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Abstract

Rod and cone photoreceptor neurons in the mammalian retina possess specialized cellular architecture and functional
features for converting light to a neuronal signal. Establishing and maintaining these characteristics requires appropriate
expression of a specific set of genes, which is tightly regulated by a network of photoreceptor transcription factors centered
on the cone-rod homeobox protein CRX. CRX recruits transcription coactivators p300 and CBP to acetylate promoter-bound
histones and activate transcription of target genes. To further elucidate the role of these two coactivators, we conditionally
knocked out Ep300 and/or CrebBP in differentiating rods or cones, using opsin-driven Cre recombinase. Knockout of either
factor alone exerted minimal effects, but loss of both factors severely disrupted target cell morphology and function: the
unique nuclear chromatin organization seen in mouse rods was reversed, accompanied by redistribution of nuclear
territories associated with repressive and active histone marks. Transcription of many genes including CRX targets was
severely impaired, correlating with reduced histone H3/H4 acetylation (the products of p300/CBP) on target gene
promoters. Interestingly, the presence of a single wild-type allele of either coactivator prevented many of these defects,
with Ep300 more effective than Cbp. These results suggest that p300 and CBP play essential roles in maintaining
photoreceptor-specific structure, function and gene expression.
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Introduction

The mammalian retina consists of three layers of neurons

specialized for light detection and initial processing of visual signals

[1][2]. Photoreceptors are located in the outer layer, and

constitute 70% of retinal cells. These cells, which convert light

to a neuronal signal, contain specific cellular structures including

apical membrane specializations in the ‘‘outer segment’’ that

capture light photons, ribbon-type synaptic specializations for

transmitting neural signals to interneurons in the inner retinal

layers, and a unique nuclear chromatin organization to mediate

cell-type-specific gene expression while maximizing the amount of

light reaching the outer segments. The vast majority of photore-

ceptors in most mammalian retinas are rods, which are exquisitely

sensitive to low levels of light and mediate night vision. 3–5% of

photoreceptors in mouse and human retinas are cones, which

mediate color vision in daylight. Cones can be further classified on

the basis of the wavelength sensitivity of the light-capturing visual

pigment opsin they contain. To establish and maintain their

structure and function, each photoreceptor subtype expresses a set

of specific genes including the characteristic opsin, under the tight

regulation of a network of photoreceptor-specific transcription

factors [3][4]. The central player, the cone-rod homeobox

transcription factor CRX, interacts with photoreceptor subtype-

specific transcription factors such as NRL and NR2E3 in rods or

TRb2 and RXRc in cones, to activate or suppress expression of

rod vs. cone gene sets. We demonstrated previously that CRX

activates transcription by interacting with coactivators or coacti-

vator complexes including CBP, P300, and GCN5 (KAT2A), a

component of the STAGA chromatin remodeling complex [5][8].

All of these coactivators contain intrinsic lysine acetyltransferase

(KAT) activity, catalyzing acetylation of core histone tails and

other proteins.

Acetylated histones are active marks for transcription, often

associated with ‘‘open’’ chromatin that is accessible to the

transcription machinery and transcription regulators

[9][10][11][12]. Histone acetylation is controlled by two classes

of enzymes with opposing functions: Histone lysine (K) acetyl-

transferases (HATs) add the acetyl groups to specific lysine
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residues in the tails of core histones, and histone deacetylases

(HDACs) remove them.

In mammals, there are four major families of HATs, whose

members show high degrees of homology and, in some cases,

functional redundancy (reviewed in [13][14]). This is true for the

well-studied KAT3 family members, ‘‘CREB Binding Protein’’

(CREBBP, CBP or KAT3A) [6] and the closely related

‘‘Adenovirus E1A-associated 300-kD Protein’’ (p300 or KAT3B)

[7], which catalyze acetylation of all core histones, particularly H3

and H4 [15][16][17][18]. In addition, CBP and p300 act as

transcription coactivators by interacting with a variety of specific

transcription factors and co-regulators [13][19] to regulate the

expression of numerous genes important in embryonic develop-

ment [20], cell proliferation and differentiation [21][22], neuronal

function [23][24][25][26][27], energy homeostasis

[20][28][29][30], and tumor suppression [31][32]. In humans,

mutations in CBP or EP300 are associated with Rubinstein-Taybi

syndrome (RSTS) (http://omim.org/entry/180849, http://omim.

org/entry/613684), an autosomal-dominant disorder character-

ized by mental and growth retardation and skeletal abnormalities

[33][34]. Molecular mechanism studies have found that RSTS-

causing mutations affect acetyltransferase catalytic activity and

coactivator function [35][36]. The importance of HAT catalytic

activity was further supported by the finding that p300/CBP-

mediated acetylation of histone H3 lysine 18/27 recruits RNA

polymerase II to target gene promoters in response to ligand-

induced nuclear receptor activation [11]. In mice, p300 and CBP

are required for embryonic development and viability. Conven-

tional knockout of either factor in mice is early embryonic lethal

[37][38], complicating investigation of the roles of p300/CBP in

fetal development of specific tissues such as the nervous system.

This limitation has been circumvented by Cre-loxP-mediated

conditional knockout strategies, leading to the findings that p300

and CBP play redundant and distinct functions in thymocyte and

T-cell development [19][39], and that p300/CBP in the brain is

required for formation of long-term memories [26]. However, the

role of p300/CBP in the retina (a part of the central nervous

system) is not clear, although retinal dystrophy and glaucoma are

commonly seen in RSTS patients [40].

Results of several studies suggest that p300/CBP HATs may

play important roles in retinal photoreceptor development and

maintenance. First, both coactivators are expressed by developing

and mature photoreceptors, and physically interact with the key

photoreceptor transcription factor CRX [5][41][42]. Second,

during photoreceptor development, both factors are found on the

promoter/enhancer regions of CRX-regulated photoreceptor

genes after CRX binds. These events are followed by acetylation

of histone H3 and H4 on these promoters, recruitment of

additional photoreceptor-specific transcription factors, and tran-

scriptional activation of the associated genes [5]. Increases in H3

acetylation have also been associated with activation by NRL [43].

Third, in the absence of CRX (Crx2/2 mouse retina), recruitment

of CBP to target gene promoters and acetylated histone H3/H4

levels are reduced, correlating with decreased transcription [5]. To

examine the role of p300/CBP in CRX-regulated photoreceptor

gene expression, we conditionally knocked out Ep300 and/or Cbp in

rods or cones of the mouse retina using either a rhodopsin or cone

opsin promoter to drive Cre recombinase expression. Here we report

that loss of both p300 and CBP, but neither alone, causes

detrimental defects in rod/cone structure and function, mainte-

nance of photoreceptor gene expression and cell identity. These

defects are accompanied by drastically reduced acetylation of

histone H3/H4 on photoreceptor genes, and loss of the nuclear

chromatin organization pattern characteristic of mouse photore-

ceptors [44].

Results

Generation of photoreceptor-specific Ep300/Cbp
conditional knockout mice
The desired conditional knockout mice listed in Table 1 were

generated by crossing mice carrying floxed alleles of either Ep300

[19] or Cbp [39]. Each floxed allele contains two LoxP sites flanking

a critical exon, and has been shown to result in depletion of the

gene product in cells expressing Cre recombinase. To express Cre in

either rods or cones, we obtained two Cre transgenic mouse lines,

rhodopsin promoter driven-Cre (Rho-iCre or ‘‘RCre’’, [45]) and human

red-green cone opsin promoter driven-Cre (HRGP-Cre or ‘‘CCre’’, [46]).

Cre expression was confirmed by crossing these lines to ROSA-

mTmG Cre reporter mice, which express membrane-bound green

fluorescent protein (GFP) in the presence of CRE activity [47]. As

expected, the ‘‘RCre; mTmG’’mice express Cre in differentiated rods

beginning at postnatal day 5 (P5), peaking at P12 and continuing

through adulthood (Supplemental Fig. S1A) without affecting

retinal morphology or function up to 30 weeks of age (data not

shown). In contrast, the ‘‘CCre; mTmG’’ mice show typical cone

patterns of Cre expression, starting in a few cells in the ONL at P5,

peaking around P12, and continuing through adult ages, with

CRE activity restricted to cells in the outer margin of the outer

nuclear layer (ONL), where cone cell bodies reside (Supplemental

Fig. S1B). The similar expression pattern in dorsal vs. ventral

regions suggests that CCre-driven Cre is expressed in both M-cones

(enriched in the dorsal retina) and S-cones (enriched in the ventral

retina) (reviewed in [3]). CCre mice also have normal retinal

morphology and function. RCre and CCre lines were then mated

with mice carrying Ep300 flox, Cbp flox, or both, to generate mice

with the various conditional knockout (CKO) genotypes listed in

Table 1. All CKO mice are viable and healthy without apparent

abnormalities. CRE-mediated loss of p300 or CBP in photore-

ceptors was confirmed by immunostaining using anti-p300 (Fig. 1I-

L) or anti-CBP (Supplemental Fig. S1C) antibodies. Thus, we have

successfully created conditional knockouts of Ep300, Cbp or both in

either rods or cones.

