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Abstract

MicroRNAs (miRNAs) are a group of small non-coding RNAs that play important regulatory roles at the post-transcriptional
level. Although several computational methods have been developed to compare miRNAs, it is still a challenging and a
badly needed task with the availability of various biological data resources. In this study, we proposed a novel graph
theoretic property based computational framework and method, called miRFunSim, for quantifying the associations
between miRNAs based on miRNAs targeting propensity and proteins connectivity in the integrated protein-protein
interaction network. To evaluate the performance of our method, we applied the miRFunSim method to compute
functional similarity scores of miRNA pairs between 100 miRNAs whose target genes have been experimentally supported
and found that the functional similarity scores of miRNAs in the same family or in the same cluster are significantly higher
compared with other miRNAs which are consistent with prior knowledge. Further validation analysis on experimentally
verified miRNA-disease associations suggested that miRFunSim can effectively recover the known miRNA pairs associated
with the same disease and achieve a higher AUC of 83.1%. In comparison with similar methods, our miRFunSim method can
achieve more effective and more reliable performance for measuring the associations of miRNAs. We also conducted the
case study examining liver cancer based on our method, and succeeded in uncovering the candidate liver cancer related
miRNAs such as miR-34 which also has been proven in the latest study.
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Introduction

MicroRNAs (miRNAs), , 22 nucleotides (nt) in length, are a

major class of short endogenous non-coding RNA (ncRNA)

molecules that play important regulatory roles at the post-

transcriptional level by targeting mRNAs for cleavage or

translational repression [1,2]. Since the discovery of miRNA

molecules lin-4 and let-7 in 1993 in Caenorhabditis elegans through

forward genetic screens [3], more and more novel miRNAs have

been identified in almost all metazoan genomes, including worms,

flies, plants and mammals by forward genetics, direct cloning,

high-throughput sequencing technology and bioinformatics ap-

proaches [4,5,6]. To date, 1600 miRNAs of the human genome

have been annotated in the latest version of the miRBase [7].

During the past several years, many methods have been

proposed to compare the functional similarities between different

protein-coding genes for further better understanding of the

underlying biological phenomena or discovering previously

unknown gene functions [8,9,10,11,12]. With the growth of

information on miRNAs, miRNAs have been shown as a group of

important regulators to regulate basic cellular functions including

proliferation, differentiation and death [13,14,15,16]. However,

the functions of most miRNAs remain unknown. Therefore, to

better understand miRNAs and their roles in the underlying

biological phenomena, biologists are paying more attention to

compare miRNA genes and want to know the associations

between them. For example, comparing similarities between

miRNA with known molecular functions or associated with

specific disease and that with unknown functions would allow us

to infer potential functions for novel miRNAs, or help us to

identify potential candidate disease-related miRNAs for guiding

further biological experiments. However, until now, only several

computational methods have been developed to meet the

requirement [17,18]. Therefore, comparing miRNAs is still a

challenging and a badly needed task with the availability of various

biological data resources.

Many studies have shown that the functions of miRNAs can be

predicted or inferred by analyzing the properties of miRNA targets

[19,20,21]. It has been reported that the targeting propensity of

miRNA can be largely explained by the functional behavior of

protein connectivity in the protein-protein interaction network

(PPIN) [22,23]. With the rapid advances in biotechnology, large-

scale PPIN is currently available and is already rich enough to

evaluate the relationship between miRNAs based on their

targeting propensity in PPIN. Here, based on the above notion,

we proposed a novel computational method, called miRFunSim,
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to quantify the associations between miRNAs in the context of

protein interaction network. We evaluated and validated the

performance of our miRFunSim method on miRNA family,

miRNA cluster data and experimentally verified miRNA-disease

associations. Further comparison analysis showed that our method

is more effective and reliable as compared to other existing similar

methods, and offers a significant advance in measuring the

associations between miRNAs.

Materials and Methods

Construction of Integrated Human Protein Interaction
Network
The high throughput protein-protein interaction data were

obtained from Wang’s study [24] consisting of 69,331 interactions

between 11,305 proteins, which integrated BioGRID [25], IntAct

[26], MINT [27], HPRD [28] and by the Co-citation of text

mining [29] databases and made further filtering to improve

coverage and quality of PPIN and reduce false-positives produced

by different prediction algorithms in different databases.

