn
z, xi is the molar fraction of metabolite x1

inside cell [25]. Thus, using arborescence theory, we represent

the root metabolite as x1 :
dx1

dt
~c{

X
k[r(1)

c1k(x1,x½k�){w:x1

Here, r(j)~fkDx1?xkg belong to the pathway. It defines the set

of all metabolites that were produced by reactions having xi as

substrate, c as a constant factor. Similarly, there were intermediate

metabolites, xj~(xi?xj) :
dxj

dt
~cij(xi,x

½j�){
X

k[r(j)
cjk(xj){

w:xj Lastly, for boundary metabolites, xj :
dxj

dt
~cij(xi,x

½j�){cj0(xj){

w:xj

For understanding the stability of the network,

X1?X2?:::?Xn, we assumed that there was only one sequential

feedback inhibition [25]. Thus, the velocity of each enzymatic

reaction Xi?Xiz1 is represented by the Michaelis-Menten kinetic

function, ci(xi)~
ajxi

kizxi
Here, xi is intracellular molar fraction of

Xi, ai is maximal velocity and ki is half-saturation constant. Also

the velocity of X1?X2 is inhibited by the last metabolite with an

inhibition function, ca(xn)~
1

1za:xn

Thus, we have,

dx1

dt
~{

a1x1

(k1zx1)(1za:xn)
{w:x1{c

dx2

dt
~{

a1x1

(k1zx1)(1za:xn)
{

a2x2

(k2zx2)
{w:x2

dxi

dt
~{

ai{1xi{1

(ki{1zxi{1)
{

aixi

(kizxi)
{w:xi,3ƒiƒn Here, n§3,

x~(x1,:::,xn)T ERn, ai,kis,c,w,a are positive constants. Now,

if both xn and xs inhibits (Fig. 6) x1?x2,
dx1

dt
~{

a1x1

(k1zx1)(1za:xn)(1zb:xs)
{w:x1{c

dx2

dt
~{

a1x1

(k1zx1)(1za:xn)
{

a2x2

(k2zx2)
{w:x2

dx3

dt
~{

a2x2

(k2zx2)(1zb:xs)
{

a3x3

(k3zx3)
{w:x3

dxi

dt
~{

ai{1xi{1

(ki{1zxi{1)
{

aixi

(kizxi)
{w:xi

Finally, if xn inhibits x1?x2 (65%) and xs activates

x1?x2 (35%),
dx1

dt
~{

(a1x1)(1zb:xs)

(k1zx1)(1za:xn)
{w:x1{c

dx2

dt
~{

a1x1

(k1zx1)(1za:xn)
{

a2x2

(k2zx2)
{w:x2

dx3

dt
~{

(a2x2)(1zb:xs)

(k2zx2)
{

a3x3

(k3zx3)
{w:x3

With all these notations regarding feedbacks that we generated,

the ultimate problem was to define certain algorithms to identify

and characterize them, so that they could be further analyzed. The

next subsection highlights some algorithms that we devised to

identify feedbacks in metabolic pathways.
Identifying feedback reactions. All the algorithms for

identifying and analyzing feedback reactions were based on

identifying a pattern based on graph-based properties in metabolic

pathways. The property of graphs that we used were isomorphism

and arborescence. The algorithm proposed by us were for

identifying feedback patterns, feedback activation, feedback

inhibition, monovalent link prediction, divalent link prediction,

iso-functional enzyme link prediction, sequential link prediction,

concerted links prediction, and cumulative links respectively.

Symbols used

1. m = pattern

2. G = pathway graph

3. g = subgraph in G

4. cm = number of times m occurs in G

5. pm = probability that number of time occurrence of m§cm

6. pr = already defined probability threshold for the occurrence of

m

7. h = isomorphic subgraph of g

8. f = function defining that g has one to one correspondence

with h

9. l = search graph

10. q = searching pattern corresponding to m

11. H = property value for pattern searching

12. domain(f ) = corresponds to H

13. nj = individual nodes in graph

14. N = set of nodes in graph

15. k = threshold value signifying links

Algorithm
Feedback pattern identification
for each possible pattern m do

let cm is number of times m occurs in network graph G
estimate pm~pr½#occ§cm�
for each node in gEG do
for each node in hEH do
if h can’t support g then continue
let f ~f(g?h)g
l~Elaborate(f ,g,h)
for q in l do
output
Elaborate(f, g, h)

if domain(f )~H then
return[f ]

let m is some node in N(domain(f ))
for each node n[N(f (domain(f )))) do
if adding (m?n) to f keeps f as a valid pattern, then

Elaborate

Infection Growth Model in Metabolic Pathways
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Activation
V njEN
if dz(nj§2) then

if link exists between (njz1(k),nj{1,(k)) then

output
Calculate nj if nj increases with time

Inhibition
V njEN
if dz(nj§2) then

if link exists between (njz1(k),nj{2(k)) then

output
Calculate nj if nj decreases with time

Monovalent link
V njEN
if dz(njz1§2) then

if dz(njz1)~~1) then

if link exists between (njz1,nj{1) then

Output: Monovalent link
Divalent link

V njEN
if dz(njz1§2) then

if dz(njz1)w1) then

if link exists between (njz1,nj{1) then

Output: Divalent link
Iso-functional enzyme links

V njEN
if dz(njz1§2) and link exists between (nj{1,nj ) is §2

then
if dz(njz1)w1) then

if link exists between (njz1(k),nj{1(k)) then

Output: Iso-functional enzyme link
Sequential links

V njEN
if dz(njz1§2) then

if link exists between (nj(k),nj{1(k)) then

Output: Sequential link
Concerted links

V njEN
if dz(njz1§2) then

if link exists between (nj(k),nj(kz1)) then

Output: Concerted link
Cumulative links

V njEN
if dz(njz1§2) then

if link exists between (nj(k),nj{1(k)) or between

(nj(kz1),nj{1(k)) or between (nj(k),nj(kz1),nj{1) then

Output: Cumulative link
The next Section deals with analyzing another important

feature of metabolic pathway that is necessary for interpreting

spread of infections, known as sensitivity, which is in continuation

with our studies of feedback reactions.

Sensitivity analysis
Nesterov (1999) describes sensitivity analysis as ‘the systematic

investigation of the model responses to either perturbations of the

model quantitative factors or variations in the model qualitative

factors’ [26]. Understanding sensitivities of metabolic pathways

makes us chose those nodal points which are absolutely essential

for growing the overall functioning of metabolic pathways.

Sensitivities also help us to quantify the rate of change of the

internal dynamics of the systems in metabolic pathways in

response to external and internal perturbation, especially in case

of external infection attack and spread. This section is described

under two headings, namely, local sensitivity analysis and global

sensitivity analysis.

Local sensitivity analysis. Local sensitivity analysis deals

with considering changes to a single parameter at one time, by

keeping others fixed. Consider a general ODE model of the form
dy

dt
~f (y,k),y(0)~y0. Here, y is the vector of variables, k is the m-

vector of system parameters and y0 is the initial value. Thus, the

effect of a small parameter change on the solution is expressed as a

Taylor series expansion, yi(t,kzDk)~yi(t,k)z
Pm

j~1

Lyi

Lkj

Dkjz

1

2

Xm

l~1

Xm

j~1

L2yi

LklLkj

DklDkjz::: The partial derivatives
Lyi

Lkj

are

first-order local sensitivity coefficients and form the sensitivity

matrix S(t)~sij~
Lyi

kj

. In this case, sij(t) describes the effect on the

ith output variable at time t of a small change in the jth parameter

around its nominal value.