Loss of p300 and CBP in rods disrupts retinal structure
and function
Hematoxylin-and-eosin (H&E) stained retina sections from four-

week-old mice with rod-specific knockout of Ep300 and/or Cbp

(see Table 1) were examined for morphological defects. Compared

to the Cre-negative (‘‘Cre-neg’’, Fig. 1A) and Rho-iCre (‘‘RCre+’’,
Fig. 1B) controls, single conditional knockout of either Ep300

(‘‘p300KO’’, Fig. 1C) or Cbp (‘‘CbpKO’’, Fig. 1D) in rods has little

effect on retinal morphology. No apparent morphological changes

were detected in these retinas up to 30 weeks of age (data not

shown). In contrast, knocking out both Ep300 and Cbp together

(‘‘R-DCKO’’, Fig. 1G&H) severely disrupts lamination of the outer

(ONL) and inner (INL) nuclear layers. The ONL forms whorls and

rosettes, the cells fail to develop outer segments (OS), and the outer

plexiform layer (OPL), where ONL and INL neurons form

synaptic connections, is irregular and thin. INL cells positive for

the rod on-bipolar cell marker Protein Kinase Ca (PKCa Fig. 1H)

that also express P300 (Fig. 1K&L) extend into the ONL in the

spaces between the rosettes. The total width of this disorganized

retina is about 30–50% greater than control retina sections (data

not shown). Cones in R-DCKO retinas are scattered throughout the

ONL, often in the middle of rosettes of p300/CBP-negative cells

(Fig. 1L, red cells), instead of evenly distributed in the outer part of

p300/Cbp Knockout in Photoreceptors
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Figure 1. Knockout of both Ep300 and Cbp in rods disrupts photoreceptor architecture and function. A–G. Cross-sections of 4-week-old
retinas of the indicated genotypes (see Table 1), stained with hematoxylin and eosin (H&E). H. Section from the same R-DCKO eye as in panel G,
fluorescently labeled with anti-PKCa (green, for bipolar cells) and DAPI (red), to show the boundary between the outer and inner nuclear layers. Scale
bar = 50 mm for all 8 panels. I–K. Immunofluorescent staining for p300 protein verified expression in all nuclei in Cre neg controls (I). Ep300
expression is lost in the outer nuclear layer (ONL) of p300KO (J) and R-DCKO (K) retinas. L. R-DCKO section stained for p300 (green) and cone arrestin
(CARR, red), showing that the few remaining p300-positive cells in the outer retina are cones. Scale bar = 20 mm for all 4 panels. OS, outer segments;
ONL, outer nuclear layer;OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GC, ganglion cell layer.M–O. Amplitudes of
dark-adapted (‘‘Dark’’) and light-adapted (‘‘Light’’) flash electroretinograms (ERG) at 4 weeks of age. Flash intensities (log [CdSec/M2]) are indicated on
the X-axis. Error bars indicate +/2 1SD of the mean amplitude for 6 animals of each genotype tested. Two-way repeated measures ANOVA showed
significant interactions between genotype and log light level at p,0.0001 for dark-adapted a-waves (Panel M), b-waves (Panel N), and light-adapted
b-waves (Panel O). Asterisks (*) indicate values significantly different (p,0.001) from Cre negative controls in post-hoc tests.
doi:10.1371/journal.pone.0069721.g001
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the ONL as in normal retinas (Supplemental Fig. S2A&B).

Interestingly, the defects seen in R-DCKO retinas are mostly

prevented in compound heterozygous mice carrying one wild-type

(WT) allele of either Ep300 (‘‘p300 CH’’, Fig. 1E) or Cbp (‘‘Cbp

CH’’, Fig. 1F), suggesting that p300 and CBP play redundant but

critical roles in developing and maintaining appropriate retina

architecture. However, in contrast to the essentially normal

appearance of the p300 CH retina, Cbp CH retinas show slight

irregularities in the ONL and OPL within 1000 mm of the optic

nerve head (Fig. 1F).

Electroretinogram (ERG) testing at 4 weeks of age revealed

functional deficits consistent with the morphological changes.

Single conditional knockout mice had essentially normal ERGs

(Fig. 1M, N&O, top graphs, green & blue vs. black lines). R-DCKO

mice had very little rod-driven response (Fig. 1M&N, bottom

graphs, red lines), and cone ERG responses were significantly

smaller than those of Cre-negative littermates (Fig. 1O, bottom

graph, red vs. black line). Compound heterozygote mice with one

WT Ep300 allele (p300 CH) showed essentially normal rod and

cone function (Fig. 1M, N&O, bottom panels, orange line). In

contrast, mice with a single WT copy of Cbp (Cbp CH) showed

slight but significant decreases in rod-driven a-wave and b-wave

amplitudes (Fig. 1M&N, bottom panels, pink line). Together, the

ERG results are consistent with the morphological findings, and

suggest that p300 and CBP play mostly overlapping roles in retinal

structure and function.

To determine if the structural and functional defects in Ep300/

Cbp conditional knockout mice progress over time, retinal

morphology and function were reassessed at 8 and 12 weeks of

age. Fig. 2 shows that, while R-DCKO mice show no additional

changes in retina morphology (Fig. 2D&K vs. Fig. 1G) or rod-

driven ERG function (Fig. 2E, F, L&M, red lines, vs Fig. 1M&N,

red lines) at either age, cone ERG responses worsened (Fig. 2G&N

vs Fig. 1O, red lines), consistent with progressive loss of cones with

age (data not shown). The structural and functional defects in R-

DCKO retinas persist throughout the life of the animals (Fig. 2 and

additional data not shown). Interestingly, ONL morphology of the

compound heterozygous Cbp CH mice improved with age: the

ONL irregularities near the optic nerve head (Fig. 1F & Fig. 2C)

completely resolved by 12 weeks of age (Fig. 2J). However, the

rod-driven ERG remained defective in Cbp CH mice (Fig. 2F&M,

pink lines). The p300 CH mice also developed decreased rod ERG

responses (Fig. 2F&M, orange lines) relative to Cre-negative

littermates (black lines) as they aged, despite the normal

appearance of their retinas at all ages, and normal rod ERGs at

1 month of age (Fig. 1N). These results suggest that a single copy

of either Ep300 or Cbp is insufficient to maintain normal retinal

function throughout life.

To determine if the onset of the morphological disruption in R-

DCKO and Cbp CH mice correlated with the loss of p300/CBP

expression, retinas were examined histologically at P7, P10, P14

and P21 (Fig. 3A). Control and R-DCKO retinas were also

examined for p300 immunoreactivity (Fig. 3B). At P7, before

morphologic abnormalities appear in R-DCKO retinas, a few ONL

cells show decreased p300 staining. At P10, as the number of

p300-negative cells increases, irregularities in ONL structure begin

to appear in R-DCKO but not compound heterozygote retinas. By

P14, whorls and rosettes are seen throughout the R-DCKO ONL,

and most cells in this layer have lost p300 (and CBP, data not

shown) immunoreactivity. By P21, the only remaining p300-

positive cells in the outer retina of R-DCKO also react with

antibodies to cone proteins (see Fig. 1L and Supplemental

Fig. S2A&B), indicating that they are displaced cone photorecep-

tors. Thus, the severity and timing of phenotype development

directly correlate with the loss of expression of Ep300/Cbp in the

conditional knockout retinas. Similar temporal development of the

Cbp CH phenotype was also detected: Irregularities are first

apparent at P14 (Fig. 3A) and persist through 8 weeks of age

(Fig. 2C), but resolve by 12 weeks (Fig. 2J).

To determine whether cell death contributes to the structural

and functional defects, we stained for cells containing fragmented

DNA using the ‘‘Terminal Deoxynucleotidyl Transferase dUTP

Nick End Labeling’’ (TUNEL) assay [48]. When TUNEL-positive

cells in retina sections from P10, P14, and P32 animals were

counted (Fig. 3C), the only significant difference from age-

matched Cre-negative control eyes was seen in Cbp CH eyes at P32

(pink bar indicated by arrow in Fig. 3C). As shown in Fig. 3D,

TUNEL-positive cells in these eyes were frequently found near the

abnormal ONL folds, suggesting that these morphologic abnor-

malities may be resolved through cell death, as has been reported

in the Nr2e3-null mutant mouse rd7 [49]. R-DCKO retinas showed

very few TUNEL-positive cells at this age (Fig. 3E). Immuno-

staining for histone H2A.X (Supplemental Fig. S3A), which

recognizes double-stranded DNA breaks, supported this finding.

Cell proliferation in the retina is mostly complete by the time Rho-

iCre expression begins at P5, but re-entry of CKO cells into the cell

cycle could contribute to the abnormal morphology of R-DCKO

retinas. To investigate whether this occurs, P7 – P14 retinal

sections were stained for proliferation markers Ki67 and

phosphorylated histone H3 (Supplemental Fig. S3B shows P14,

Supplemental Fig. S3C shows P10). Very few cells were positive

for either marker in sections from any genotype at any of these

ages, and no significant differences were found between Cre-negative

and R-DCKO sections. R-DCKO outer retina cells also did not show

increases in markers associated with other mature retina cell types

(Supplemental Fig. S2) or retinal progenitors (Supplemental

Fig. S4). These results suggest that conditional knockout of

p300/CBP in differentiated rods does not increase either cell

death or proliferation, or lead to a change in cell fate.

Loss of p300 and CBP in rods alters the characteristic
nuclear chromatin organization
Rod photoreceptors in the mouse retina have a unique

chromatin organization: After birth but before the eyes open,

dense, gene-poor heterochromatin usually found at the nuclear

periphery in other cell types is positioned at the center of rod cell

Table 1. Genotypes of mice used in this study.

Cre Flox Genotype Designated

Rho-iCre+ [45] Ep300wt; Cbpwt RCre+

Rho-iCre+ Ep300wt; Cbpf/f [39] CbpKO

Rho-iCre+ Ep300f/f [19]; Cbpwt p300KO

- Ep300f/f; Cbpf/f Cre neg

Rho-iCre+ Ep300f/f; Cbp+/f Cbp CH

Rho-iCre+ Ep300+/f; Cbpf/f P300 CH

Rho-iCre+ Ep300f/f; Cbpf/f R-DCKO

HRGP-Cre+ [46] Ep300f/f; Cbp+/f C-Cbp CH

HRGP-Cre+ Ep300+/f; Cbpf/f C-p300 CH

HRGP-Cre+ Ep300f/f; Cbpf/f C-DCKO

Rho-iCre+ tm4(ACTB-tdTomato,-EGFP) [47] R-mT/mG

HRGP-Cre+ tm4(ACTB-tdTomato,-EGFP) C-mT/mG

doi:10.1371/journal.pone.0069721.t001
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nuclei, surrounded by a peripheral ring of euchromatin (Fig. 4A,

‘‘Cre neg’’) enriched for transcriptionally active DNA [44][50]. In

R-DCKO mice, the rods begin to develop this unique chromatin

organization around P10, but the process reverses after P12 (data

not shown). Most cells in the adult R-DCKO ONL show dense

heterochromatin in a thin ring at the nuclear periphery and one

or two small condensations in the inner nucleus (Fig. 4A, ‘‘R-

DCKO’’), a chromatin distribution pattern more similar to inner

nuclear layer cells than to wild-type rods. Retinas from both

compound heterozygote genotypes also show increases in

electron-lucent euchromatin, but retain large dense heterochro-

matin domains in the center of their nuclei (Fig. 4A, ‘‘p300 CH’’

