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Abstract

The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity
in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a
methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The
objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter
estimation for all components of the station. We also estimate the reliability value of each component and the reliability
value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum
distribution with a scale parameter b~90:001 and shape parameters k~0:33998 and a~2:4011. Our analysis reveals that
the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue
and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using
these results for power systems for both the maintenance of power systems models and preventive maintenance models.
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Reliability and Failure Functions

Electric power is transmitted through an electric circuit. The

terms ‘‘high voltage’’ and ‘‘high power’’ indicate that the voltages of

the electrical energy are high enough to inflict harm or death on

living things. Electrical power systems are highly complex and

extremely integrated. Reliability is one of the most important factors

considered in the planning, design, operation, and maintenance of

electric power systems [1,2]. This factor is one of the most effective

indicators of product quality that buyers take into account when

choosing among different varieties [3]. Moreover, reliability

generally becomes more important to consumers, as failure, repair,

and maintenance entail expensive costs [3]. The reliability function

is a mathematical and engineering indicator that is used to describe

the state of the equipment in the system through the probability

function. Many factors and definitions are related to reliability (e.g.,

mean time to failure [MTTF], mean time between failures

[MTBF], and mean time to repair [MTTR]). The MTTF is the

expected value representing the return period of equipment failure

[4–7]. It can be expressed mathematically as [8],

MTTF~E(T)~
Ð?
{? tf (t)dt, where E(t) is the expected value of

time, and f(t) is the probability density function (pdf) for variable t.

The MTTF is also referred to as the expected life. The mean time

between failures (MTBF) and the MTTR are defined in Section

Availability. The term reliability can be defined in many ways. For

example, for an electrical switch, reliability may be defined as the

probability that it successfully functions under a stipulated load and

at a specific temperature. An operational definition of reliability

must be sufficiently precise to establish a clear distinction between

reliable and unreliable items. In addition, this definition must be

sufficiently general to account for the complexities that arise in

making this determination [8]. Based on this definition of reliability,

reliability analyses often involve the analysis of binary outcomes (0,

1) (i.e., success = 1, failure data = 0) [8].

Assume that the period of failure T is a continuous random

variable with values in a positive real line. Many methods are

available to specify the properties of a random variable [8]. The

first method involves using the pdf, f(t), that satisfies, f (t)§0 andÐ?
{? f (t)dt~1.

When T is a Dagum random variable, its pdf is [9–11]

f (t)~ka 1z
t

b

� �a� �{1{k

b{kat{1zkatw0 ð1Þ

in which tw0, b is the scale parameter (bw0 ), a (w0) and k (w0)

are the shape parameters.

A second method to specify the properties of T is the cumulative

distribution function. Mathematically, this function is expressed as [12].

F (t)~P(Tƒt)~

ðt

{?
f (s)ds,

where f(s) is a pdf. The cumulative distribution function is the

complement of the reliability function, and thus, it is called the

unreliability function [8]. The cumulative distribution function for a

Dagum random variable is
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F (t)~ 1z
t

b

� �{a� �{k

tw0: ð2Þ

A third method to specify the properties of a random variable is

through its reliability function, also known as the survival function [8].

We define the reliability function as

R(t)~P(Twt)~

ð?
t

f (s)ds,

where f(s) is a pdf. The reliability function for a Dagum random

variable is [9,13,14].

R(t)~b{ka 1z
t

b

� �a� �{k

tkatw0: ð3Þ

The fourth method specifies the properties of a random variable

as the hazard function, also called the instantaneous failure rate function

(further details are provided in [8]).

h(t)~
f (t)

R(t)
:

The hazard function for a Dagum random variable is [14]

h(t)~
ka

1z
t

b

� �a� �
{1z 1z

b

t

� �a� �k
 !

t

tw0 ð4Þ

The functions f(t), F(t), R(t), and h(t) are called ‘‘failure

functions.’’

Availability

At first, we have to define several factors that are closely

associated with availability (e.g., failure, availability, and so on).

Failure is defined as the incapability of the system (subsystem or

one of its components) to perform its job [15,16] or the ‘‘inability

of the item to meet the requirements of the work’’[17,18]. The

term ‘‘available’’ is defined as the state of an item such that it can

perform its function under stated conditions of use and mainte-

nance in the required location [19]. Most researchers define

availability as the probability that an item will be available [19,20]

or the probability that the system will operate satisfactorily at any

point in time when operating under a specified condition [20,21].