Human miRNA Datasets
All known human miRNAs were from miRBase Sequence

Database, release 16 (http://www.mirbase.org/) [30]. We used

experimentally verified miRNA targets from TarBase which

houses a manually curated collection of experimentally supported

miRNA targets in several animal species [31] (File S1). The

predicted miRNA targets were downloaded from starBase

database which provides a comprehensive integrated miRNA-

target map [32]. Because of the high false positive rate of predicted

miRNA targets, we only chose miRNA targets predicted by at least

three prediction algorithms with readNum .=1 and biological

complexity .=1 (File S2). The genome coordinates of miRNAs

were downloaded from miRBase Sequence Database, release 16

(http://www.mirbase.org/) [30]. Those miRNAs with pair-wise

distance less than 10 kb were considered as clustered miRNAs.

The high-quality experimentally verified miRNA-disease associa-

tion data was retrieved from Jiang’s study [33].

Statistical Analysis
The functional similarity score between miRNAs may be

generated by chance. In order to take this effect into account and

obtain the statistical significance of scores, we performed

randomization test and repeated 1000 times. For each score,

1000 simulated miRNA pairs were generated and target genes of

simulated miRNA pairs were randomly sampled from all human

protein-coding genes keeping the same size as given miRNA pairs.

Then the functional similarity scores between simulated miRNA

pairs were recomputed for each simulated miRNA pair denoted

SFSSM. M denoted the number of simulated miRNA pairs having

an equal or larger SFSSM value than the true score. The estimate

of the empirical statistical significance value, P-value, of true score

was obtained as P=M/1001. The empirical P-value based on

such randomizations represented the probability of obtaining a

score greater than a given score by chance.

Results and Discussion

Overview of miRFunSim
In this study, we developed a graph theoretic property based

method, miRFunSim, to quantify the associations between two

miRNA in the context of targets propensity in the protein-protein

interaction network. A schematic representation of the miRFun-

Sim method is shown in Figure 1. Initially, given two interested

miRNAs, miRNA A and miRNA B, we evaluate the functional

relationship between them using the protein interaction network.

First, we obtain the target gene lists for each miRNA, which are

denoted by TA and TB respectively. There may be existing

common targets between TA and TB. Second, we map the target

genes from these lists onto the integrated protein interaction

network. Then, the protein interaction sub-network of target genes

is generated from the integrated protein interaction network.

Here, the targets of miRNA A and miRNA B are marked in red

and green respectively in the protein interaction sub-network of

target genes. The nodes colored by both of the red and green in

the protein interaction sub-network are the common targets.

Thirdly, the distance between two nodes which are from TA and

TB respectively is the length of the shortest path and can be

calculated based on the sub-network which reflects the protein

connectivity and functional associations of targets. For the overlap

of targets between TA and TB, we made two hypotheses: there

exists a ring on the node that represents the common target, and

there exists a shortcut between two targets except they are isolated.

Based on the above hypotheses, we add the hypothetical edges into

the protein interaction sub-network, where the new edges are

marked in red. Finally, the functional similarity score between two

miRNAs is defined as the reciprocal of average pair-wise distance

between TA and TB, and is computed as follows:

miRFunSim(A, B)~N

,P
i[TA

P
j[TB

Dist i,jð Þ

where N is the number of path in the protein interaction sub-

network. The closer the miRNA targets are in the network, the

higher the scores. The scores range from 0 to 1 and higher scores

correspond to higher functional concordance between miRNAs.

Performance Evaluation of miRFunSim
The accumulating evidence revealed that miRNAs in the same

family are likely to have similar functions [34,35,36]. Therefore, to

evaluate the reliability of functional similarity scores computed by

our miRFunSim method, we first downloaded miRNA family data

from miRBase Database [30] and obtained 100 miRNAs whose

target genes have been experimentally supported from TarBase

[31]. Then we used our miRFunSim method to compute

functional similarity scores of miRNA pairs between 100 miRNAs.