Figure 2. Compound heterozygotes show age-dependent phenotypes. A–D. Cross-sections of 8-week-old retinas stained with H&E show
disrupted morphology similar to that seen at 4 weeks in Cbp CH and R-DCKO mice. Scale bar = 50 mm. E–G. ERG testing shows persistence of the
functional impairment in R-DCKO retinas (panels F and G). Dark-adapted b-wave deficits in some p300 CH mice tested at this time are reflected in the
slightly decreased average and broad error bars for this genotype (Panel F orange line). Two-way repeated measures ANOVA indicated significance at
p,0.0001 for dark-adapted a-waves (Panel E), b-waves (Panel F), and light-adapted b-waves (Panel G). H–K. Cross-sections of 12-week-old retinas
stained with H&E. Morphologic abnormalities in Cbp CH retinas (panel J) have resolved, although whorls and rosettes are still seen in R-DCKO retinas
(panel K). Scale bar = 50 mm. L–N. ERG testing at 12 weeks revealed decreases in function in both Cbp CH and P300 CH, and R-DCKO retinas have lost
cone responses in addition to rod function. Two-way repeated measures ANOVA indicated significance at p,0.0001 for dark-adapted a-waves (Panel
L), b-waves (Panel M), and light-adapted b-waves (Panel N). Asterisks (*) indicate p,0.001 vs. Cre negative controls in post-hoc tests.
doi:10.1371/journal.pone.0069721.g002
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and ‘‘Cbp CH’’). Quantification of the percentage of total nuclear

area taken up by heterochromatin (Fig. 4B) shows that

heterochromatin is decreased relative to euchromatin in these

CKO retinas. These results suggest that Ep300/Cbp are involved

in maintaining the characteristic nuclear chromatin organization

in mouse rods.

Acetylated and methylated histone marks associated with gene

activation and repression define concentric chromatin domains in

wild-type mouse rod photoreceptor nuclei [49]. ‘‘Repressive’’

marks (trimethylation of H3K27, H3K9 and H4K20) are typically

localized to heterochromatin in the dense nuclear core. ‘‘Activa-

tion’’ marks associated with euchromatin (H3 and H4 acetylation

and H3K4 tri-methylation) are localized to the nuclear periphery,

where transcription takes place. We therefore compared the

distribution of two repressive histone marks: H3K9me3 (Fig. 4C)

and H3K27me3 (Fig. 4D), and two activation marks: AcH3

(Fig. 4E) and AcH4 (Fig. 4F), in Cre-negative and R-DCKO retinas.

The two repressive marks are redistributed in R-DCKO rod nuclei:

unlike the large area of intense staining in the center of control rod

nuclei, R-DCKO retinas show smaller, fragmented areas of intense

reactivity with a weak ring of stain at the nuclear periphery

(Fig. 4C&D). The two activation marks, which are found in a ring

near the nuclear periphery in control rods, form scattered speckles

in the middle of R-DCKO ONL cell nuclei (Fig. 4E&F). Thus, the

nuclear organization of histone-marked territories is altered in R-

DCKO rods, consistent with the heterochromatin and euchromatin

redistribution seen by ultrastructural analysis.

To determine whether this altered nuclear organization reflects

changes in global levels of acetylated histone H3 and H4, the

products of p300/CBP and other acetyltransferases, quantitative

Western blots were performed using the Li-Cor Odyssey Infrared

Imager to compare AcH3 and AcH4 levels of R-DCKO vs. control

Figure 3. Development of conditional knockout phenotypes. A. H&E-stained sagittal sections of retinas from mice representing each
indicated genotype (see Table 1), at the indicated ages. Irregularities appear in the ONL of R-DCKO mice at P10, and in Cbp CH retinas at P14. Scale
bar = 50 mm. B. Immunofluorescence staining for p300 (green) shows progressive loss of p300 from ONL cells of R-DCKO retinas between P7 and P14.
Scale bar = 25 mm. C. TUNEL staining for cell death was performed on three retinas of each genotype at P10, P14, and P32. TUNEL positive cells were
only increased relative to age-matched Cre negative controls in Cbp CH retinas at P32 (arrow). D. P32 Cbp CH retina showing TUNEL positive cells
(black arrowheads). These are frequently seen near ONL irregularities. OS, outer segments. Scale bar = 50 mm. E. P32 R-DCKO retina containing one
TUNEL+ cell (black arrowhead). R-DCKO retinas do not show increased cell death relative to Cre-negative littermates at any age examined.
doi:10.1371/journal.pone.0069721.g003
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retinas (Fig. 4G&H). No significant changes in total retinal AcH3

and AcH4 levels were detected in 4-week old R-DCKO vs. control

retinas, as measured by fluorescent band intensities normalized to

total histone H2B or H3 bands (Fig. 4H). Similar results were

obtained at P14, P20 and 6 weeks (data not shown). Since rods

constitute 70% of cells in the mouse retina, these results, together

with the similar overall intensity of AcH3/AcH4 immunostaining

of R-DCKO vs control retinas, suggest that p300/CBP depletion

does not alter total levels of acetylated histone H3 and H4,

although their distribution within the nucleus is affected.

Figure 4. Loss of p300/CBP leads to chromatin decondensation and changes in distribution of histone marks in R-DCKO nuclei. A.
Electron micrographs of nuclei in the ONL of P22 retinas. Compared to Cre neg control littermates, compound heterozygotes (p300 CH and Cbp CH)
show slight increases in euchromatin (light areas within nuclei). In R-DCKO nuclei areas of euchromatin are greatly increased, and electron-dense
heterochromatin appears reduced. B. Heterochromatin was quantified as a percentage of the total nuclear area in 50 nuclei from 10 micrographs for
each genotype. Error bars = 1 SD. Differences from Cre neg values were significant at p,0.0001. C & D. Comparison of immunoreactivity patterns for
repressive histone marks H3K9me3 (green in panel C, white in insets) and H3K27me3 (green in panel D, white in insets) in control (left image) and R-
DCKO (right image) retinas confirm loss of the characteristic rod chromatin condensation pattern in R-DCKO outer retina cells. Anti-PKC-alpha (red)
marks bipolar cells. E & F. Comparison of immunoreactivity patterns for acetylated histone H3 (AcH3, green in panel D) and H4 (AcH4, green in panel
E) reveals the redistribution of these activation marks in R-DCKO cells, corresponding to loss of the characteristic peripheral rod euchromatin
distribution pattern. DNA is counterstained with Draq-5 (red). Scale bars: cross-sections = 20 mm, insets = 10 mm. G. Western blots of acid-extracted
retinal histones from 15-week-old Cre-negative (1) or R-DCKO (2) retinas. CB, Coomassie blue stained gel. AcH3, blot stained for acetylated histone H3;
AcH4, blot stained for acetylated histone H4. H. Quantification of band fluorescence intensities for AcH3 levels relative to total H2B levels, and AcH4
levels relative to total H3 levels at P20 did not show significant differences between Cre neg and R-DCKO samples.
doi:10.1371/journal.pone.0069721.g004
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Loss of p300 and CBP in rods alters gene transcription
and promoter-bound acetylated H3/H4
To investigate global gene expression changes underlying the

morphological and functional defects in R-DCKO eyes, we

performed microarray analysis on P14 whole retina samples.

P14 was chosen because 1) CRE-mediated p300/CBP depletion is

complete at this age (Fig. 3B); 2) previous findings showed that

CRX-dependent p300/CBP recruitment to CRX target genes

reaches a peak at this age [5]; and 3) secondary effects on bipolar,

horizontal, and Mueller cell gene expression should be minimal

this early. Three samples representing each genotype were tested

in triplicate on Illumina BeadArray Mouse WG-6 V2 chips. Each

microarray sample contained pooled RNA from a male and

female littermate of the same genotype, to control for any sex-

related differences. The raw datasets are available through the

NCBI GEO website (http://www.ncbi.nlm.nih.gov/geo/, acces-

sion number GSE47699). Results were examined using Illumina

GenomeStudio V1.6 software, and genes with differential scores

greater than 13.0 (P,0.05) vs the Cre-negative control group were

considered differentially expressed. Dramatic changes in expres-

sion were seen in the R-DCKO retinas: 520 genes were

differentially down-regulated (Supplemental Table S2) and 579

were up-regulated (Supplemental Table S3). The wide variety of

functions affected (Fig. 5A) indicates that p300 and CBP are

involved in expression of many genes required for general cell

maintenance as well as photoreceptor-specific structures and

functions.

Many of the photoreceptor genes down-regulated in R-DCKO

retinas appear in published lists of retina disease genes (https://

sph.uth.edu/RetNet/home.htm), and genes affected in retinas of

mice with knockout of the earliest expressed photoreceptor

regulatory gene, Crx [51][52][53]. Figure 5B shows a Venn

diagram summarizing the overlap between these gene sets and the

62 photoreceptor-related genes decreased in R-DCKO retinas.

Ep300/Cbp conditional knockout decreased expression of 45 genes

associated with retinal diseases (Supplemental Table S4). Interest-

ingly, three additional retinal disease genes expressed in rods were

up-regulated in R-DCKO retinas: ‘‘Topoisomerase I Binding, Arginine/

serine-rich’’ (Topors, 147% of control levels), ‘‘Transmembrane Protein

126A’’ (Tmem126a, 160%), and ‘‘Retinitis Pigmentosa 9’’ (Rp9, 232%).

Among the genes down-regulated in R-DCKO retinas, 101 were

also reported decreased in Crx2/2 retinas in other studies

[51][52][53] (Supplemental Table S5). These genes are likely

components of the CRX/NRL pathway in rods, consistent with

p300/CBP acting as a coactivator. We were not surprised that

cone-specific CRX downstream targets, such as cone opsins,

transducin (Gnat2) and phosphodiesterase (Pde6c), were not affected in

Rho-iCre conditional knockout mice, since Crx functions in both

rods and cones but Rho-iCre only drives Ep300/Cbp conditional

knockout in rods.

Quantitative RT-PCR (qRT-PCR) and immunohistochemistry

(IHC) were used to confirm decreases in expression of a subset of

rod photoreceptor genes (Fig. 5C–F and Supplemental Fig. S5A).