Availability~
UT

UTzDT
~

MTBF

MTBFzMTTR

where UT is the uptime or operating time, DT is downtime

(excluding free time), MTBF is the mean time between failures,

and MTTR is the mean time to repair. For a more accurate

quantity, ‘‘inherent availability’’ is defined as [19,21]:

Inherent availability~
UT

UTzART

where ART is the active repair time. The MTBF is defined by

Frankel, Dinesh and Bryant [15,22,23] as a parameter of basic

reliability of the repairable components. It is the ratio of the total

number of life units for components of the total number of failures.

MTTR is the mean time to repair, it is defined as the whole time

required to manage the failure, including factors: the way in which

the fault is detected and the response speed of the maintenance

team with the repair time [24]. The mean corrective maintenance

time is defined by Dhillon [25] as the main criterion of the

maintainability of repairable items. It represents the average

(mean) time required to repair failed equipment. This criterion can

be observed based on the inherent availability equation wherein

availability is integrated between reliability and the times for

maintenance and repair [26]. This relationship is very important

because it is used to express the probability that the system will be

operating according to the mission time without failure [26].

Description of the Problem

The electric power distribution station in Iraq was designed to

have two power transformers (T1 and T2). Each transformer has a

circuit breaker with limited capacity (1,200 A), denoted as CBTi

functions as a main circuit breaker of the transformer. These two

transformers are connected to the communication bus situated

between them (termed as Bus-Bar). The Bus-Bar feeds group of

feeders (10 feeders). The Bus-Bar was divided into two parts

separated by circuit breaker with a limited capacity of 800 A,

called the Bus-Bar circuit breaker (CBB). Each one of the ten

feeders has a circuit breaker with a limited capacity of 400 A,

called as (CBFi). The main circuit breakers must be switched ON

and the CBB must be switched OFF if the transformers are in

normal operation. However, if one of these transformers fails, the

CBT of the failed transformer must be switched OFF, and the CBB

is switched ON to provide power to the failed transformer feeders.

Table 1. Time between failures of the electric power
distribution station for five years.

Failure No. TBFs(day) Failure No. TBFs(day)

1 104.895833 2 22.8854167

3 36.729167 4 0.9791667

5 54.8854167 6 83.6875

7 50.895833 8 6.83333

9 97.83333 10 42.8854167

11 149.9791667 12 6.9791667

13 13.9375 14 2.9375

15 70.9791667 16 109.83333

17 36.83333 18 47.78125

19 2.9375 20 118.8020833

21 9.83333 22 529

23 30.895833 24 15.78125

25 71.8854167 26 38.7604167

27 57.8854167 – –

doi:10.1371/journal.pone.0069716.t001
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Data Collection

Five years data of the electricity distribution company in

Baghdad, Iraq, were collected for time between failures (TBFs) of

the electric power distribution station. The failure data were

recorded manually. To deal with this problem, we reported the

number of breakdowns within five years, and also the time

between them. This is shown in Table 1. The first column in

Table 1 represents failures numbers, and second column

mentioned to the number of days require for the station to step-

down. For example, the first TBF value was calculated between

12 am on 1st January and 11:50 pm on 14th April. Accordingly,

the first step-down was occurred after (104.895833).

Each component of the station can be failed in random manner.

The component average time between failures was modeled to be

random variable following certain distribution [2]. EasyFit is the

distribution fitting software that can be used to fit the appropriate

statistical distribution for the TBFs. In the next section we will

focus on the goodness of fit to find the best fitting statistical

distribution for each component of TBFs.

Goodness of Fit

In this paper a goodness of fit for the TBFs statistical

distribution was tested. Such test can be done using many tools.

EasyFit software was used to perform this task. It includes the

using of the Kolmogorov-Smirnov, Anderson-Darling and Chi-square test.

The idea behind the goodness of fit tests is to have the ‘‘distance,’’

critical values, measured between the data and the distribution

being tested. Then that critical value is compared to some

threshold value. The goodness of fit reports includes the test

statistics and the critical values calculated for various significance

levels (d = 0.2, 0.1, 0.05, 0.02, 0.01). Furthermore, the goodness of

fit test statistics indicates the distance between the data and the

provided distributions [27]. The P-value can be helpful specifically

Table 2. The summary of goodness of fit sorted by rank
resulting from the Kolmogorov-Smirnov test.