These miRNA pairs were grouped into two classes: intrafamily

miRNA pairs and interfamily miRNA pairs. We further compared

the functional similarity scores of intrafamily miRNA pairs,inter-

family miRNA pairs and random miRNAs pairs. As a result, the

significant differences in functional similarity scores among

intrafamily miRNA pairs, interfamily miRNA pairs and random

miRNA pairs are observed (Figure 2A, Kruskal-Wallis test, df = 2,

p-value = 0). The functional similarity scores for intrafamily

miRNA pairs are significantly higher compared with interfamily

miRNA pairs (p-value = 4.30e-5, Wilcoxon rank sum test) and

random miRNA pairs (p-value = 1.80e-14, Wilcoxon rank sum

test). Interfamily miRNA pairs also showed higher functional

similarity scores than random miRNA pairs (p-value = 1.46e-20,

Wilcoxon rank sum test).

It is well known that a large number of miRNAs have clustering

propensity and tend to form some clusters. Previous studies have

suggested that miRNA members within the same cluster are often

located in a polycistron and display a homogeneous expression

pattern [37,38], which imply that these clustered miRNAs perhaps

have common or similar functions. Therefore, we also computed
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PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e69719



functional similarity scores between miRNAs in the same cluster

and between miRNAs not located in the same cluster using

miRFunSim method (Fig. 2B). Statistical analyses showed that

functional similarity scores among intracluster miRNA pairs,

intercluster miRNA pairs and random miRNA pairs are also

significantly different (Figure 2B, Kruskal-Wallis test, df = 2, p-

value = 0). The functional similarity scores of intracluster miRNA

pairs are significantly higher than those of intercluster miRNA

Figure 1. The schematic representation and overview of the miRFunSim method.
doi:10.1371/journal.pone.0069719.g001

Figure 2. Performance evaluation of miRFunSim using miRNA family and miRNA cluster. (A) A comparison of functional similarity scores
of intrafamily miRNA pairs, interfamily miRNA pairs and random miRNA pairs. (B) A comparison of functional similarity scores of intracluster miRNA
pairs, intercluster miRNA pairs and random miRNA pairs.
doi:10.1371/journal.pone.0069719.g002
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pairs (p-value = 5.42e-6, Wilcoxon rank sum test) and random

miRNA pairs (p-value = 1.40e-8, Wilcoxon rank sum test).

Intercluster miRNA pairs also showed higher functional similarity

scores than random miRNA pairs (p-value = 5.60e-23, Wilcoxon

rank sum test). These results suggested that our method is reliable

and sensible to measure the functional relationship between

miRNAs. To investigate the robustness of our miRFunSim

method, we first performed above analysis for the predicted

miRNA target and examine whether our method is still able to

measure the associations between miRNAs. The resulting scores

between miRNAs using predicted targets are shown in Fig. S1A.

The functional similarity scores for intrafamily and intracluster

miRNA pairs are significantly higher compared with interfamily

and intercluster miRNA pairs (p-value = 0 and p-value = 1.01e-6,

Wilcoxon rank sum test). Then we further access our method by

the removal of 5% and 10% network nodes in the protein

interaction network randomly (Fig. S1B, C). As shown in Fig. S1B,

C, the functional similarity scores of intrafamily and intracluster

miRNA pairs are significantly higher than those of interfamily

(5%:p-value = 9.47e-5 and 10%:p-value = 9.53e-5, Wilcoxon rank

sum test) and intercluster miRNA pairs (p-value = 2.01e-3 and p-

value = 1.6e-3, Wilcoxon rank sum test).

To further evaluate the performance of our miRFunSim

method for quantifying the associations between two miRNAs,

we performed a validation analysis on experimentally verified

miRNA-disease associations. It has been proven that miRNAs

with similar functions tend to be involved in phenotypically similar

disease, and miRNAs associated with common diseases are more

related in function [17,33,34]. Our validation analysis for

performance of miRFunSim method was based on above notion.

First, we obtained 270 high-quality experimentally verified

miRNA-disease associations from Jiang’s study [33] and 100

miRNAs whose target genes have been experimentally supported.