Here, we used the finite-difference method for calculating the

local sensitivities of the network. Using this method the model is

solved at some chosen parameter point and then at some

perturbed value of each parameter, kjzDkj while all other

parameters are held at their nominal values. The sensitivities are

then calculated using the finite-difference approximation method,

sij(t)&
yi(kjzDkj ,t){yi(kj ,t)

Dkj

. Moreover, it assumes local linear-

ity around a nominal parameter point [27].

Global sensitivity analysis. Global sensitivity analysis deals

with considering changes to multiple parameters at one time.

Here, we used Sobol’s method for performing global sensitivity

analysis. In this case, given a function y~f (x) where y is output

and x is a vector of k model input parameters, it can be

represented in the form, f (x)~f0z
Pn

s~1

Pn
i1v:::vi fi1:::is (xi1:::is ),

where 1ƒi1v:::visƒn. This equation is called Analysis of

Variance (ANOVA) representation of f (x) ifÐ 1

0
fi1:::is (xi1:::is dxk~0,k~i1,:::,is
Also, we can have,

Ð
f (x)dx~f0

Ð
f (x)Pk=idxk~f0zfi(xi)Ð

f (x)Pk=i,jdxk~f0zfi(xi)zfj(xj)zfij(xi,xj) Thus, assuming

that f (x) is square integrable, then all the f (i1:::is) are also

square integrable. So, we have
Ð

f 2(x)dx{f 2
0 ~Pn

s~1

Pn
i1v:::vis

Ð
f 2
i1v:::vis

dxi1 :::dxis

Thus, it is based on a decomposition of the variance term of

increasing dimensionality. Furthermore, these partial variances are

estimated using Monte-Carlo integrals and sensitivities are based

on their ratio to total variances [28].

Damage analysis
The processes of infection and curing run for a specific number

of iterations, depending on the number of metabolites in the

metabolic pathway. We have assigned a maximum iteration value

of n=2, where n is the total number of metabolites in the metabolic

pathway [5]. The reason for this threshold is that after the iteration

value is n=2, the results converge and there is no further need to

continue performing further iterations. After the infection has been

combated and number of iterations is completed, the critical value

‘r4’, signifying the number of metabolites that cannot be cured, is

calculated. Here, r4~M{I ’, where M is network size and I ’ is

the number cured metabolites. Three conditions can arise on the

basis of calculating values of r4. These are, r4 is

v0

~0
w0

8<
:
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Here, r4v0 indicates that there is a certain level of noise or

external metabolites which are not cured in the metabolic

pathway, r4~0 explains that all infected metabolites are cured

and size of the metabolic pathway remains unchanged, whereas

r4w0 specifies that some infected metabolites are not cured

completely. Thus, it highlights whether the network is completely

cured or not and also helps in analyzing those metabolites, which if

infected cannot be restored back, predicting the damage done to

the entire metabolic pathway [29]. Moreover, for full infection

removal and curing, r4 should always be 0.

Results

We demonstrated the effectiveness of our method on the

metabolic pathways of H. sapiens for Type I Diabetes mellitus (T1D)

involving GAS and INS genes. These metabolic pathways were

that of glutamate metabolism, b-alanine metabolism, taurine and

hypotaurine metabolism and butanoate metabolism. Our primary

concern while working on this method was developing a

framework which could be used to track the spread, prevalence

and containment of any infection in normal healthy metabolic

pathways of H. sapiens. The first step involved in this process is

collecting datasets. For this reason, we searched for the metabolic

pathway map of T1D for H. sapiens in KEGG. The genes which

were explicitely involved in these pathways of H. sapiens (i.e.,

glutamate metabolism, b-alanine metabolism, taurine and hypo-

taurine metabolism, and butanoate metabolism) were GAD1,

GAD2 and INS respectively. The remaining genes were involved

in many other networks which were not directly involved in the

causal mechanism of T1D. The next step of our data collection

was identifying enzymes involved in these pathways relating to

T1D. This was followed by searching the biochemical reactions

catalyzed by these enzymes, involved in the metabolic pathways

relating to T1D. This section is described under six headings,

namely, modeling metabolic pathways quantitatively, modeling

infection spread in metabolic pathways, detecting feedback

reactions in metabolic pathways, performing local sensitivity

analysis, performing global sensitivity analysis and analyzing the

damage caused in metabolic pathways due to infection spread.

Modeling metabolic pathways quantitatively
As discussed in section ‘Methodology’, we used ODEs to

quantitatively model the four metabolic pathways involved in the

functioning of GAD and INS genes in T1D. This ODE model of

glutamate metabolism was already discussed in section ‘Method-

ology’. Here, we discuss the ODE formulation of the other three

metabolic pathways. The ODE representation of these pathways is

present in Section S1 in File S1. For simplification purpose, the

initial values of all the kinetic parameters as well as other entities,

like metabolites were assumed to be 1 mM [8]. For initializing the

functioning of all the reactions, the default volume, Vdef was taken

into consideration. Section S1(SI) in File S1 represent the reactions

present in b-alanine metabolism, consisting of 17 reactions in total.

Here, a:::q represent the genes involved in various reactions. The

various kinetic parameters for reactions 1 to 17 are k1{rn1{a,

k1{rn2{b, k1{rn3{c, k1{rn4{d , k1{rn5{e,

k1{rn6{f , k1{rn7{g, k1{rn8{h, k1{rn9{i,
k1{rn10{j, k1{rn11{k, k1{rn12{l, k1{rn13{m,

k1{rn14{n, k1{rn15{o, k1{rn16{p and k1{rn17{q
respectively. Furthermore, the kinetic parameters involved in the

ODEs were different for various metabolites. For instance, in b-

alanine metabolism, malonyl{CoA had kinetic parameters

k1{rn1{a and k1{rn3{c, acetyl{CoA had kinetic param-

eters k1{rn3{c and k1{rn1{a, L{aspartate had

k1{rn2{b, b{alanine had k1{rn5{e, k1{rn6{f ,

k1{rn8{h, k1{rn11{k, k1{rn2{b, k1{rn4{d,

k1{rn7{g, k1{rn12{l, k1{rn16{q, malonate had

k1{rn3{c, acetate had k1{rn3{c, 3{ureidopropionate had

k1{rn4{d, k1{rn13{m, 2{oxoglutarate had k1{rn5{e,

3{oxopropanoate had k1{rn5{e, L{lysine had k1{rn6{f ,

k1{rn7{g, b{alanyl{L{lysine had k1{rn7{g,

k1{rn6{f , L{arginine had k1{rn8{h,

b{analyl{L{arginine had k1{rn17{g, k1{rn8{h,

5,6{dihydrouracil had k1{rn9{i, k1{rn10{j,
k1{rn13{m, uracil had k1{rn9{i, k1{rn10{j,
L{histidine had k1{rn12{l, k1{rn11{k, carnosine had

k1{rn11{k, k1{rn12{l, S{adnosyl{methioniamine had

k1{rn14{n, spermidine had k1{rn14{n,

5’{methyl{thioadenosine had k1{rn14{n,

3{hydroxypropionyl{CoA had k1{rn16{p, k1{rn15{o,

propenoyl{CoA had k1{rn15{0 and 3{hydroxypropanoate
had k1{rn16{p respectively.