AcH3/AcH4 levels on the promoter regions of these genes were

also investigated by quantitative chromatin immunoprecipitation

(qChIP) (Fig. 5C–F and Supplemental Fig. S5B). Importantly, in

R-DCKO retinas, both microarray and qRT-PCR assays revealed

drastically reduced expression of Nrl, the rod-specific transcription

factor essential for rod identity (23% and 12% of control

expression levels, respectively) and Crx, the pan rod/cone

transcription factor (31% and 29% of controls) (Fig. 5C&D, red

bars in qRT-PCR graphs, and Supplemental Tables S2, S4 and

S5). IHC showed that the defect in Crx expression is localized to

p300/CBP-negative cells (Fig. 5D far left panel and data not

shown), indicating a cell-autonomous effect of Ep300/Cbp null

mutations on Crx transcription in target cells. In R-DCKO retinas

transcription of Rhodopsin (Rho, Fig. 5E, red bar in center graph)

and Rod transducin (Gnat1, Fig. 5F) was abolished (6% and 4% of

control levels), consistent with the microarray results (8% and 15%

of control levels). Immunostaining also confirmed little expression

of RHO or rod transducin in the R-DCKO outer retina (Fig. 5E&F,

left panels). Marked decreases in transcription of other rod genes

Pde6b (12% by qRT-PCR vs 14% by microarray), and Rbp3 (31%

by qRT-PCR vs 25% by microarray) were also confirmed

(Supplemental Fig. S5A, red bars). Cone opsin (Opn1MW and

Opn1SW) transcription was not affected (Supplemental Fig. S5A).

In contrast to the rod-to-cone fate switch seen in Nrl2/2 retinas

[54][55], p300/CBP-negative cells in R-DCKO retinas do not

express cone markers, including cone arrestin (Fig. 1L) or cone

opsins (Supplemental Fig. S2A&B).

Chromatin immunoprecipitation assays revealed that knockout

of both Ep300 and Cbp in rods completely removed AcH3 and

AcH4 marks from the promoter of Nrl, Crx, Rho, Gnat1 (Fig. 5C–F,

right graphs, red bars), and Pde6b (Fig. S5C). These results are

consistent with the lack of expression of these genes. AcH3 and

AcH4 marks were moderately decreased on the cone opsin gene

promoters in R-DCKO retina (Fig. S5B&C) despite the normal

expression levels of these genes. The Rbp3 promoter, which is

expressed in both rods and cones, showed only slightly decreased

levels of acetylated histones, comparable to levels on the promoter

of the bipolar cell gene ‘‘Metabotropic glutamate receptor type 6’’ (Grm6,

Fig. S5B), despite the decrease in transcription seen both by

microarray (25% of controls, Supplemental Tables S2, S4, S5) and

qRT-PCR (31% of controls, Supplemental Fig. S5A). These

results suggest that AcH3/AcH4 level changes are gene- and

cell-type specific.

In compound heterozygous mice (Cbp CH or p300 CH), one copy

of either Ep300 or Cbp was sufficient to preserve expression of both

Nrl and Crx transcription factors (Fig. 5C&D, center graphs, pink

and orange bars vs red), consistent with the higher AcH3 and

AcH4 levels seen on the Nrl and Crx promoters in these retinas

(Fig. 5C&D, right graphs, pink and orange bars vs. red).

Expression of rod genes and promoter AcH3/AcH4 levels was

partially restored (Fig. 5C–F and Supplemental Fig. S5), with

Ep300 (orange bars) more effective than Cbp (pink bars), consistent

with the morphological and functional data. As expected, cone

gene transcription was not affected in compound heterozygous

mice (Supplemental Fig. S5A), although Opn1MW promoter

AcH3/AcH4 levels were still moderately decreased (Supplemental

Fig. S5B, orange and pink bars vs. blue). Taken together, the

results of all expression assays suggest that p300/CBP keep

chromatin containing rod transcription factors and structural

genes in a transcriptionally active configuration (marked by

AcH3/AcH4), to maintain rod cells in their terminally differen-

tiated state.

Loss of p300/CBP in cones causes defects in cone gene
expression, structure and function
The role of p300 and CBP in differentiated cones was examined

using the cone-specific Cre line HRGP-Cre (CCre). Unlike knockout

in rods, knockout of both Ep300 and Cbp in cones (C-DCKO) did

not lead to gross abnormalities in retinal morphology (Fig. 6D vs.

6A). However, the cone nuclei appeared enlarged and abnormally

shaped (arrowheads and insets in Fig. 6D), and occasional similar

cells are seen in the inner ONL or outer plexiform layer. These

abnormal cones were not seen in the retinas of compound

heterozygous mice carrying one normal allele of either Ep300

(Fig. 6B ‘‘C-p300 CH’’) or Cbp (Fig. 6C, ‘‘C-Cbp CH’’). Further-
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more, the cones in the double knockout retina showed defective

outer segments marked by peanut agglutinin (Fig. 6G). The

expression of the cone markers cone arrestin (CARR, Fig. 6E), S-

opsin (Fig. 6F), and cone transducin-alpha (Fig. 6H) was markedly

decreased. Consistent with these morphological and gene expres-

sion defects, C-DCKO mice completely lack cone ERG responses

(Fig. 6K ‘‘light b-waves’’, red vs. blue lines) without significantly

affecting rod ERG responses (Fig. 6I ‘‘dark a-waves’’ graphs). The

decrease in dark-adapted b-waves at high stimulus intensities

(Fig. 6J) provides further evidence of a cone functional defect, since

cones contribute to dark-adapted ERG responses to bright flashes.

This cone ERG defect was less pronounced in mice with one

normal copy of either Ep300 (Fig. 6K, orange line) or Cbp (Fig. 6K,

pink line). Thus, p300 and CBP also play a redundant role in

maintaining cone gene expression, structure and function.

Discussion

p300 and CBP play overlapping and distinct roles in
establishing photoreceptor structure and function and
maintaining their cell identity
During postnatal mouse retinal development between P10 and

P21, post-mitotic opsin-positive photoreceptors undergo terminal

differentiation and maturation. At the cellular level, they elaborate

outer segments containing the phototransduction machinery, and

make synaptic connections to inner neurons. At the molecular

level, expression of many photoreceptor genes increases to adult

levels during this time [5]. All these terminal differentiation

processes depend on continuing expression of Ep300 and/or Cbp.

Although conditional knockout of both genes causes severe defects,

one wild-type allele of either Ep300 or Cbp can mostly prevent

these defects, indicating that p300 and CBP are redundant for this

critical role. These results agree with findings from a study of

postmitotic mouse brain neurons [56], that loss of either p300 or

CBP alone does not affect cell viability or cause severe defects.

However, these investigators found modest memory and tran-

scriptional deficits after brain-specific knockout of either Ep300 or

Cbp, whereas we did not observe any functional, structural and

molecular consequences of knocking out either gene alone in

retinal photoreceptor neurons. This could be due to the late

expression of Opsin-driven Cre in already differentiated photore-

ceptors, which limits our ability to investigate the role of Ep300/

Cbp in early photoreceptor differentiation from postmitotic

precursors. Future studies using an early photoreceptor gene

promoter to drive Cre expression will address whether either p300

or CBP alone is required for early photoreceptor development and

if they play distinct functions in this process. Such studies are

important for understanding the rod/cone dystrophy phenotypes

of Rubinstein-Taybi syndrome (RSTS) [40], a disease associated

with heterozygous CBP [33] or Ep300 mutations [34]. However,

the present study has provided some hints of distinct roles for p300

and CBP in photoreceptor terminal differentiation: Although one

copy of either Ep300 or Cbp essentially prevents the R-DCKO

phenotype, mice expressing a single WT copy of Cbp show slight

defects in rod morphology, function and gene expression,

suggesting that p300 may have functions in photoreceptor

maturation and maintenance that CBP cannot fulfill. In this

regard, a recent study using a glioma-derived cell line [57] showed

that p300 and CBP each binds some unique target gene promoters

in addition to the numerous targets they share. Even when both

factors bind and regulate the same gene in a given cell type, such

as aA-crystallin in newborn mouse lens fibrocytes, they have been

found differentially distributed along the locus [58], suggesting

distinct regulatory mechanisms. Our own studies in Crx2/2 mouse

retina show that Opsin promoter occupancy by CBP, but not p300,

requires Crx [5]. Thus, p300 may have a wider range of CRX-

independent photoreceptor target genes than CBP, supporting

distinct roles for these two coactivators in photoreceptor gene

activation.

Cellular mechanisms underlying the phenotypes of
Ep300/Cbp conditional knockouts

Cell autonomous and non-autonomous effects. The

severely disrupted retinal morphology and photoreceptor function

in rod-specific knockout of CBP/p300 (R-DCKO) suggest the

involvement of both cell autonomous and non-autonomous

mechanisms. The cone dysfunction and gene expression defects

are likely secondary to ONL disorganization. Cone cell death

often occurs in retinas with rod degeneration disorders. It is known

that support provided by RPE and soluble growth factors secreted

by rods play important roles for cone integrity and survival. In R-

DCKO retinas, many cones are displaced in the center of whorls

and rosettes where they are not in contact with the RPE, which

prevents them from getting metabolic support from the RPE. The

p300/CBP-negative ‘‘rods’’ likely fail to express protective growth

factors/cytokines as well as other rod-specific genes. At least one

such factor, rod-derived cone viability factor [59] encoded by the

gene nucleoredoxin-like 2 (Nxnl2) [60], is down-regulated (11% of

control levels) in R-DCKO retinas (Supplemental Tables S2 & S5).

Secondary, cell non-autonomous defects may also account for R-

DCKO’s invasive inner nuclear layer (INL) and thin/irregular outer

plexiform layer (OPL), where synapses between photoreceptors

and inner retina neurons are located. Inner retina abnormalities

and remodeling are often seen in late stages of photoreceptor

degeneration diseases [61], including the Crx2/2 mouse model. In

contrast, the cone-specific knockout C-DCKO essentially shows cell

autonomous defects in cones without affecting rod structure and

function. It remains to be determined whether any changes occur

in inner neurons of the C-DCKO retina.