For each disease, the functional similarity score between every two

miRNAs associated with this disease were computed using the

miRFunSim method as the testing case. For each testing case, 99

simulated miRNA pairs were generated and the target genes of

simulated miRNA pairs were randomly sampled from all human

protein-coding genes keeping the same size as the given testing

case. The functional similarity scores of 99 simulated miRNA pairs

also were computed using the miRFunSim method as negative

controls of the given testing case. Second, we prioritized the testing

case together with 99 negative controls according to the scores

derived from miRFunSim method. Therefore, for each testing

case, we obtain a ranking list, that is, prioritization of 100 miRNA

pairs. In total, we obtained 562 ranking lists, each with 100

prioritizations. Third, from 562 ranking lists, we calculated the

sensitivity and specificity at varying thresholds. Sensitivity mea-

sures the proportion of the testing case whose ranking is higher

than a given score. Specificity measures the proportion of negative

controls ranked below this score. Finally, a receiver operating

characteristics (ROC) curve was plotted by varying the score and

the area under the curve (AUC) was calculated. We used AUC as

a standard measure of the performance of miRFunSim. The

maximum value of AUC is 100%, which indicates every testing

case is ranked first in the ranking list. Figure 3 shows the results of

performance evaluation of miRFunSim using the ROC curves

obtained by calculating the sensitivity (sensitivity =TP/(TP +FN))

and 1-specificity (specificity =TN/(TN+FP)) by varying the

threshold. Our miRFunSim method tested on 270 high-quality

experimentally verified microRNA-disease associations achieved

an AUC of 83.1%, suggesting that miRFunSim can recover the

miRNA pairs associated with common disease and efficiently

quantify the relationship between miRNAs.

Comparisons with Other Existing Similar Methods
Recently, several approaches have been proposed for compar-

ing miRNAs. Yu et al. developed a method to determine functional

similarity of miRNAs by using their target genes GO semantic

similarities [18]. However, this method perhaps sometimes

produces disappointing results because of some GO limitations.

Another existing method, called MISIM, is to measure the

similarity of their associated disease directed acyclic graph (DAG)

to compare two miRNAs. However, this method relies on

miRNA-disease association data, and is difficult to achieve high

reliability when little miRNA-disease association data is available

[17]. Here, we also performed a performance comparison analysis

between miRFunSim and these two similar methods using the

same datasets. First, we used the method presented by Yu et al. and

MISIM to compute functional similarity scores of miRNA pairs

between 100 miRNAs whose target genes have been experimen-

tally supported from TarBase [31]. Then these miRNA pairs also

were grouped into four classes: intrafamily miRNA pairs,

interfamily miRNA pairs, intracluster miRNA pairs and interclus-

ter miRNA pairs. As shown in Fig. 4A, the functional similarity

scores produced by Yu’s method are significantly different among

intrafamily, interfamily and random miRNA pairs (Kruskal-Wallis

test, df = 2, p-value = 0), and among intracluster, intercluster and

random miRNA pairs (Kruskal-Wallis test, df = 2, p-value = 0).

However, there is no significant difference in functional similarity

scores produced by MISIM method between intrafamily and

interfamily miRNA pairs (p-value = 0.25, Wilcoxon rank sum test),

and between intracluster and intercluster miRNA pairs (p-

value = 0.19, Wilcoxon rank sum test) (Fig. 4B), suggesting that

the functional similarity scores produced by Yu’s method and our

miRFunSim method can better reflect the functional relationship

of miRNAs based on miRNA families and miRNA clusters than

MISIM method. Next, we also tested Yu’s method on 270 high-

quality experimentally verified miRNA-disease associations to

compute the functional similarity score between every two

Figure 3. Area under ROC curve (AUC) analysis on 270 high-
quality experimentally verified miRNA-disease associations
from Jiang’s study and 100 miRNAs whose target genes have
been experimentally supported using our miRFunSim method.
doi:10.1371/journal.pone.0069719.g003
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miRNAs associated with the same disease, and obtained a ROC

curve as the methods described in our analysis. Finally, the method

presented by Yu et al. achieved an AUC of 63.9% (Fig. 4C), but is

less than an AUC of 83.1% obtained by our miRFunSim method

tested on the same datasets. Taken together, these results

suggested that our miRFunSim method can achieve more effective

and more reliable performance for quantifying the associations

between miRNAs compared with other available similar methods.