Similarly, taurine and hypotaurine had 6 reactions (Section

S1(SII) in File S1) with 3{sulfinoalanine having kinetic param-

eters k3{rn1{a, k3{rn2{b, hypotaurine had k3{rn3{c,

k3{rn1{a, 3{cysteamine had k3{rn3{c, 3{cysteine had

k3{rn2{b, taurine had k3{rn1{a, k3{rn5{e, k3{rn4{d,

L{cysteate had k3{rn1{a, glutaurine had k3{rn5{e,

taurocholate had k3{rn4{d, 5{L{glutaryl{peptide had

k3{rn5{e, choloyl{CoA had k3{rn4{d and CoA had

k3{rn4{d respectively. The reason for explicitly defining these

kinetic parameters was that these change in accordance with the

concentration of metabolites with respect to time, which plays a

pivotal role for the overall functioning of the metabolic pathways.

Lastly, butanoate metabolism had 15 reactions (Section S1(SIII)

in File S1)with the metabolite pyruvate having kinetic para-

meters k2{rn1{a, thiaminediphosphate had k2{rn1{a,

2a{hydroxyethyl{thiamino{diphosphate had k2{rn1{a,

acetyl{CoA had k2{rn9{i, k2{rn13{m, k2{rn2{6,

acetoacetylCoA had k2{rn2{b, k2{rn4{d , k2{rn8{h,

k2{rn12{l, k2{rn13{m, L{glutamate had k2{rn11{k,

k2{rn3{c, 4{aminobutanoate had k2{rn3{c, k2{rn11{k,

succinylCoA had k2{rn4{d , acetoacetate had k2{rn9{i,
k2{rn10{j, k2{rn4{d, k2{rn8{h, succinate had

k2{rn14{h, k2{rn5{e, succinatesemialdehyde had

k2{rn11{k, k2{rn5{e, butanoylCoA had k2{rn7{g,

k2{rn6{f , crotonoylCoA had k2{rn6{f , k2{rn14{n,

butanoicacid had k2{rn7{g, (S){3{hydroxy{3{methyl{
glutaryl{CoA had k2{rn9{i, k2{rn13{m, (R){3{

hydroxy{butanoate had k2{rn10{j, 2{oxoglutarate had

k2{rn15{o, k2{rn11{k, (R){3{hydroxy{butanoyl{
CoA had k2{rn12{l, k2{rn14{n and 2{hydroxy{

glutarate had k2{rn15{o respectively [8,30].

For validation purpose, two strategies were considered, first,

simulating the model with step changes in input dataset as well as

in time series, and second, comparing the predicted output

with published results [31]. For the first strategy, we started

with initial concentration of all the metabolites and performed

two perturbations, first, where we progressively reduced the

concentration, and second, where we progressively increased

the concentration of the metabolites (Section G in File S1)

[31,32]. For instance, for analysing the rate of change of

malonyl{CoA in b-alanine metabolism, with initial concentra-

tion of 0:4 mM=ml, acetyl{CoA (0:3 mM=ml), malonate

(0:2 mM=ml) and acetate (0:2 mM=ml), d
dt

(½malonyl{CoA�:Vdef )

~{0:88 (keeping Vdef ~1 ml, ½a�~1, ½c�~1). Similarly, for 1st

metabolite,
d

dt
(½malonyl{CoA�:Vdef )~{0:38, 2nd metabolite,
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d

dt
(½malonyl{CoA�:Vdef )~{0:29, 3rd metabolite,

d

dt
(½malonyl

{CoA�:Vdef )~{1:12 and 4th metabolite,
d

dt
(½malonyl{

CoA�:Vdef )~{0:45 respectively. We observed that with decrease

in concentration of malonyl{CoA,
d

dt
½malonyl{CoA�:Vdef

� �
increased, whereas it decreased further when concentration was

increased by 0:1 mM=ml and again increased when concentration

was increased by 0:1 mM=ml. Thus, we could observe that

decreasing concentration increased the rate of change and vice

versa, which is predictable from the ODEs [33,34].

Next, using the 2nd validation strategy, we found that for

b{alanine metabolism, it has been seen that when

malonyl{CoA function is altered in cells, glucose-induced insulin

release is impaired. Furthermore, it is already known that citrate,

exported from mitochondria to the cytosol, is cleaved by ATP

citrate lyase, forming oxaloacetate and acetyl{CoA, which form

malonyl{CoA promoting fatty acid synthesis, accumulating long-

chain acetyl{CoA enhancing Ca2z evoked inslulin exocytosis.

Thus, it proved the importance of malonyl{CoA as determined

by our algorithm [35–37].

Modeling infection spread in metabolic pathways
The fundamental aspect of analyzing the infection spread is

selecting the infection starting point. There are two methods for such

selection, namely, random and targeted [5]. Random method

is selecting any metabolite as infection start site without any

bias. But, this does not help in disease study. The reason being,

based on literature and experimental evidences, some known

metabolites participating in T1D is already known. Thus, we

concentrate on targeted selection, which specifically selects

metabolites based on our choice (Table 1). We start our

discussion with glutamate metabolism, having 15 metabolites,

namely, N{carbamoyl{L{aspartate(1),L{glutamine(2),

L{glutamate(3),4{aminobutanoate(4),ammonia(5),
5{phosphoribosylamine(6),D{glucosamine6{phosphate(7),
D{fructose{6{phosphate(8),2{oxoglutarate(9),
2{oxoglutaramte(10),succinatesemialdehyde(11),5{phospho{
a{D{ribose{1{diphosphate(12),L{glutamate{5{
semialdehyde(13),L{aspartate(14) and succinate(15) (Table 2).

The numbers in bracket represent a metabolite. In glutamate
metabolism, the selected start sites for infection spread are

L{glutamate(3) and 4{aminobutanoate(4) respectively. Initially,

in infection-free state, M~14,N~0,P~0,Iact~0 and I ’~0. We

executed our simulation algorithm by considering 3 as the start site of

infection initiation in the 1st run (Fig. S1 in File S1). The front

propagation of 3, dz(3) = 5 as it was connected to five metabolites,

namely, 4,2,17,9, and 8. The burning probability of 3,BP(3)~0:2,

stating the fact that the chance of infection spread to the five connected

metabolites was 3, i.e., 20% each. Similarly for metabolite

4,dz(4)~1, as it was connected to only one metabolite, i.e. 11,

whereas the burning probability, BP(4)~1, suggesting that the chance

that metabolite 11 would be infected was very high (100%). Next the

front propagation of 5,dz(2)~5, as it was connected to five

metabolites, namely, 7,13,14,15, and 20 whereas its burning

probability, BP(2)~0:2, again suggesting the fact that chance of

infection spread through 2 is 20%. Furthermore, for metabolites 17
and 9, the front propagation values are dz(17)~0 and dz(9)~0,

suggesting that they had no possibility of infection spread through

them. For metabolite 8, the front propagation, dz(8)~1, as it was

connected to only one metabolite, namely, 10 and had a burning

probability, BP(8)~0:5, having 50% chance that infection would

spread through it. Similarly for metabolite 7, the front propagation,

dz(7)~1, as it is connected to one metabolite, i.e. 16, whereas its

burning probability, BP(7)~0:5. Furthermore, front propagation

value of metabolite 10,dz(10)~1, as it is connected to one metabolite,

i.e., 18 and had a burning probability, BP(10)~0:5. Moreover, front

propagation value for other metabolites 16,13,14,15,20,17,9 and 18
was 0 suggesting no infection spread through these metabolites (Fig. 4).