Cellular basis for whorls and rosettes in R-

DCKO. Abnormal retinal folds are often seen in mouse models

where the rods undergo a cell fate switch to cones (Nrl2/2 or

Nr2e3rd7/rd7) [49][54][62], or which compromise the retinal outer

limiting membrane (OLM), composed of adherens junctions

Figure 5. Expression of photoreceptor genes is decreased in R-DCKO retinas. A. Summarized microarray findings for R-DCKO vs. Cre neg
retinas. Each gene was categorized by the cell process in which it functioned, and results for each category are represented as a percentage of all the
down- or up-regulated genes (see Supplemental Tables 2 & 3 for details). B. Schematic distribution of the 62 down-regulated photoreceptor or
phototransduction-related genes in R-DCKOmicroarrays (red), compared with the 247 retinal disease loci listed in RetNet (https://sph.uth.edu/RetNet/
home.htm; green) and a list of 230 genes down-regulated in Crx2/2 retinas compiled from published sources [51–53]. Numbers in overlapping areas
indicate the numbers of genes affected in both/all three conditions. All overlapping genes are listed in Supplementary Tables S4 and S5. C–F.
Expression of the indicated rod gene (C. Nrl; D. Crx; E. Rhodopsin (Rho); F. Rod Transducin (Gnat1)) was assessed by quantitative RT-PCR (qRT-
PCR) at P14, and is expressed as percent of the level of Cre-negative littermate controls (% Cre neg). Protein localization was verified by
immunohistochemistry (IHC) at P30. Scale bar = 20 mm for all images. Levels of acetylated histone H3 (AcH3) or H4 (AcH4) on the respective
promoter was determined by quantitative chromatin immunoprecipitation (qChIP) at P14, and is expressed as the value from the
immunoprecipitated sample divided by the value from the untreated ‘‘input’’ sample, multiplied by 100 (‘‘IP/input’’).
doi:10.1371/journal.pone.0069721.g005
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between photoreceptors and Müller glia (the naturally occurring

Crumbs 1 mutation Crb1rd8/rd8, or knockout of the LIM homeobox

protein Lhx2) [63][64]. The severe retinal ‘‘whorls and rosettes’’

phenotype seen in R-DCKO is likely contributed by both

mechanisms: 1) Nrl expression is decreased in R-DCKO rods,

leading to the loss of rod identity and increase in nuclear volume;

2) OLM abnormalities, which could be caused by defective

adherens junctions or changes in cell polarity. Microarray showed

that expression of both ‘‘Crumbs 1’’ (Crb1) and an associated

protein ‘‘membrane protein, palmitoylated 4’’ (Mpp4) [65] are decreased

(53% and 14% of controls, respectively). The above two

mechanisms are not mutually exclusive, as a recent study has

shown that OLM defects are associated with rosette development

in the Nrl2/2 mouse retina [66]. Finally, the retinas of Sca7 mice

also develop ONL whorls and rosettes with changes in the rod

chromatin pattern [67], similar to those we see in our compound

Figure 6. Ep300/Cbp conditional knockout in cones also disrupts cone structure, gene expression and function. Cone opsin-driven Cre
(CCre) was used to knock out Ep300/Cbp in cone photoreceptors; morphology, cone gene expression/distribution, and ERG function were assessed at
6–7 weeks of age. A–D. Compared to Cre negative controls (Panel A; inset shows two presumptive cones), H&E staining of CCre conditional knockout
retinas reveals no major abnormalities (panels B–D), but cells with large nuclei can be seen scattered throughout the outer retina in C-DCKO mice
(Panel D arrowheads and high-magnification inset). E. Cone arrestin (red) and p300 (green) expression are decreased in these cells (arrowheads). F. S-
opsin expression (red) is also decreased in these cells (arrowheads), which lack outer segments. G. Peanut agglutinin labelling (red) identifies the
displaced, abnormal cells in the outer retina (arrowheads) as cones. Blue in Panels E–G is DAPI labelling of nuclei. H. Cone a-transducin (green) is
decreased and mislocalized to the cell bodies. Draq5 (red) marks nuclei. I. ERGs performed on 6 week old CCre mice confirmed decreases in cone-
driven responses in C-DCKO retinas (red lines). Two-way repeated measures ANOVA indicated significance at p,0.0001 for dark-adapted and light-
adapted b-waves. Asterisks (*) indicate significance differences (p,0.001) from Cre negative controls in post-hoc tests.
doi:10.1371/journal.pone.0069721.g006
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heterozygotes. Sca7 mice have defects in the GCN5-containing

STAGA transcriptional activation promoting complex. This

implicates decreased lysine acetyltransferase and/or chromatin

remodeling activity as an underlying cause of whorls and rosettes.

Cell survival vs. death. To our surprise, R-DCKO photore-

ceptors and inner retina neurons do not die but survive for a long

period (at least through 30 weeks of age) despite down-regulation

of many photoreceptor genes, normally a trigger for photoreceptor

degeneration. R-DCKO cells do not re-enter the cell cycle, but

remain in a quiescent state. The mechanism for this phenotype is

unclear. This does not appear to be a form of senescence, since the

microarray analysis showed no changes in expression of the

senescence-associated ‘‘Cyclin-dependent kinase inhibitor’’ genes

CDKN1a/p21, CDKN2a/p16/INK4A, or their downstream targets

[68] in the R-DCKO retinas. Since p300 and CBP are required to

activate transcription of lineage-specification-associated genes for

cell fate switching [5][69] as well as genes associated with cell

proliferation and survival [70], one possible explanation is that the

global and severe changes in gene expression in R-DCKO strand

the cells in a transitional state, unable to either progress along an

alternative lineage, regress, or die. Supporting this hypothesis, 4-

week-old Cbp CH compound heterozygous mice did show

increased cell death associated with minor ONL folds

(Fig. 3C&D), suggesting that programmed cell death is induced

in p300/CBP-deficient photoreceptors if minimal CBP protein is

available. A search of the R-DCKO microarray data revealed up-

regulation of 18 genes involved in cell death pathways, including:

‘‘BCL2-interacting killer’’ (Bik, 1873% of controls), Caspase 6 (246%),

‘‘Bcl2-associated X protein’’ (Bax, 231%), ‘‘apoptotic peptidase activating

factor 1’’ (Apaf1, 189%), ‘‘CASP8 and FADD-like apoptosis regulator’’

(Cflar, 163%), and ‘‘BCL2-associated agonist of cell death’’ (Bad, 150%)

(Supplemental Table S3). BIK initiates apoptotic responses to

genotoxic stress or disruption of host cell protein synthesis in

processes like viral infections or treatment with proteasomal or

protein synthesis inhibitors. It activates BAX via Ca2+ release from

intracellular stores, leading to activation of the mitochondrial

apoptotic pathway, and has also been implicated in an autophagy-

mediated cell death pathway [71]. Thus, the high level of Bik

activation likely represents an attempted response to the metabolic

disruption caused by loss of the two general transcription

coactivators. However, at this point we can only speculate that

the failure of R-DCKO cells to die results from their failure to

synthesize or activate late-stage effectors such as Caspase 9/3 or

autophagic mediators, since these were not present among the up-

regulated genes detected by microarray.

The identity of p300/CBP-negative cells. Gene expression

and immunohistochemistry studies have shown that p300/CBP-

negative ONL cells in R-DCKO have completely lost their

photoreceptor identity. The true identity of these cells is unknown,

but they appear to be undifferentiated cells that do not express any

neuronal or glial progenitor markers. At the ultra-structural level,

these cells still have neurites extending from their cell bodies (data

not shown), suggesting their neuronal origin. This phenotype

clearly demonstrates the requirement of p300/CBP in maintaining

differentiated photoreceptors.

Molecular mechanisms for transcriptional dysregulation
in Ep300/Cbp conditional knockouts
Our results showed that knockout of Ep300/Cbp in rods or

cones causes severe transcription defects in many genes expressed

in photoreceptors, leading to a much more severe phenotype than

is seen after knockout of any single photoreceptor transcription

factor. This is understandable, since p300/CBP are cofactors for a

wide variety of general as well as cell-type specific transcription

factors. However, a substantial subset of the genes down-regulated

in the microarray assay are involved in photoreceptor structure

and function. Furthermore, conditional knockout of Ep300/Cbp

leads to loss of photoreceptor identity. Our findings emphasize the

need for continuing expression of these photoreceptor genes to

maintain functional photoreceptors, and the role played by

Ep300/Cbp in this expression.

This study has provided evidence of at least three mechanisms

that directly underlie the transcriptional dysregulation in DCKO

photoreceptors.

Decreased expression of key photoreceptor transcription

factors. Transcription factors CRX, NRL and NR2E3 specify

rod photoreceptor cell fate by regulating many photoreceptor

genes. The expression of all three factors is lost from R-DCKO

retinas, but preserved in retinas with a single normal copy of either

Ep300 or Cbp, suggesting that p300 and CBP are redundant in

promoting the expression of these key regulator genes. Although

severe transcription defects are expected in cells directed to the

photoreceptor lineage that lack these transcription factors, the loss

of coactivator/HAT function likely also contributes to the wide-

spread transcription dysregulation seen by microarray analysis.

Furthermore, transcription of photoreceptor genes remains

defective to various degrees even when photoreceptor transcrip-

tion factor expression is restored in the presence of one copy of

Ep300 or Cbp. Future experiments to restore the expression of

CRX and NRL in R-DCKO retinas will separate the contribution

made by the lack of transcription factors from the direct results of

coactivator deficiency. Furthermore, genetic interaction studies in

mice lacking transcription factor and coactivator pairs might help

to determine the importance of functional interactions between a

specific transcription factor and either coactivator.

Defects in histone acetylation. Quantitative Western blot

assays showed that loss of p300 and CBP in rods did not alter the

overall levels of acetylated histone H3/H4, suggesting that other

factors (HATs or HDACs) are also involved in maintaining

acetylated histone levels. However, an important finding is that

knockout of p300/CBP selectively affected acetylated histone H3/

H4 levels and transcription of all the CRX target genes tested.