Kolmogorov
Smirnov

Anderson
Darling Chi-Squared

Distribution Statistic Rank Statistic Rank Statistic Rank

Dagum 0.09309 1 0.19582 1 0.49359 10

Exponential 0.09714 2 0.55542 11 1.2128 15

Exponential (2P) 0.09871 3 1.8547 22 0.78094 11

Weibull (3P) 0.11924 4 1.0625 15 0.24672 8

Burr 0.11966 5 0.3036 4 0.11459 4

Gen. Gamma (4P) 0.12057 6 1.1189 16 0.24378 7

Pearson 6 0.12139 7 0.30249 3 0.11222 3

Pareto 2 0.12214 8 0.29996 2 0.16934 5

Frechet (3P) 0.12715 9 0.3937 5 0.82819 12

Gamma (3P) 0.12922 10 4.2307 28 N/A&

Log-Logistic (3P) 0.13296 11 0.51477 10 1.2346 17

Weibull 0.14339 12 0.41791 6 0.42538 9

Burr (4P) 0.1438 13 4.313 29 N/A&

Inv. Gaussian (3P) 0.14394 14 0.44184 7 0.83618 14

Lognormal (3P) 0.1458 15 0.44902 8 1.2296 16

Fatigue Life (3P) 0.14646 16 0.47478 9 0.82997 13

Gen. Gamma 0.15678 17 0.76019 13 1.2862 19

Inv. Gaussian 0.16775 18 2.0065 24 1.2995 20

Lognormal 0.16859 19 0.63295 12 1.2509 18

Gamma 0.18948 20 1.5649 19 1.5286 21

Log-Logistic 0.19874 21 0.83928 14 2.1911 22

Pearson 6 (4P) 0.20203 22 4.7384 30 N/A&

Fatigue Life 0.22105 23 1.299 17 3.883 26

Pearson 5 (3P) 0.22482 24 3.6623 27 0.00149 1

Levy 0.22647 25 1.8258 21 3.4804 24

Levy (2P) 0.22918 26 1.496 18 0.21343 6

Chi-Squared (2P) 0.24256 27 3.1159 25 4.8578 27

Frechet 0.2431 28 1.6912 20 0.01378 2

Rayleigh (2P) 0.24822 29 3.1436 26 3.6554 25

Pearson 5 0.25076 30 2.0032 23 2.3495 23

Rayleigh 0.25405 31 8.3926 32 7.157 28

Pareto 0.31571 32 6.5738 31 8.711 29

Rice 0.45759 33 18.714 33 31.134 30

Chi-Squared 0.5208 34 137.97 35 31.148 31

Dagum (4P) 0.52183 35 19.63 34 62.473 32

Erlang No fit

Erlang (3P) No fit

Log-Gamma No fit

Nakagami No fit

&: No answer.
doi:10.1371/journal.pone.0069716.t002

Table 3. The details for goodness of fit for a Dagum
distribution (3P).

Kolmogorov Smirnov

Sample Size 27

Statistic 0.09309

P-Value 0.95633

Rank 1

d 0.2 0.1 0.05 0.02 0.01

Critical Value 0.2003 0.22898 0.25438 0.28438 0.30502

Reject? No No No No No

Anderson Darling

Sample Size 27

Statistic 0.19582

Rank 1

d 0.2 0.1 0.05 0.02 0.01

Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074

Reject? No No No No No

Chi-Squared

Deg. of freedom 3

Statistic 0.49359

P-Value 0.9203

Rank 10

d 0.2 0.1 0.05 0.02 0.01

Critical Value 4.6416 6.2514 7.8147 9.8374 11.345

Reject? No No No No No

doi:10.1371/journal.pone.0069716.t003
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when the null hypothesis is rejected at all selected significance

levels, where the P-value is criteria uniformity between the results

actually obtained in the experiment and the random chance

explanation for those results [28–30]. It is required to know at

which level it could be accepted [31]. EasyFit deals with data using

histogram based on TBFs samples. The number of vertical bars

was based on the total number of observations (27 values). The

equation Q~1z log 2N, was used to find the number of bins

(histogram), where N is the total number of TBFs and Q is the

resulting number of classes [32]. The height of each histogram bar

Figure 1. The fitting result for best six distributions of TBFs histogram.
doi:10.1371/journal.pone.0069716.g001