As this simulation had been done only on the basis of structural

aspects of the network, biological significance needs to be

associated with this model. For this purpose, we calculated certain

quantitative parameters associated with it. Thus, for

L{glutamine,M~14,N~0,P~4,Iact~7,Ipas~4,

Np~0,Cact~
1

Iact

~0:14,Cpas~
1

Ipas

~0:25,I~14,

q~0,b~0,a~1,m~
P

M
~0:28,E~0

and I ’~14.

Similarly, we observed that
dP

dt
~{13:14,

dIact

dt
~389:88,

Ipas

dt
~0:08,r4~M{P’~0. Thus, the critical factor, r4~0, even

after selecting L{glutamate as infection start site. For the 2nd run,

we selected metabolite 4 as start site for infection spread (Fig. S in

File S1). It had a front propagation, dz(4)~1, as it was connected

to 11, and had a burning probability BP(4)~1, suggesting the

chance of infection spread as 100%. Continuing the same strategy,

we found that for metabolite 11, the front propagation,

dz(11)~1, as it was connected to 19. Furthermore, for 11 and

19, the burning probability values were BP(11)~1 and

dz(19)~0 suggesting the termination of infection spread (Fig. 5).

A combat mechanism also occured simultaneously along with

infection spread. For instance, when 3 got infected, 12 acted in

accordance that results in healthy production of 3. The reason

being, back propagation of metabolite 3,d{(3)~1 and its

combating probability, CP(3)~1, demonstrating the fact that

even if it got infected combating the infection occurred. In this

case, the combating edge was in between metabolites 3 and 12
(Fig. S3 in File S1). In case of metabolite 4,d{~1,CP~1 was

selected as the start site for infection, 3 acted in accordance to

combat the infection. Thus, the combating edge was in between 3
and 4 respectively (Fig. S4 in File S1). Now, for

vi~4(4{aminobutanoate),M~14,N~0,P~1,Iact~2,Ipas~1,

Np ~0,Cact ~0:5,Cpas ~1,I ~14,q~0,b~0,a~1,m~0:07,E~0

and I ’~14. Thus,
dP

dt
~13:93,

dIact

dt
~95:88,

Ipas

dt
~0:86,r4~0.

Thus, selecting 4{aminobutanoate again gave 0 as critical

factor.

In case of b{alanine metabolism, two runs were possible as

only two possible metabolites, b{alanine and L{aspartate
acted as possible start sites for infection. Selecting

b{alanine(dz~3,BP~0:33) as start site results in infecting 3
metabolites, namely, b{alanyl{N{pi{methyl{L{histidine
(dz~0),b{amino{propion{aldehyde(dz~1,BP~1), and

3{oxopropanoate(dz~0). The metabolite 3{oxopropanoate
infected 1,3{diaminopropane(dz~0) resulting in no further

infection progress (Section S2 Fig. S6 in File S1). Now, for

biological significance and validation purpose,we found that

M~25,N~0,P~2,Iact~4,Ipas~2,Np~0,Cact~0:25,

Cpas~0:5,I~25,q~0,b~0,a~1,m~0:28,E~0
and

I ’~25. Thus,
dP

dt
~18:84,

dIact

dt
~198:84,

Ipas

dt
~{1:32,r4~0.

We observed that critical factor was zero using ODE, confirming

our previous analysis using graph-based study. It is also known

from literature that altering the level of b{alanine may affect the

formation of carnosine in cells resulting in several side effects
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such as reduction in antioxidant level as well as other carbohy-

drate-based disorders [38,39]. In case of combat operation,initiat-

ing with b{alaninemetabolism,b{alanine(d{~2,CP~0:5)
had two possible combating edges with metabolites

3{ureidopropionate and L{aspartate respectively (Section S2

Fig. S7 in File S1) [17]. Furthermore, L-aspartate (d{ = 1, CP = 1)

has only one possible combating edge with metabolite 3-

ureidopropionate (Section S2 Fig. S8 in File S1). Furthermore,

selecting L{aspartate(dz~1,BP~1) as infection spread infects

only b{alanine, which further spreads the infection (as discussed

previously) (Section S2 Fig. S9 in File S1). Also,

M~25,N~0,P~1,Iact~1,Ipas~4,Np~0,Cact~1,Cpas~0:25,

I~25,q~0,b~0,a~1,m~0:08,E~0,I ’~24. Thus,
dP

dt
~18:68,

dIact

dt
~98:68,

Ipas

dt
~{1:08,r4~1, with critical factor as non-

zero, thus having possibility for infection spread through

metabolite. From literature, it is known that L{aspartate is

essential for metabolic demand and is categorized as an

important precursor for b{alanine, thereby significantly

participating in insulin functioning [40,41].

Furthermore, in taurine{hypotaurine metabolism, four runs

were possible as 3{sulfino{L{alanine,taurine,L{cysteate

and hypotaurine could act as start site. For the 1st run, when

3{sulfino{L{alanine(dz~2,BP~0:5) acted as the start site,

it infects hypotaurine(dz~0) and L{cysteine(dz~0) resulting

in no further progress (Section S2 Fig. S10 in File S1). Here,

M~11,N~0,P~1,Iact~1,Ipas~1,Np~0,Cact~1,Cpas~1,

I~11,q~0,b~0,a~1,m~0:09,E~0,I ’~11
.

Thus,
dP

dt
~13:68,

dIact

dt
~9:91,

Ipas

dt
~{1:09: We have found that

the fact r4~0 validates our result. From literature, we found that

L{cysteine inhibits insulin release from pancreatic b-cell, thereby

playing a significant role [42,43]. This proved our previous

conclusion that selecting 3{sulfino{L{alanine infected

L{cysteine which might further effect the production of insulin

[42]. Meanwhile, in taurine{hypotaurine metabolism,

3{sulfino{L{alanine(d{~1,CP~1) had only one possible

combat edge with L{cysteine. Moreover, if

taurine(dz~2,BP~0:5) was selected as start site (for the 2nd

run), it infected 5{glutamyl{taurine(dz~0) and

taurocholate(dz~0) resulting in no more infection spread

(Section S2 Fig. S11 in File S1) [44]. Now,

M~11,N~0,P~2,Iact~2,Ipas~2,Np~0,Cact~0:5,Cpas~0:5,

I~11,q~0,b~0,a~1,m~0:18,E~0,I ’~11. Thus,
dP

dt
~11:91,

dIact

dt
~43:64,

Ipas

dt
~{1:36,r4~0. Also, taurine(d{~1,CP~1)

had a combat edge with L{cysteate(d{~0) which had no

further mechanism of combat (Section S2 Figs. S12–S14 in File

S1) [45]. Similarly for the 3rd run, when

L{cysteate(dz~1,BP~1) acted as start site, it infects taurine

resulting in further infection spread (as discussed previously)(Sec-

tion S2 Fig. S15 in File S1), for which M~11,N~0,P~2,

Table 1. Initiating metabolites for Type I Diabetes mellitus in H. sapiens.