This raises the question whether loss of p300/CBP causes

redistribution of acetylated histone H3/H4 among chromatin

regions and gene sets being transcribed. Interestingly, microarray

assays detected a similar number of genes that are up-regulated

(n= 579) vs. down-regulated (n= 520). The relationship between

p300/CBP-dependent histone acetylation and transcription re-

mains to be investigated. Genome-wide ChIP assays on gene

association of acetylated histone H3/H4 in the Ep300/Cbp mutant

vs control retinas might provide additional information. On the

other hand, this relationship is supported by the results from the

p300 CH and Cbp CH compound heterozygous mice, where the

levels of histone acetylation and target gene transcription are

generally correlated. These results are consistent with our previous

observations that histone acetylation precedes transcriptional

activation of photoreceptor genes during development [5], and

strongly support the importance of p300/CBP-mediated histone

acetylation in initiating and maintaining photoreceptor gene

transcription. It remains to be determined if the HAT catalytic

activity of p300/CBP directly accounts for the observed histone

acetylation defects, because both factors have additional coacti-

vator functions [14][35]. They interact with numerous non-HAT

and HAT-harboring transcription regulators, including members

of the KAT2 family, GCN5-KAT2A and PCAF/KAT2B [19].

GCN5 interacts with CRX indirectly via ataxin-7, a component of

the STAGA coactivator complex involved in regulating histone

acetylation and transcription of CRX target genes during retinal
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development [5] and in photoreceptor degeneration associated

with Spinocerebellar Ataxia 7 polyglutamine expansion disease

[67][72][73]. Thus, loss of the action of these HATs could

potentially contribute to defective histone acetylation and tran-

scription of photoreceptor genes in Ep300/Cbp knockout mice. In

addition, levels of histone acetylation and transcription do not

always show a linear relationship for each individual gene. For

example, in Cbp CH mice the Crx promoter has less than 50% of

normal AcH3/AcH4 levels, but Crx transcription appears normal

(Fig. 5D, pink bars), suggesting that the effect of histone acetylation

on transcription may depend on gene context. Finally, changes in

histone acetylation might affect other histone modifications or

higher order chromatin organization, which could also contribute

to transcription dysregulation in the Ep300/Cbp knockout mice.

Disruption of normal nuclear chromatin

organization. One important finding is that double conditional

knockout retinas lose the characteristic densely packed chromatin

in rod nuclei, and this phenotype is only partially prevented in

p300 CH and Cbp CH compound heterozygous mice. During the

late stages of photoreceptor development, mice and other

nocturnal mammals reorganize their rod photoreceptor chromatin

to minimize light scatter [44]. The condensed, transcription-poor

heterochromatin is organized in the central area of the rod

nucleus. The less condensed euchromatin containing transcription

factors [67], activated RNA polymerase [50], splicing machinery

and nascent RNA transcripts [44] are all localized to the nuclear

periphery, indicating that this is the site of active gene

transcription. The mechanisms responsible for establishing and

maintaining this unique nuclear organization are being elucidated.

In non-photoreceptor cells, two apparently parallel interactions

involving nuclear Lamin A/C or the Lamin B receptor (LBR)

anchor heterochromatin enriched in LINE elements to the nuclear

periphery [74]. Mouse retinal cells initially use the Lamin B

receptor interaction, then as they differentiate switch to the Lamin

A/C mechanism, but rod photoreceptors never activate Lamin A/

C expression. Loss of Lbr expression correlates with heterochro-

matin reorganization in normal mouse rods. Although expression

of Lbr is not significantly increased in R-DCKO retinas, another

receptor for Lamin B, Lmnb2, is upregulated (181% of Cre neg in

microarray assays).

The rod transcription factor NRL appears to be involved in the

reorganization of mouse rod nuclear chromatin. Mice in which

NRL or its upstream activator ‘‘Retinoid-related orphan nuclear receptor

beta’’ (Rorb) are knocked out fail to reorganize their heterochro-

matin, but in Rorb2/2 mice expression of an NRL transgene driven

by the Crx promoter restores rod nuclear morphology [75]. In

addition, the process may involve the Retinoblastoma (RB) family

of pocket proteins, which are active in developing mouse rod

photoreceptors at the time when nuclear reorganization occurs.

Heterochromatin condensation also fails to occur in the absence of

RB [76]. The RB protein directs pericentric and telomeric

heterochromatin formation [77] as well as recruiting histone

deacetylases (HDAC) to active gene promoters to silence

transcription (reviewed in [78]). Longworth and Dyson [79]

suggest that RB functions as a ‘‘master regulator of chromatin

structure’’; expression of Rb and its mouse homologs Rbl1/p107

and Rbl2/p130 were unaffected in the microarray assays as

expected if CBP/p300 are downstream effectors. Since rod

nuclear chromatin also decondenses in mice with defects in

STAGA complex (containing GCN5) [67], transcription coacti-

vators with histone acetyltransferase (HAT) activity seem to be

important for maintaining this chromatin architecture. It is

unclear why the loss of coactivator HATs results in rod chromatin

decondensation similar to that seen in the absence of RB, a

repressor associated with HDACs, but these findings all point to

the importance of homeostasis between histone acetylation and

deacetylation in rod nuclear chromatin organization. Further-

more, our recent studies have demonstrated that the specific rod

transcription factors CRX, NRL and NR2E3, play important roles

in higher order chromatin organizations, such as chromosomal

loops [80], which may contribute to the rod-specific nuclear

architecture. A better understanding of how interactions between

specific transcription factors and epigenetic modulators regulate

rod nuclear organization will provide new insights into general

chromatin regulatory mechanisms and how they relate to

transcriptional regulation.

Materials and Methods

Ethics statement
This study was approved by the Animal Studies Committee of

Washington University in St. Louis, and performed under

Protocols # 20090359 and 20120246 (to SC). Mice were housed

in a barrier facility operated and maintained by the Division of

Comparative Medicine of Washington University School of

Medicine. Experiments were carried out in strict accordance with

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health (NIH);

the Washington University Policy on the Use of Animals in

Research; and the Guidelines for the Use of Animals in Visual

Research of the Association for Research in Ophthalmology and

Visual Science (http://www.arvo.org/animals/). Every effort was

made to minimize the animals’ suffering, anxiety, and discomfort.

Reagents
Mouse Lines. Ep300 flox mice [19] were obtained from Dr.

Paul K. Brindle of St. Jude Children’s Research Hospital,

Memphis, TN. Cbp Flox mice [39] were obtained from Dr. Jan

van Deursen, The Mayo Clinic, Rochester MN. Rho-iCremice [45]

were provided by Dr. Ching-Kang Jason Chen, Virginia

Commonwealth University, Richmond, VA. HGRP-Cre mice

[46] were provided by Dr. Yun Zheng Le, University of

Oklahoma Health Sciences Center, Oklahoma City, OK. ROSA-

mTmG Cre reporter mice (B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTo-

mato,-EGFP)Luo) [47] were obtained commercially (Jax Mice Stock

#007576, The Jackson Lab, Bar Harbor, ME). Mice used in this

study were bred and housed in Washington University School of

Medicine barrier facilities; the genotypes are listed in Table 1.

Genotyping primers are listed in Supplemental Table 1. All mice

used were negative for RD1 [81] and RD8 [82] mutations.

Antibodies. Used in these studies are listed in Supplemental

Table S7. Rhodamine-conjugated peanut agglutinin (RL-1072)

was obtained from Vector Laboratories, Burlingame, CA, and the

TUNEL staining kit (S7100) from EMD Millipore, Billerica, MA.

Methods
Electroretinography. At least 6 mice of each genotype were

tested for ERG at 4, 6, 8 ,12, 20, 30, 40 and 52 weeks of age.

Bilateral flash ERG measurements were performed using a

UTAS-E3000 Visual Electrodiagnostic System running EM for

Windows (LKC Technologies, Inc., Gaithersburg, MD). Mice

were dark-adapted overnight, then anesthetized with 80 mg/kg

ketamine and 15 mg/kg xylazine under dim red illumination for

electrode placement and testing. Body temperature was main-

tained at 3760.5uC with a heating pad controlled by a rectal

temperature probe (FHC Inc., Bowdoin, ME). The mouse’s head

was positioned just inside the opening of the Ganzfeld dome and

pupils were dilated with 1.0% atropine sulfate (Bausch & Lomb,
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Tampa, FL). The recording electrode was a platinum loop 2.0 mm

in diameter, positioned in a drop of 1.25% hydroxypropyl

methylcellulose (GONAK; Akorn Inc., Buffalo Grove, IL) on the

corneal surface of each eye. The reference needle electrode was

inserted under the skin at the vertex of the skull. The ground

electrode was inserted under the skin of the mouse’s back or tail.

The stimulus (trial) consisted of a brief, full-field flash (10 ms) either
in darkness, or in the presence of dim (30.0 cd/m2) background

illumination after 10 minutes adaptation time to the background

light. The initiation of the flash was taken as time zero. The

response was recorded over 250 ms plus 25 ms of pre-trial

baseline. Responses from several trials were averaged (see

Supplemental Table S6). The amplitude of the a-wave was

measured from the average pre-trial baseline to the most negative

point of the average trace, and the b-wave amplitude from that

point to the highest positive point, without subtracting oscillatory

potentials. The log light intensity (log [cd*s/m2]) was calculated

based on the manufacturer’s calibrations. The amplitudes (in

microvolts) of dark-adapted a- and b-waves and light-adapted b-

waves were measured from the lowest point of the raw averaged

response trace (occurring prior to 50 ms after the flash) to the

subsequent highest point (oscillatory potentials were not subtract-

ed). Responses from at least 6 mice of each genotype were

compared for each time point. The distributions of ERG response

across genotype groups at different light intensities were described

by means and standard deviations. The between-group differences

were compared using two-way ANOVA for repeated measure-

ment data to account for potential correlations among readings

from the same mice, followed by post-hoc multiple comparisons

for differences between each genotype and the control group at

each light intensity level. All the tests were two-sided and a p-value

of 0.05 or less was taken to indicate statistical significance. The

statistical analysis was performed using SAS 9.3 (SAS Institutes,

Cary, NC). P-values were adjusted for multiple comparisons by a

permutation test using the default parameters provided in the

LSMestimate statement in Proc Mixed.