Case Study of Liver Cancer
As an example, to illustrate the application of quantifying the

relationship between miRNAs using miRFunSim method, we

presented a case study of liver cancer, which is one of the most

common cancers, and applied the miRFunSim method to identify

novel candidate liver cancer-related miRNAs. First, we retrieved

15 miRNAs which have been experimentally verified to contribute

to the development of liver cancer and have experimentally

verified target genes in TarBase as seed miRNAs. Next, we

computed the functional similarity scores between every seed

miRNAs and every miRNA from the remaining 85 miRNAs using

miRFunSim method. The higher the score is, the more likely the

miRNAs is associated with liver cancer. Finally, we prioritized all

1275 miRNA pairs for liver cancer according to their scores. The

top 15 miRNA pairs with the highest functional similarity scores

Figure 4. A performance comparison analysis between miRFunSim and other existing methods with similar functions. (A) The
distribution and comparison of functional similarity scores of intrafamily, interfamily, intracluster,intercluster and random miRNA pairs computed by
Yu’s method. (B) The distribution and comparison of functional similarity scores of intrafamily, interfamily, intracluster, intercluster miRNA pairs
computed by MISIM method. (C) Area under ROC curve (AUC) analysis on 270 high-quality experimentally verified miRNA-disease associations from
Jiang’s study and 100 miRNAs whose target genes have been experimentally supported using Yu’s method.
doi:10.1371/journal.pone.0069719.g004
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(score.0.5 and p,0.005) were chosen and 12 miRNAs with the

highest functional similarity scores with seed miRNAs were listed

as candidate liver cancer-related miRNAs and shown in Table 1.

Among top 12 miRNAs, 8 miRNAs have been recorded to be

deregulated in liver cancer and possibly contribute to the

development of liver cancer, and 4 miRNAs (miR-15b,miR-20,

miR-15 and miR-34) have been verified to be deregulated in other

cancers in miR2Disease [39], and PhenomiR [37] databases

which provide comprehensive resources for miRNA deregulation

in disease. When our research is in progress, a new study provided

further supporting evidence for one of the remaining four

candidate liver cancer-related miRNAs. Li et al. [40] found that

miR-34 participate in the neoplastic transformation of liver cancer

stem cells (LCSCs) during hepatocarcinogenesis.

Conclusions
In this study, we presented a novel computational framework

and method, called miRFunSim, for quantifying the associations

between miRNAs based on miRNAs targeting propensity and

proteins connectivity in the integrated protein-protein interaction

network. We applied the miRFunSim method to compare 100

miRNAs whose target genes have been experimentally supported

from TarBase [31] and compared the distributions of functional

similarity scores among intrafamily, interfamily and random

miRNA pairs, and among intracluster, intercluster and random

miRNA pairs. The functional similarity scores of miRNAs in the

same family or in the same cluster are significantly higher

compared with other miRNAs. These results suggested that the

miRFunSim method can better reflect the functional similarities

and differences of miRNA pairs in the different groups. We further

tested miRFunSim method on 270 high-quality experimentally

verified miRNA-disease associations to recover the known miRNA

pairs associated with the same disease and achieved a higher AUC

of 83.1%. In comparison with existing similar methods, our

miRFunSim method can achieve more effective and more reliable

performance for measuring the functional similarity of miRNAs.

With the improvement in coverage of PPI network and in

prediction accuracy of miRNA targets, the proposed miRFunSim

method will perform better for quantifying the associations

between miRNAs. Furthermore, this method can be extended to

other species when PPIN data and targets of miRNAs are

available.

Supporting Information

Figure S1 The robustness analysis results for measur-
ing the relationship of miRNAs using miRFunSim. (A) A
comparison of functional similarity scores between intrafamily and

interfamily miRNA pairs, and between intracluster and interclus-

ter miRNA pairs using predicted miRNA targets. (B) A

comparison of functional similarity scores between intrafamily

and interfamily miRNA pairs, and between intracluster and

intercluster miRNA pairs by the removal of 5% network nodes in

the protein interaction network randomly. (C) A comparison of

functional similarity scores between intrafamily and interfamily

miRNA pairs, and between intracluster and intercluster miRNA

pairs by the removal of 10% network nodes in the protein

interaction network randomly.

(DOC)

File S1 Information of experimentally verified miRNA
targets from TarBase.

(TXT)

File S2 Information of predicted miRNA targets from
starBase by at least three prediction algorithms with
readNum.=1 and biological complexity .=1.

(TXT)
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