Metabolic pathway Infection start site Number of connecting links Reaction links

Glutamate metabolism L-glutamate 05 L-glutamateR4-aminobutanoate

L-glutamateRr4-L-glutanyl-L-cysteine

L-glutamateRL-glutamyl-tRNA Glu

L-glutamateRL-glutamine

L-glutamateR2-oxoglutarate

4-aminobutanoate 02 4-aminobutanoateRsuccinate semialdehyde

4-aminobutanoateRL-glutamate

b-alanine metabolism b-alanine 05 b-alanineRbeta-alanyl-N-pi-methyl-L-histidine

b-alanineRL-aspartate

b-alanineR3-ureidopropionate

b-alanineRbeta-aminopropion aldehyde

b-alanineR3-oxopropanoate

L-aspartate 01 L-aspartateRbeta-alanine

Taurine and hypotaurine metabolism 3-sulfino-L-alanine 02 3-sulfino-L-alanineRhypotaurine

3-sulfino-L-alanineRL-cysteine

Taurine 03 TaurineRtaurocholate

TaurineRL-cysteate

TaurineR5-glutamyl-taurine

L-cysteate 01 L-cysteateRtaurine

Hypotaurine 02 HypotaurineR3-sulfino-L-alanine

HypotaurineRcysteamine

Butanoate metabolism 4-aminobutanoate 02 4-aminobutanoateRsuccinate semialdehyde

4-aminobutanoateRL-glutamate

L-glutamate 01 L-glutamateR4-aminobutanoate

doi:10.1371/journal.pone.0069724.t001
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Iact~2,Ipas~2,Np~0,Cact~0:5,Cpas~0:5,I~11,q~0,b~0,

a~1,m~0:18,E~0,I ’~11. Thus,
dP

dt
~11:91,

dIact

dt
~43:64,

Ipas

dt
~{1:36,r4~3. We observed that critical factor was high in

this case, thus validating our result again. L{cysteate had been

found to be important in synthesis of various other metabolites like

taurine, which plays an essential role in improving insulin

resistance [46,47]. As per our finding, infecting taurine may

drastically spread this infection throughout. Lastly for the 4th run,

selecting hypotaurine(dz~0) did not result in any further

progress of infection (Section S2 Fig. S16 in File S1) [45]. In

this case,
M~11,N~0,P~0,Iact~0,Ipas~0,Np~0,Cact~0,

Cpas~0,I~0,q~0,b~0,a~0,m~0:0,E~0,I ’~1
.

Thus,
dP

dt
~0,

dIact

dt
~0,

Ipas

dt
~0,r4~3 [48]. Results on Infection

spread analysis in butanoate metabolism has been discussed in

Section S2 Figs. S17–S20 in File S1.

Detecting feedback reactions in metabolic pathways
Here, we discuss the results that we got by identifying the

presence of feedbacks in the above mentioned four metabolic

pathways. We performed the analysis in two steps. First, we

identified the presence of a feedback pattern using the algorithm

discussed in section ‘Methodology’, and second, we validated this

property biologically using the notation previously discussed in

section ‘Analyzing feedbacks’. For glutamate metabolism, we

found the presence of three possible feedback links (all sequential links),

in the form of reactions L{glutamate?2{oxoglutarate,
L{glutamate?L{glutamine and L{glutamine?L{glutamate

respectively (Section S3 Fig. S21a in File S1). This detection was

performed on the basics of ‘Sequential Links’ algorithm in section

‘Methodology’. Thus, dz(njz1)~5 (L{glutamate), dz(njz1)~6

(L{glutamine) and dz(njz1)~2 (oxoglutarate). Now, for k~1,

links exist between 2{oxoglutarate,L{glutamate and

L{glutamine respectively. For the other feedback categories,

meaningful results did not exist. For validation, we found
dx1

dt
for

L{glutamate and L{glutamine, whereas
dx2

dt
for 2{oxoglutarate

and L{glutamine. Thus, for initial concentration of 1 mM for all the

metabolites,
dx1

dt
for L{glutamate~{

a1x1

(k1zx1)(1za:xn)
{

w:x1{c~1 and
dx1

dt
for L{glutamine~1, whereas

dx2

dt
for

2{oxoglutarate~{ a1x1
(k1zx1)(1za:xn)

{ a2x2
(k2zx2)

{w:x2~0:05

and
dx2

dt
for L{glutamaine~0:01 respectively [49,50]. Thus, with

time, the concentration of 2{oxoglutarate,L{glutamine and

L{glutamate follows a negative downgrade, making the reactions

behaved in a feedback manner [9,50].

Similarly, for b{alanine metabolism, only one reaction

displayed properties of feedback, namely, acetyl{CoAz

malonate<acetatezmalonyl{CoA, where sequential link is

established. Thus, dz(njz1)~2 (acetyl{CoA). Now, for k~1,

links existed between acetyl{CoA and malonyl{CoA. For the

purpose of validation, we found that
dx1

dt
for acetyl{CoA~1 and

dx2

dt
for malonyl{CoA~0:02. Furthermore, concentration of

malonyl{CoA decreases with time (Section S3 Fig. S21b in File

S1) [49]. In case of taurine{hypotaurine metabolism, sequential

link was established in two reactions, namely,

3{sulfinoalanine?hypotaurine and taurinez(5{L{glutaryl)

{peptide?glutaurinezpeptide. For dz(njz1)~2

(sulfinoalanine) and dz(njz1)~4 (taurine) and k~1, links were

present between 3{sulfinoalanine,hypotaurine,taurine and

5{glutaryltaurine [51,52]. Thus, for the purpose of validation,

we found,
dx1

dt
for 3{sulfinoalanine~1,

dx2

dt
for

hypotaurine~{2:39E{30,
dx1

dt
for taurine~1,

dx2

dt
for

5{glutaryltaurine~0:28, where concentration of hypotaurine

decreased with time whereas that of taurine increased (Section S3

Fig. S21c in File S1) [9,45]. Results on feedback detection in

butanoate metabolism has been discussed in Section S3 Fig. S21d

in File S1.

Performing local sensitivity analysis
Every reaction model of metabolic pathways contain a number

of parameters like initial concentration of metabolites and kinetic

constants, whose values are not known exactly. Altering these

parameters change the behavior of the model, and also specify

Table 2. Reactions and metabolites involved in glutamate metabolism in H. sapiens.