Histology and Immunohistochemistry. Eyes from at least

three representative mice from each age and genotype group were

examined histologically. Mice were sacrificed by pentobarbital

overdose and eyes were dissected, immersion-fixed and corneas

removed in 4% paraformaldehyde in phosphate buffered saline

(PBS). After overnight incubation in fresh fixative, retinas were

dehydrated and paraffin-embedded using a Tissue-Tek VIP tissue

processor. Sagittal sections 4 mm thick were cut through the optic

nerve head, mounted on poly-lysine-coated slides, air-dried, and

either stained with hematoxylin and eosin (H&E) for morphologic

assessment or used for immunohistochemistry. Antigen retrieval

was performed by treating de-paraffinized sections in 0.1 M citrate

buffer, pH 6.0 in a pressure cooker for 3 minutes. Cooled slides

were blocked 30 minutes in 20% normal goat serum, incubated

overnight at 4uC in primary antibody diluted in PBS; rinsed well,

then incubated for one hour at room temperature in secondary

antibodies conjugated to Alexa-fluor (Invitrogen) or Cy-dyes

(Jackson Immunoresearch) diluted in PBS. For some samples,

Draq5 (Cell Signaling Technology, Danvers, MA) for nuclear

DNA was added to the secondary incubation mix at 1:5000. After

thorough rinsing, slides were coverslipped using Vectashield hard

set mounting medium for fluorescence with (H-1500) or without

(H-1000) DAPI (Vector Laboratories, Burlingame, CA). Sections

were examined and photographed using an Olympus BX51

fluorescence microscope fitted with a Spot RT3 cooled CCD

camera (Diagnostic Instruments, Inc). Confocal microscopy was

performed on an Olympus Fluo-view FV1000 confocal micro-

scope.

Electron microscopy. Eyecups were fixed by immersion for

12–24 hrs in 2% paraformaldehyde/3% glutaraldehyde in 0.1 M

phosphate buffer (pH 7.35), post-fixed in 1% osmium tetroxide for

1 hour and stained en bloc with 1% uranyl acetate in 0.1 M acetate

buffer for 1 hr. Blocks were then dehydrated in a graded series of

acetones and embedded in Araldite 6005/EMbed 812 resin

(Electron Microscopy Sciences). Semi-thin sections (0.5–1 mm)

were cut through the entire retina at the level of the optic nerve

and stained with toluidine blue. Ultra-thin sections were taken

from a 600–800 mm length of retina adjacent to the optic nerve,

post-stained with uranyl acetate and lead citrate, viewed on a

Hitachi H7500 electron microscope and documented in digital

images. For the 5 largest nuclear profiles in each of 10

micrographs of ONL cell bodies from each genotype, total nuclear

area and the amount of dense heterochromatin as a percentage of

total nuclear area was measured using NIH ‘‘Image J’’ software.

For each genotype, the mean and standard deviation was

calculated, and compared to values for Cre negative controls using

paired Student’s t-test.

Nuclear extraction and western blot analysis. The

histone extraction protocol used is a modification of the protocol

of Shechter et al. [83]. Briefly, retinas were dissected, washed in

PBS with proteases (‘‘cOmplete mini’’ tablets, Roche 11 836 153

001), and incubated 30 minutes at 4uC in hypotonic lysis buffer

(10 mM Tris buffer, pH 8.0, with 1.0 mM KCl, 1.5 mM MgCl2,

1 mM DTT, 0.003 mM Trichostatin A and protease inhibitors

including 2 mM PMSF. Nuclei were concentrated by centrifuga-

tion at 10,000xG for 10 minutes, then lysed by incubating

overnight at 4uC in 0.4 N H2SO4. Histones were precipitated

from the supernate with trifluoroacetic acid, washed twice with

chilled acetone to remove the acid, air-dried, resuspended in

deionized, distilled water and quantified on a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies, Wilmington, DE).

Samples containing 1.0 mg protein were separated on a 17% SDS-

PAGE gel (mini-protean TGX pre-cast gels, BioRad), blotted to

nitrocellulose using a Transblot Turbo semi-dry transfer system

(BioRad), and stained using Li-Cor Odyssey blocking reagent and

secondary antibodies (Li-Cor, Lincoln, NE). Blots were imaged on

a Li-Cor Odyssey Classic system and analyzed using Image Studio

software.

Microarray. Retinas were removed from 3 male and 3

female P14 mice of each genotype, stored in RNAlater (Qiagen),

and extracted using the RNeasy kit (Qiagen). Purified RNA was

quantified on the NanoDrop and submitted to the Washington

University Genome Technology Access Center for quality

assessment with the Agilent Technologies 2100 Bioanalyzer

‘‘Lab-on-a-chip’’ system (Agilent Technologies, Santa Clara,

CA). Equal amounts of high-quality (RIN score .8.4) RNA

samples from one male and one female littermate were pooled for

microarray assay on Illumina BeadArray Mouse WG-6 V2 chips

(Illumina, San Diego, CA). The raw microarray data were

submitted to NCBI GEO (accession number GSE47699). The

results were examined using Illumina Genome Studio V1.6

software. Differential expression analysis (Direct hyb-differential

expression) was performed using Average normalization and the

Illumina custom error model with Benjamini and Hochberg False

Discovery Rate (FDR). Genes with differential scores greater than

13.0 between R-DCKO samples and cre-neg littermate control

samples (corresponding to P,0.05) are listed in Supplemental

Tables 2 (down-regulated in R-DCKO) and 3 (up-regulated in R-

DCKO). Cell process categories were determined by searching

NCBI GENE (http://www.ncbi.nlm.nih.gov/gene), the Mouse

Genome Informatics database (http://www.informatics.jax.org/),

Sigma-Aldrich’s ‘‘My Gene’’ search tool (http://www.
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sigmaaldrich.com/catalog/genes/), and Ingenuity Systems

(http://www.ingenuity.com/).

Chromatin Immunoprecipitation (ChIP). Was performed

as previously described [84][85]. Basically, 6 retinas per sample

were dissected and chromatin was cross-linked with 1% formal-

dehyde in PBS for one minute at room temperature. After cell lysis

and chromatin fragmentation by sonication, chromatin fragments

were immunoprecipitated with antibodies against acetyl-histone

H3 or acetyl-histone H4 bound to Protein A beads (GE

Healthcare Life Sciences, Piscataway, NJ). After extensive

washing, the immunoprecipitated chromatin was eluted with

50 mM NaHCO3/1% SDS, heated to 67uC to reverse the cross-

links, the DNA purified by ethanol precipitation and analyzed by

PCR with gene-specific primers (see references [5] [84] and [85]

for sequences).

qRT-PCR and qChIP. Were performed as previously

described [5][86], in accordance with MIQE guidelines [87].

Primers were designed using MacVector software (MacVector,

Inc., Cary, NC). RT-PCR were designed so that the product

crosses at least one intron to prevent amplification of any residual

genomic DNA. Optimal annealing temperatures and linearity of

primer reactions were validated using dilutions of cDNA from

control retinas, and primer pairs were only used if reaction

efficiency fell between 90–110% and r2.0.980 [88]. Amplification

of a single species was confirmed by melt curve analysis and

agarose gel electrophoresis.

For qRT-PCR, RNA was extracted from two retinas per sample

(,30 mg tissue) using PerfectPure RNA cell & tissue extraction kit

(5-Prime Inc., Gaithersburg, MD) and quantified on the Nano-

Drop. cDNA was synthesized from 1.0 mg RNA with oligo-dT

primers, using the Transcriptor First Strand cDNA Synthesis Kit

(Roche 04 379 012 001) according to the manufacturer’s

directions.

For both qRT-PCR and qChIP, 10 ml reactions were set up in

triplicate in 96-well low-profile frosted PCR plates (Midsci, St.

Louis, MO), with 2 mM primers (see references [5][84][85][86] for

sequences), using SYBR Green JumpStart Readymix (Sigma, St.

Louis, MO), and run on a BioRad CFX thermocycler. The test

protocol consists of 40 cycles of two-step amplification followed by

melt curve analysis. For unknowns, only Cq values that fell within

the linear range determined for each primer pair were used;

samples giving results outside this range were diluted appropriately

and re-tested. Relative expression levels were normalized to three

reference genes (ß-Actin [Actb], Glyceraldheyde-3-phosphate dehydroge-

nase, [GAPDH] and Ubiquitin B [UBB]), which were determined to

be highly stable, using qbasePLUS software (BioGazelle NV,

Zwijnaarde, Belgium). The mean value and standard deviation

(STDEV) were calculated, and statistical significance (p,0.05) was

determined using unpaired two-tailed Student’s t-test.

Supporting Information

Figure S1 Cre expression and validation of Cbp deple-
tion in target cells. A. GFP expression in Rho-iCre+; mTmG
mice shows that Cre activity is detectable by Postnatal Day 5 (P5) in

a few cells in the outer neuroblast layer (ONBL). By P7 most

ONBL cells express GFP, and levels remain high in the outer

nuclear layer (ONL) through adulthood. Scale bar = 25 mm for all

panels. B. GFP expression in HRGP-Cre+; mTmG mice begins near

the optic nerve head around P5, extending outward to the retinal

periphery over the next few days. By P7, there are GFP positive

cells scattered throughout both the dorsal and ventral retina. As

the retina matures, GFP-positive cells become localized to the

outer edge of the ONL in both dorsal (D) and ventral (V) regions.

The numbers of GFP-expressing cells are comparable in the dorsal

and ventral regions through adulthood. Scale bar = 20 mm for all

panels. C. Immunolabeling of 4-week-old retina sections for CBP

shows reactivity in all nuclei of Cre-negative control retinas (left

panel), with rod nuclei in the ONL showing the characteristic

peripheral nuclear distribution pattern. The retina from a p300

CH mouse (middle panel), in which both copies of Cbp have been

conditionally knocked out by Rho-iCre expression, has lost much of

this pattern, although reactivity can still be seen in cones along the

outer edge of the ONL. Specific reactivity is also missing from the

irregular ONL in R-DCKO mice (right panel). Because of the high

background staining with this anti-CBP antibody, anti-p300 was

used to verify Cbp/p300 conditional knockout in the studies

reported here.