Figure 2. The Dagum distribution fitting result with TBFs data histogram.
doi:10.1371/journal.pone.0069716.g002
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indicates how many data points fall into that class. To obtain the

best fitting model, we chose various distributions. Our analysis

reveals that the distribution with the lowest statistical value is the

best-fitting model.Similar conclusion is also drawn by Fakhraei

[33], This support the validity of our analysis. Based on this fact,

each distribution is ranked (1 = the best model, 2 = the next best

model and so on). The data was analyzed and tested under several

nonnegative distributions using the EasyFit software. Dagum

distribution is the optimal analysis of the TBFs, with scale

parameter b = 90.001 and shape parameters k = 0.33998 and

a = 2.4011. Table 2 shows the summary of the goodness of fit of

TBFs for the (39) nonnegative distributions. Table 3 shows the

goodness of fit details of TBFs for Dagum distribution. Figure 1

shows only the six much closer distributions from all 39

nonnegative distributions. Figure 2 shows the fitting result of

TBFs histogram with the Dagum distribution while Figure 3 (a, b,

c and d) shows the failure functions (Pdf, CDF, Reliability function

and Hazard function) respectively, of Dagum distribution

(k = 0.33998, a = 2.4011, b = 90.001).

Maximum Likelihood Estimation

The best result of goodness of fitting to the TBFs under many

distributions using EasyFit software is the Dagum distribution.

Alwan et al. [34] provides a more detailed treatment of the fitting

method. The maximum likelihood method is used to estimate the

parameters k, a, b of the Dagum distribution. The likelihood

function, L(h), from a generic distribution with density and

reliability functions f (:; h) and R(:; h), respectively, can be written

as [9].

L(h)~P
n

i~1
f ti; hð ÞR ti; hð Þ

where h is the parameter(s) of the distribution and i~1,2,:::,n.

Consider a sample of size n (which is 27 samples in this paper).

The log-likelihood function for the estimate of the parameters

h~(k,a,b) of the Dagum distribution is given by Domma et al.

[9]. That is, the log-likelihood function, ‘(h), based on data from

Eq.1 is [9].

Figure 3. The failure functions of TBFs data of a Dagum random variable with k~0:33998, a~2:4011 and b~90:001, (a) Pdf, (b) CDF, (c)
Reliability function and (d) Hazard function.
doi:10.1371/journal.pone.0069716.g003
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‘(h)~
Xn

i~1

fln (kab){(az1) ln (ti){(kz1) ln (1zbt{a
i )g

z
Xn

i~1

flnf1{½1zbt{a
i �

{kg
ð5Þ

The MLEs ĥh~(k̂k,âa,b̂b) are obtained from the numerical maximi-

zation of Eq.5, since the solution of the maximum likelihood

equations is not in closed form [9]. Using Eq.5 the values of the

estimated k,a,b parameters for each component of the station

relying on the maximum likelihood method are presented in

Table 4.

Reliability Assessment

Figure 4 shows the reliability block diagram for the electric

power distribution station. It also represent the visualization of the

components working. The reliability function for a Dagum

random variable was provided in Eq.3. In the section Problem

Statement, the CBB does not function if, and only if, one of the

transformers do not operate. Fourteen different components exist,

excluding the CBB. Based on Figure 4, the following classifications

of the block diagram reliability of the system for the electric power

distribution station have been described as

First Group(FG)
Transformers 1 and 2 as well as the main circuit breaker are

connected together in a series. At the same time, the two

transformers (Transformers 1 and 2) and their main circuit breaker

are connected in a parallel manner (see Figure 4). The reliability

function of this group is expressed as

RFG(t)~1{P
2

i~1
(1{(RTi(t)|RGBTi(t))) ð6Þ

where RTi(t) and RCBTi(t) are the reliability of transformer i

and of the main circuit breaker of transformer i, respectively,

during the period t.

Second Group (SG)
The feeders are connected in a parallel manner, indicating that

RSG(t)~1{P
10

i~1
(1{RFi(t)) ð7Þ

where RFi(t) is the reliability of feeder i during the period of t.