Reactions

SuccinatesemialdehydezNADzzH2Ov~wSuccinatezNADHzHz; ½y�,½rn1�
4{Aminobutanoatez2{Oxoglutaratev~wSuccinatesemialdehydezL{Glutamate; ½x�,½rn2�
L{Glutamatev~w4{AminobutanoatezCO2; ½z�,½rn3�

L{GlutamatezNADzzH2Ov~w2{OxoglutaratezNH3zNADHzHz; ½a�,½rn4�
2{OxoglutaramatezH2Ov~w2{OxoglutaratezNH3; ½f �,½rn5�
L{GlutaminezD{Fructose6{phosphatev~wL{GlutamatezD{Glucosamine{6{phosphate; ½b�,½rn6�
5{PhosphoribosylaminezDiphosphatezL{Glutamatev~wL{Glutaminez5{Phospho{alpha{D{ribose{1{diphosphatezH2O; ½g�,½rn7�
ATPzL{GlutamatezNH3v~wADPzOrthophosphatezL{Glutamine; ½h�,½rn8�
L{GlutaminezH2Ov~wL{GlutamatezNH3; ½c�,½rn9�

L{Glutamate5{semialdehydezNADzzH2Ov~wL{GlutamatezNADHzHz; ½d�,½rn10�
2ATPzNH3zCO2zH2Ov~w2ADPzOrthophosphatezCarbamoylphosphate; ½p�½rn11�
CarbamoylphosphatezL{Aspartatev~wOrthophosphatezN{Carbamoyl{L{aspartate; ½i�,½rn12�

doi:10.1371/journal.pone.0069724.t002
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whether the model is dependent on these parameters or not. This

is extremely essential in disease networks, as a right combination of

parameters can be used to analyze the dynamics of the network.

Local sensitivity analysis describes how much does a specific

parameter change the behavior of the model. We have calculated

the sensitivity values for different parameters based upon time

courses using the finite-difference method (already discussed in

section ‘Methodology’). Here, we have performed sensitivity

analysis using three different conditions, namely, concentration

fluxes of reactions with initial concentrations, non-constant

concentration of species with initial concentrations, and concen-

tration rates with initial concentrations [27].

The sensitivities of all parameters with respect to all reactions in

the model has been calculated and displayed in Table 3 where the

columns correspond to the parameters (both metabolites and

kinetic constants) and rows to the reactions. Let us consider the

line labeled ‘(rn:R4).Flux’ (Table 3), where the numbers described

how the flux of reaction ‘(rn:R4).Flux’ (L{glutamatez

NADzzH2Ov~w2{oxoglutaratezNH3zNADHzHz)

changed with concentrations of different parameters. Here,

L{glutamate is a substrate with initial concentration 1 mM and

2{oxoglutarate, a product showing negative gradient with

concentration of &{2:10E{20 mM, leading to a lower flux,

which might ultimately lead to the decrease in reaction rate [27].

A sensitivity value equal to zero indicates that the metabolite

concentration has no influence on the reaction rate. It is also

important to know that sensitivity values are dominated by

changes in enzyme concentrations, as they only measure the

effects of changing the overall rate of reactions. Similarly, for

the reaction flux, ‘(rn:R6).Flux’, (L{glutaminezD{fructose6{
phosphatev~wL{glutamatezD{glucosamine6{phosphate),
concentration of the reactant (L{glutamine&{1:8E{21 mM )

decreased, as well as for reaction flux, ‘(rn:R7).Flux’,

(5{phosphoribosylaminezDiphosphatezL{glutamatev~w

L{glutaminez5{phospho{a{D{ribose1{diphosphatez
H2O), where concentration of the reactant (L{glutamate&
{2:3E{20 mM ) decreased too, indicating positive correlation and

normal reaction rate. Furthermore, values corresponding to non-

constant concentration of species with initial concentrations, negative

gradients has been indicated in case of metabolites L{

glutamate&{2:27E{20 mM, L{glutamine{1:7E{20 mM
and 2{oxoglutarate{1:8E{20 mM for genes a, b and f
respectively. Lastly, in Table 3 concentration rates with initial

concentrations did not provide any meaningful result as values were 0
[51].

Validating the above sensitivity output with the already

generated fire spread result on glutamate metabolism gave us

some interesting conclusions. Selecting L{glutamine as infection

initiation site led to r4~0 (Section S4 Table S1 in File S1). It

suggested that though infection initiated at this site, all infected

metabolites were ultimately cured. Furthermore, performing local

sensitivity analysis indicated that concentration of infected

L{glutamine decreased with time suggesting the fact that since

there was no negative flux associated with it, all infected

metabolites were cured and glutamate metabolism functioning

was not affected [27]. Similarly, for b{alanine metabolism, in

case of reaction flux ‘(rn:R000003).Flux’, (Acetyl{CoAz
Malonatev~wAcetatezMalonyl{CoA) (Section S4 Table

S2 in File S1), concentration of malonyl{CoA&
{1:67E{21 mM decreased, that suggested that product concen-

tration decreased with time, signifying its possible role to act in

accordance with malonyl{CoA. Similarly, concentration of both

malonyl{CoA,acetate had a negative gradient values corre-

sponding to non-constant concentration of selected metabolites

[53]. Furthermore, we also observed that concentration of

b{alanine, selected as infection initiation site decreased beyond

1:2E{21 mM. Also, concentration of L{aspartate decreased

beyond 0:189456 mM in a manner supported by common

enzymatic reaction [53,54].

Moreover, in case of taurine{hypotaurine metabolism, the

reaction flux ‘(rn:R02466).Flux’, (3{sulfinoalaninev~w

hypotaurinezCO2) (Section S4 Table S3 in File S1) has

hypotaurine&{2:39E{30 mM decreasing in negative gradient

suggesting a possible role in inhibition. Similarly, in reaction flux,

‘(rn:R01687).Flux’, (Taurinez5{L{glutaryl{peptidev~w

Glutaurinezpeptide) (Section S4 Table S3 in File S1),

taurine&3:79E{36 mM had a positive gradient. Now, in (Section

S4 Table S3 in File S1), with non-constant concentration of species

with respect to initial concentration displayed a negative gradient

for 3{sulfinoalanine with CDO1 as gene. We observed that

Table 3. Representing values corresponding to local sensitivity analysis done on glutamate metabolism; rows signify fluxes and
columns denote the metabolites participating in various reactions.

Reaction ID

Flux
ID
(rn:)

L-glut
amate

L-glut
amine

4-amino
butan
oate

5-phos
phorib
osylam
ine

D-gluc
osami
ne-6P

succ
inate
semial
dehyde

succ
inate

2-oxo
gluta
rate

2-oxo
glutar
amate

D-fruc
tose
6P

5-P-
a-D
ribose
1-diP

L-glutam
ate-5
semial
dehyde

L-asp
art
ate

y (1) 0 0 0 0 0 0.023467 1.98E-18 0 0 0 0 0 0

x (2) 0 0 0.012564 0 0 2.03E-20 0 0.054354 0 0 0 0 0

z (3) 0 0.015343 1.23E-21 0 0 0 0 0 0 0 0 0 0

a (4) 0 0 0 0 0 0 0 2.10E-20 0 0 0 0 0

f (5) 0 0 0 0 0 0 0 1.30E-21 0.067803 0 0 0 0

b (6) 1.21E-20 1.80E-21 0 0 1.23E-21 0 0 0 0 0.189356 0 0 0

g (7) 2.30E-20 0 0 1.18E-19 0 0 0 0 0 0 1.23E-18 0 0

h (8) 0.185643 0 0 0 0 0 0 0 0 0 0 0 0

c (9) 2.41E-19 1.20E-18 0 0 0 0 0 0 0 0 0 0 0

d (10) 0 1.18E-19 0 0 0 0 0 0 0 0 0 0.198234 0

i (11) 0 0 0 0 0 0 0 0 0 0 0 0 0.023876

doi:10.1371/journal.pone.0069724.t003
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concentration of 3{sulfinoanaline had a positive gradient even

after 8:23E{31 mM and did not give rise to non-zero critical factor

[49,55]. But, selecting L{cysteate had a non-zero critical factor,

which could be clearly identified using its concentration values

of 0 mM,{5:7E{31mM,{5:75E{31mM,1:72E{30mM,
3:79E{36mM,{3:78E{36mM, suggesting its possible role in

inhibiting the reaction rate [27,51]. In this section we looked into

the metabolic pathways from a local structure point of view, which

suffers from several disadvantages such as, their role to investigate

the model behavior in the immediate region around the nominal

parameter values and only consider changes to one parameter at a

time, while all other parameters are fixed to their nominal values.