(TIF)

Figure S2 IHC for retinal cell type markers at P32. A &
B. Cone S-Opsin (A) and M-Opsin (B), localized to cone outer

segments in Cre neg retinae, are seen associated with the few cells

still expressing p300 in the outer nuclear layer (ONL) of R-DCKO

retinae, often in the middle of rosettes. C. Vesicular glutamate

transporter 1 (VGLUT1), found in pre-synaptic terminals, marks

the outer (OPL) and inner (IPL) plexiform layers. Protein Kinase

C-alpha (PKC-alpha) is expressed by rod on-bipolar cells in the

inner nuclear layer (INL). VGLUT1 staining is severely decreased

in the OPL of R-DCKO retinae but still seen in the IPL. Bipolar cell

processes in these retinae extend into the ONL. D. Glutamine

synthetase is expressed by Mueller glia. Although their orderly

arrangement across the retina is disrupted in R-DCKO eyes,

additional expression in ONL cells is not seen. E. Calbindin is

expressed in horizontal cells in the INL, and syntaxin marks

amacrine cell processes in the IPL of both Cre neg and R-DCKO

retinae. F. Neurofilament NF200 is expressed in ganglion cell

(GC), amacrine, and horizontal cell processes in both Cre neg and

R-DCKO retinae. These findings led us to conclude that non-

photoreceptor cells were present in apparently normal numbers

and positions in R-DCKO retinae, and that the ONL cells in these

retinae were not expressing markers of other lineages.

(TIF)

Figure S3 IHC for markers of DNA damage and
replication. A. Histone H2A.X phosphorylated on Serine 139

(green) accumulates at sites of double-strand DNA breaks [89].

Elongating lens fiber cells undergoing nuclear lysis and endothelial

cells outside the lens epithelium at P14 serve as positive controls

(left panel). Very few H2A.X-positive retinal cells are seen in either

control Cre neg (middle panel) or R-DCKO retinas (right panel) at

this age. Sections are counter-stained with peanut agglutinin

(PNA, red), which marks cone cell sheaths and other extracellular

matrix landmarks. B. Ki-67 (green) is a nuclear proliferation

antigen expressed in all stages of the cell cycle [90]. Proliferating

cells in the lens germinal zone and ciliary body at P14 serve as

positive controls (left panel). Rare positive cells are found within

control or R-DCKO retinas at P14. Sections are counter-stained

with PNA (red). B. Phosphorylation of histone H3 serine 10

(green) occurs during mitosis and is required for chromosome

condensation [91]. Dividing cells in the lens germinal zone and

ciliary body of P10 retinal sections serve as positive controls (left

panel). Positive cells can be seen in the RPE of control and R-

DCKO retinas at this age, but few positive cells are seen within the

retina itself. CB, ciliary body; ONL, outer nuclear layer; INL,
inner nuclear layer; GC, ganglion cell layer. Scale bars = 25 mm
for all panels.

(TIF)
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Figure S4 IHC for markers associated with neural or
retinal precursor cells. Cre neg and R-DCKO retinal sections

were examined for markers reported to be associated with retinal

precursors, to determine whether R-DCKO outer nuclear layer cells

re-express early differentiation markers. A. The C-15 anti-

Retinoblastoma antibody stains most nuclei in both Cre-neg control

and R-DCKO sections. At P22, the staining pattern in ONL nuclei

reflects the euchromatin distribution pattern. B. P15 ONL cells

are negative for expression of Retinoblastoma-like 1/p107, which

is expressed in embryonic mouse retina [76]. C & D. Nestin and

NeuN are expressed in most developing neurons soon after

withdrawal from the cell cycle. C. P15 sections express little Nestin

(background fluorescence is associated with blood vessels). D.
NeuN expression at P32 marks neurons in the INL and GC layers.

E & F. Pax6 and Sox2 are highly expressed in proliferating retinal

progenitors, but are also expressed in subsets of inner retina cells

later during development [92][93]. E. At P15, Pax6 immunore-

activity is seen in the INL and GC in both Cre neg and R-DCKO

cells, but is absent from the ONL. F. Rare Sox2-positive cells are
seen in the GC layer of P15 retinae, with diffuse reactivity evident

in the ONL of both genotypes. G. The nuclear protein Geminin is

a dual-function molecule that is involved in marking DNA during

replication, and in controlling fate choice during neural develop-

ment [94][95]. H. The Tuj1 monoclonal antibody recognizes a

class III beta-tubulin epitope that is expressed early in differen-

tiation of vertebrate neurons. It strongly recognizes ganglion cells

and their fibers, and is weakly expressed in some INL cells at P32,

but is not expressed by R-DCKO ONL cells. These findings led us

to conclude that loss of Ep300/Cbp did not lead rod cells to adopt a

more primitive cell fate.

(TIF)

Figure S5 qRT-PCR & qChIP supplemental data. A.
Comparison of gene expression in P14 Rho-iCre conditional

knockout (CKO) retinas, by qRT-PCR: The rod gene phosphodi-

esterase 6b (Pde6b); cone M-opsin (Opn1MW) and S-opsin

(Opn1SW); interphotoreceptor retinoid binding protein (Rbp3) expressed
in both rods and cones; HAT-containing coactivators Cbp, p300,
and Gcn5; and the bipolar gene metabotropic glutamate receptor type 6

(Grm6). Since cDNA was made from RNA isolated from whole

retinas, Cbp and p300 expression were detected in CKO retinas

due to expression in unaffected inner retina cell types. In contrast,

expression of Gcn5 was high in CKO retinas, suggesting that

knockout of Ep300/Cbp does not abolish all transcription in rods.

B. qChIP assays for acetylated histone H3 (AcH3) and H4 (AcH4)
occupancy on the promoters of interphotoreceptor retinoid binding protein

(Rbp3), cone M-opsin (Opn1mw) and S-opsin (Opn1sw), and

Grm6, expressed by bipolar cells. In contrast to the severely

affected rod genes in the conditional knockouts (Fig. 5C–F), these

controls show that occupancy is preserved for cone genes whose

expression is unaffected, for photoreceptor genes that are CRX-

independent (RBP3), and for genes are expressed in other cell types

(Grm6) in the samples tested for Figure 5. C. Gel images of ChIP-

PCR results for AcH3 promoter occupancy in control and CKO

retinas. For each sample type, the first lane (IP) is from

immunoprecipitated samples; the second (IgG) from ‘‘no anti-

body’’ negative controls, the third (noDNA) from ‘‘no DNA’’

control reactions, and the fourth lane (Input) is nuclear lysate

prior to immunoprecipitation. In CKO samples, all CRX-

dependent gene promoters tested lost AcH3 occupancy, confirm-

ing the qChIP results. M, 100-bp DNA molecular weight ladder.

(TIF)

Table S1 Genotyping primers.

(DOCX)

Table S2 520 genes down-regulated in R-DCKO vs Cre
negative.

(DOCX)

Table S3 520 genes down-regulated in R-DCKO vs Cre
negative.

(DOCX)

Table S4 p300/CBP dependent genes linked to retinal
disease.

(DOCX)

Table S5 p300/CBP dependent genes downregulated in
Crx2/2

.

(DOCX)

Table S6 ERG Test Parameters.

(DOCX)

Table S7 Antibodies.

(DOCX)
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45. Li S, Chen D, Sauvé Y, McCandless J, Chen YJ, et al. (2005) Rhodopsin-iCre

transgenic mouse line for Cre-mediated rod-specific gene targeting. Genesis 41:

73–80.

46. Le YZ, Ash JD, Al-Ubaidi MR, Chen Y, Ma JX, et al. (2004) Targeted

expression of Cre recombinase to cone photoreceptors in transgenic mice. Mol

Vision 10: 1011–1018.

47. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L(2007) A global double-

fluorescent Cre reporter mouse. Genesis 45: 593–605.

48. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell

death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:

493–501.

49. Chen J, Nathans J (2007) Genetic ablation of cone photoreceptors eliminates

retinal folds in the retinal degeneration 7 (rd7) mouse. Invest Ophthalmol Vis Sci

48: 2799–2805.

50. Kizilyaprak C, Spehner D, Devys D, Schultz P (2010) In Vivo chromatin

organization of mouse rod photoreceptors correlates with histone modifications.

PLoS ONE 5(6): e11039. doi:10.1371/journal.pone.0011039.

51. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, et al. (2004) Genomic

analysis of mouse retinal development. PLoS Biol 2(9): e247 and http://

genepath.med.harvard.edu/̃cepko/SAGE/index.html.

52. Hsiau TH-C, Diaconu C, Myers CA, Lee J, Cepko CL, et al. (2007) The Cis-

regulatory Logic of the Mammalian Photoreceptor Transcriptional Network.

PLoS ONE 2(7): e643. doi:10.1371/journal.pone.0000643.

53. Livesey FJ, Furukawa T, Steffen MA, Church GM, Cepko CL (2000)

Microarray analysis of the temporal network controlled by the photoreceptor

homeobox gene Crx. Curr Biol 10: 301–310.

54. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, et al. (2001) Nrl is

required for rod photoreceptor development. Nature Genetics 29: 447–452.

55. Daniele LL, Lillo C, Lyubarsky AL, Nikonov SS, Philip N, et al. (2005) Cone-

like morphological, molecular, and electrophysiological features of the

photoreceptors of the Nrl knockout mouse. Invest Ophthalmol Vis Sci 46:

2156–2167.

56. Valor LM, Pulopulos MM, Jimenez-Minchan M, Olivares R, Lutz B, et al.

(2011) Ablation of CBP in forebrain principal neurons causes modest memory

and transcriptional defects and a dramatic reduction of histone acetylation but

does not affect cell viability. J Neurosci 31: 1652–1663.

57. Ramos YFM, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, et al.

(2010) Genome-wide assessment of differential roles for p300 and CBP in

transcription regulation. Nucl Acids Res 38: 5396–5408.

58. Yang Y, Wolf LV, Cvekl A (2007) Distinct embryonic expression and

localization of CBP and p300 histone acetyltransferases at the mouse aA-

Crystallin locus in lens. J Mol Biol 369: 917–926.

59. Lambard S, Reichman S, Berlinicke C, Niepon M-L, Goureau O, et al. (2010)

Expression of Rod-Derived Cone Viability Factor: Dual Role of CRX in

Regulating Promoter Activity and Cell-Type Specificity. PLoS ONE 5(10):

e13075. doi:10.1371/journal.pone.0013075.
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