The group of transformers and the group of feeders are

connected in a series. The reliability function of the system is

Table 4. Estimated scale and shape parameters of Dagum
distribution for each component.

components K a b

T1 0.1319 4.0147 111.0092

T2 0.1283 5.5402 163.794

CBT1 20.8619 0.6425 0.110026

CBT2 0.0764 12.2022 120.841

CBF1 12.4569 1.18365 3.75407

CBF2 2.02372 1.24288 13.0104

CBF3 0.69703 1.45807 32.3148

CBF4 0.929475 1.23822 21.3319

CBF5 1.83028 1.20514 14.535

CBF6 178.257 1.3475 0.403921

CBF7 9.52767 0.3868 0.01772

CBF8 1.37434 1.53844 37.4659

CBF9 1.92766 1.45856 12.6204

CBF10 1.50505 0.18518 14.0558

doi:10.1371/journal.pone.0069716.t004

Figure 4. The reliability block diagram of the 33/11 KV electric
power distribution station.
doi:10.1371/journal.pone.0069716.g004

Table 5. Estimated reliability system values of the electric
power distribution station for 30 days.

T(day) RSYS T(day) RSYS

1 0.996500665 2 0.989498957

3 0.979827045 4 0.968407728

5 0.95585446 6 0.942558222

7 0.928774489 8 0.914675671

9 0.900381613 10 0.885977738

11 0.871526224 12 0.857073115

13 0.842652974 14 0.828292031

15 0.814010334 16 0.799823272

17 0.785742656 18 0.771777517

19 0.75793469 20 0.744219264

21 0.730634929 22 0.717184252

23 0.703868901 24 0.690689829

25 0.67764743 26 0.664741662

27 0.651972165 28 0.639338348

29 0.626839464 30 0.614474679

doi:10.1371/journal.pone.0069716.t005

Reliability Measurement for Mixed Mode Failures

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e69716



RSYS(t)~RFG(t)|RSG(t) ð8Þ

Based on the values presented in Table 4 and by using Eqs. 3, 6,

7, and 8, we can calculate the system reliability for the times

imposed from t = 1 to t = 30, where t is expressed in days. The

data are presented in Table 5.

Limitations of the Study, Open Questions, and
Future Work

We believed that the limitations are:

i. For the sake of brevity, we restrict our investigation to one

electric power distribution station.

ii. We have used the data for five consecutive years.

iii. We used EasyFit software for our investigation.

iv. The study focused in details inside the electric power

distribution station, without return to the source. Note that

if the source feeds the electric power distribution station by

low energy (less than 33 kilovolt), this leads to a high

temperature in the transformer which will cause a sudden

stop of power station.

The present paper deals with the electric power distribution

station as independent and separate components. If one take the

data of failure rate (l) for each components of this station and deal

with l by using the Markov model ‘‘Hidden Markov model.’’

Then one may get better performance of the electric power

distribution station. It is know that the Markov model dependent

on the current state of the failure, rather returning to the history of

the data [35].

The current paper may be extended to scrutinize preventive

maintenance modelling and to estimate its effects on the

components of the station. This might improve the supply of

electrical energy and will reduce the operating cost of the power

station.

Conclusion

The time between failures was analyzed to determine the best-

fitting distribution. Using the distribution fitting software EasyFit,

we determined that the most valid distribution is the Dagum

distribution with a scale parameter b~90:001, shape parameters

k~0:33998 and a~2:4011. The reliability value for the system on

the first day was 0.99. If the station works for 30 days, the

reliability value of station was decreased to 0.61. The value of the

reliability function was declined by 38.2% in 30 days. This

percentage indicates that the electric power distribution station

studied in this paper exposed to fail close together in time, even in

the same part. This leads to two possibilities; the first is that, the

maintenance staff and engineers are not doing their work at best

performance, the second is that parts for the electric power

distribution station, consisting of 14 components are not good and

are exposed to crash shortly after repairs. The first reason can be

ignored, because, the field visits by researcher can emphasize the

expertise of engineers and maintenance workers in the completion

of repairs and maintenance in record time and dynamically good

as mentioned in the records. The main problem is that the sum of

component is not good. With reference to the case of calculating

the Eqs. 6 and 7 for the reliability value for each component, it can

be seen that the items CBT1, CBF2, CBF3, CBF4, CBF5, CBF6,

CBF7 and CBF9 have the largest percentage in the value of

reliability. Their reliability values after 30 days become as, 0.42,

0.45, 0.40, 0.37, 0.47, 0.41, 0.40, and 0.38 respectively. These

values show that the components of the electric power distribution

station continuously deteriorate because of aging. Furthermore,

these components CBT1, CBF2, CBF3, CBF4, CBF5, CBF6, CBF7

and CBF9 had the highest critical value and must be changed with

new items as soon as possible.
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