Thus, to understand this situation, we performed global sensitivity

analysis of infected metabolic pathways [55]. Local sensitivity

analysis results on butanoate metabolism has been discussed in

Section S4 Table S4 in File S1.

Performing global sensitivity analysis
We have discussed previously that local sensitivity analysis

considers changes to one parameter at a time, whereas in

biological systems multiple parameters might act together to

produce an effect. Thus, in a diseased network like T1D, it is

extremely important to understand the role of multiple parameters

in causing the disorder. For the same purpose, we implemented

Sobol’s method of global sensitivity analysis [28]. We have

restricted ourselves to analyzing only those metabolites that we

selected as infection start sites. We have studied the effect of

metabolites upon one another, analyzing them individually as well

as in groups of one, two, three and more at a time. For instance, in

case of glutamate metabolism, we selected four metabolites,

namely, 2{oxoglutarate, 4{aminobutanoate, L{glutamate
and L{glutamine. In the 1st run, we studied the effect of

2{oxoglutarate over others, 4{aminobutanoate over others and

so on. In the 2nd run, we studied in groups of two, like effect of

2{oxoglutarate and 4{aminobutanoate over others and so on.

In the 3rd run, we studied in groups of three, whereas, in the 4th

run, we studied the effect of metabolites in groups of four. Thus,

we could validate our forest fire hypothesis and studied whether

the effects of these metabolites as proposed in the fire spread

model are true or not. Thus, for 2{oxoglutarate, we found its

maximal effect on L{glutamate, whereas for

4{aminobutanoate, the maximal effect was found on

succinatesemialdehyde, followed by L{glutamine and

L{glutamate. Similarly for L{glutamate, the maximal effect

produced on 4{aminobutanoate, followed by L{glutamine and

2{oxoglutarate, whereas for L{glutamine the maximal effect

was on L{glutamate respectively (Figs. 7a–c) [56,57].

Considering two metabolites at a time, for L{glutamate and

2{oxoglutarate, maximal group effect was on L{aspartate,

whereas for L{glutamine and 2{oxoglutarate the effect was

identified on L{glutamate{5{semialdehyde, for

L{glutamine and 4{aminobutanoate the effect was seen on

5{phosphoribosylamine, for L{glutamate and

4{aminobutanoate the effect was identified on L{glutamine,

for 4{aminobutanoate and 2{oxoglutarate the effect was seen

on L{glutamate. Next, considering three metabolites at a time,

for 4{aminobutanoate, L{glutamate and L{glutamine effect

was seen on 5{phospho{D{ribose1{diphosphate,

L{glutamate{5{semialdehyde, succinate and L{aspartate
whereas for 2{oxoglutarate, 4{aminobutanoate, L{glutamate
effect was seen on D{fructose{6{phosphate only. Lastly,

considering all the four metabolites at one time, we identified the

effect on succinatesemialdehyde, D{glucosamine{6{
phosphate, succinate, 2{oxoglutaramate and D{fructose{6{

phosphate respectively. We observed that the total number of

affected metabolites due to these start sites, as per fire spread

model was 14, which was equivalent to the total number of

affected metabolites as found in the global sensitivity plot (Figs. 7d–

g) [55,57].

For b{alanine metabolism, we observed that considering

b{alanine causes maximal effect on malonylCoA,

2{oxoglutarate, L{lysine, 3{ureidopropionate and

L{arginine, whereas for L{aspartate effect was seen on

L{lysine, 3{ureidopropionate and spermidine. Moreover,

considering both b{alanine and L{aspartate, group effect was

seen on L{arginine, 3{ureidopropionate and spermine, where-

as for malonylCoA and L{aspartate, group effect was observed

on L{arginine, 3{ureidopropionate and spermine. Similarly,

for b{alanine and malonylCoA, group effect was observed on

L{lysine, L{arginine and spermine. Finally, considering

b{alanine, malonylCoA and L{aspartate, group effect was

seen on L{arginine, b{alanyl{L{arginine and

propenoylCoA respectively. Furthermore, the fire spread model

suggested an effect of over 15 metabolites due to infection spread,

which was identical to what global sensitivity analysis predicts,

which validated our previous finding (Section S5(SI) Figs. S22 a–f

in File S1) [55,56].

For taurine{hypotaurine metabolism, considering hypotaurine
maximal effect was observed on 3{sulfoalanine, taurine,

L{cysteate, glutaurine, and for taurine, maximal effect was

seen on 3{sulfoalanine, 3{cysteiamine, hypotaurine,

glutaurine, for 3{sulfoalanine effect was seen on hypotaurine,

taurine, L{cysteate and glutaurine. Moreover, considering both

hypotaurine and taurine, maximal group effect was seen on

choloylCoA, 3{sulfoalanine, 3{cysteamine, 3{cysteine and

L{cysteate, for hypotaurine and 3{sulfoalanine maximal group

effect was seen on glutaurine, taurocholate, 3{cysteamine,

3{cysteine and L{cysteate, whereas for taurine and

3{sulfoalanine maximal effect was seen on glutaurine,

taurocholate, 3{cysteamine, 3{cysteine and L{cysteate
[28]. Finally, taking all three metabolites, maximal effect was

seen on glutaurine, taurocholate, 3{cysteamine, 3{cysteine,

L{cysteate and 5{L{glutamyl{peptide. Moreover, the fire

spread model suggested an effect of over 12 metabolites due to

infection spread, which was similar to our results shown using

global sensitivity analysis, thus validating our results (Section

S5(SII) Figs. S23 a–g in File S1) [45,55]. Global sensitivity analysis

results on butanoate metabolism is discussed in Section S5(SIII)

Figs. S24a–g in File S1.

Analyzing the damage caused in metabolic pathways
due to infection spread

When we considered an infected metabolite, high burning

probability resulted in greater chance that it could infect the

associated metabolic pathway. Similarly, if combating probability

was high, then the metabolites were cured and the associated

metabolic pathway was restored. We calculated a possible range of

critical values for all metabolic pathways in H. sapiens (Fig. S5 in

File S1). It illustrated the effect of infection spread and its

subsequent curing. Critical value of a particular metabolic

pathway suggested the overall infection scenario, giving insight

into the number of infected metabolites that could not be cured

after combat analysis is performed. Table S5 (in File S1) represents

the list of infected, cured and uncured metabolites. From Fig. S5

(in File S1), it was evident that metabolic pathways under

carbohydrate metabolism had critical values ranging from 1 to 7

having an average of 4.59, from 1 to 35 under amino acid

metabolism with average of 6.22, from 1 to 36 under lipid
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metabolism range average of 6.89, from 1 to 4 under energy

metabolism with average of 2.2 and from 1 to 8 under co-factors

and vitamins metabolism with an average of 2.8 respectively

(Section S6(SI–SII) Tables S5–S6 in File S1). Thus, critical value

ranging from 1–5 were less prone to infection, 5–10 were more

prone to infection, whereas value greater than 10 were most prone

to infection [58].

This was because critical value depends on the number of

metabolites cured with respect to metabolites infected [59]. A

higher critical value indicated that less number of infected

metabolites were cured, whereas a less critical value indicated

more number of infected metabolites cured. If critical value is 0,

then all infected metabolites were cured. In case of glutamate

metabolism critical value was 0, when site of infection was both L-

glutamate and 4-aminobutanoate. This signifies the fact that all

the metabolites that became infected due to selection of either L-

glutamate or 4-aminobutanoate were cured. In case of b-alanine

metabolism, critical value was 0 when start site of infection was b-

alanine, whereas it was 1 when infection start site was L-aspartate,

indicating that L-aspartate remained infected even after the

combat process was over [60]. In case of taurine and hypotaurine

metabolism critical value was observed to be 0 (infection start

site = 3-sulfino-L-alanine and taurine), whereas it was 4 when

infection start site was L-cysteate. For the later case, reason for

Figure 7. Plots representing global sensitivity analysis performed on glutamate metabolism for metabolites. (a) 2-oxoglutarate, (b) 4-
aminobutanoate, (c) L-glutamate, (d) L-glutamine, (e) L-glutamine, 4-aminobutanoate (group effect), (f) L-glutamine, L-glutamate (group effect), and
(g) L-glutamine, 4-aminobutanoate, L-glutamate, 2-oxoglutarate (group effect).
doi:10.1371/journal.pone.0069724.g007
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high critical value was due to the unsuccessful combat mechan-

ismn, in which taurine, L-cysteate, taurocholate and 5-glutamyl

taurine remained infected. Furthermore, in butanoate metabolism

critical value was 0 when infection start site was 4-aminobutano-

ate, whereas it was 4 when infection start site was L-glutamate as

the 4-aminobutanoate, succinate semialdehyde, succinate and L-

glutamate remain infected even after combat process ends. The

critical values could be further used to analyze the degree of fitness

of a metabolic pathway in case of infection spread, and could be

further utilized to study the robustness of the metabolites involved

in a metabolic pathway. Furthermore, we have also performed

various perturbations on the given metabolic pathways (as

discussed in Section ‘Modeling metabolic pathways quantitative-

ly’). The various perturbation values for those metabolic pathways

are shown in Tables S7–S10 (Section S7 in File S1).

Discussion

This work facilitated the study of metabolic networks and

simulate the infection caused in a healthy network with

implementation in certain pathways involved in Type I Diabetes

mellitus in H. sapiens. The aim of this study was to evaluate whether

each metabolite is infected by any chance, and the nature as well

as extent of this infection. Moreover, we have also studied whether

this infection spread could be combated as well as the infected

metabolites could be cured. We also identified the extent of

infection by calculating the critical value using both burning as

well as combating probability. This simulation model considered a

metabolite which was susceptible to infection via an infected

metabolite. Once a metabolite was infected, it spread the infection,

which harmed the network but also started recovering if there was

a regulation provided to the metabolite. Also, there was a chance

that this cured metabolite was again susceptible to the infection

spread.

We implemented this method in four metabolic pathways for H.

sapiens involved in Type I Diabetes mellitus, namely, glutamate

metabolism, b-alanine metabolism, taurine and hypotaurine

metabolism and butanoate metabolism. The reason for selecting

these metabolic pathways was due to the involvement of two

important genes GAD and INS that have major role in Type I

Diabetes mellitus. The number of start site of infection spread for

these four metabolic pathways were found to be 10, namely, L-

glutamate, 4-aminobutanoate (for glutamate metabolism), b-

alanine, L-aspartate (for b-alanine metabolism), 3-sulfino-L-

alanine, taurine, L-cysteate, hypotaurine (for taurine and hypo-

taurine metabolism), and 4-aminobutanoate, L-glutamate (for

butanoate metabolism). Furthermore, for tracking the path of

infection spread through these infection start sites as well as

identifying their containment strategy, we found the burning

probability and combating probability values as 0.2 and 1 (L-

glutamate), 1 and 1 (4-aminobutanoate), 0.33 and 0.5 (b-alanine),

1 and 1 (L-aspartate), 0.5 and 1 (3-sulfino-L-alanine), 0.5 and 1

(taurine), 1 and 0 (L-cysteate), 0 and 0 (hypotaurine), 1 and 1 (4-

aminobutanoate), 1 and 0 (L-glutamate) respectively. Thus, out of

these 10 probable start site for infection spread L-cysteate,

hypotaurine and L-glutamate have no ability to combat the

infection spread, whereas the other metabolites have the

combating ability ranging from 33% to 100%. These ten probable

infection start sites may be targeted to explore the effects of long-

term infection combat and cure.

For implementing the fire spread, we used strategies, based on

quantitative studies and graphs. The quantitative strategy using

ODEs implements the fire spread using mathematical models and

expressions. For biological validation, we used the sensitivity

analysis for identifying the nature and property of these

metabolites and their role in disease spread. In our model we do

not consider any metabolite to become immunized to the infection

spread and consider them equally susceptible to other infected

metabolites against infection spread. One of the effective

approaches in this case is curing the infected metabolites and

vaccinating the uneffected ones with a probability proportional to

their conductivities, so that a greater proportion of metabolites of

high connectivity are vaccinated than metabolites with low

connectivity. Another strategy is specifically targeting the hub

metabolites by vaccinating all metabolites in the pathway of

connectivity higher than some threshold value. The processes of

infection and curing run for a specific number of iterations,

depending on the number of metabolites in the metabolic

pathway. We have assigned a maximum iteration value of n=2,

where n is the total number of metabolites in the metabolic

pathway. The reason for this threshold is that after the iteration

value is n=2, the results converge and there is no further need to

continue performing further iterations. After the infection is

combated and the number of iterations is complete, the critical

value, signifying the number of metabolites that cannot be cured,

is calculated.

From our analysis, we have also found that in H. sapiens

metabolic pathways under carbohydrate metabolism have a range

of critical values from 1 to 7, under amino acid metabolism from 1

to 35, under lipid metabolism from 1 to 36, under energy

metabolism from 1 to 4 and under metabolism of co-factors and

vitamins from 1 to 8. Furthermore, from this study we want to

mention that critical values ranging from 1–5 is less prone to

infection, 5–10 is more prone to infection, whereas value greater

than 10 are most prone to infection. We would also like to make a

note on some recent advances in systems biology approaches, such

as flux balance analysis, which have been successful in idenitfying

optimal metabolic pathways and extreme pathways. But, the

volume of work that have been done in correlating sensitivities,

both local and global, with FBA, as well as judging the system

states of a network is less. Furthermore, less work have been

performed in areas of detecting and quantifying ‘feedback’ using

certain conventional techniques like FBA. Thus, novelty of our

approach lies in that we have correlated system state identification,

feedback detection, as well as sensitivities studies in diseased state

pathways. This investigation can be taken one step further by

analyzing the density factor as well as applying time constraints to

the infection caused in the metabolic networks. Finally, we can

even extend this method to analyze the patterns associated with

epidemiological and endemic networks.
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