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Abstract

Background: Transcutaneous neuromuscular electrical stimulation (NMES) can be applied as a complementary intervention
to regular exercise training programs. A distinction can be made between high-frequency (HF) NMES and low-frequency (LF)
NMES. In order to increase understanding of the mechanisms of functional improvements following NMES, the purpose of
this study was to systematically review changes in enzyme activity, muscle fiber type composition and muscle fiber size in
human lower-limb skeletal muscles following only NMES.

Methodes: Trials were collected up to march 2012 and were identified by searching the Medline/PubMed, EMBASE, Cochrane
Central Register of Controlled Trials, CINAHL and The Physical Therapy Evidence Database (PEDro) databases and reference
lists. 18 trials were reviewed in detail: 8 trials studied changes in enzyme activities, 7 trials studied changes in muscle fiber
type composition and 14 trials studied changes in muscle fiber size following NMES.

Results: The methodological quality generally was poor, and the heterogeneity in study design, study population, NMES
features and outcome parameters prohibited the use of meta-analysis. Most of the LF-NMES studies reported significant
increases in oxidative enzyme activity, while the results concerning changes in muscle fiber composition and muscle size
were conflicting. HF-NMES significantly increased muscle size in 50% of the studies.

Conclusion: NMES seems to be a training modality resulting in changes in oxidative enzyme activity, skeletal muscle fiber
type and skeletal muscle fiber size. However, considering the small sample sizes, the variance in study populations, the non-
randomized controlled study designs, the variance in primary outcomes, and the large heterogeneity in NMES protocols, it is
difficult to draw definitive conclusions about the effects of stimulation frequencies on muscular changes.
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Introduction Neuromuscular electrical stimulation (NMES) can be applied as

an complement intervention to voluntary exercise training [11].
NMES involves the application of an electric current through
electrodes placed on the skin over the targeted muscles, thereby
depolarizing motor endplates via the motor nerve and, in turn,
inducing skeletal muscle contractions [12,13]. NMES is composed
of stimulation-rest cycles situated in regard to muscle motor points

Regular exercise training programs consist of a combination of
aerobic and strengthening exercises for developing and maintain-
ing muscular endurance and strength, respectively [1]. Indeed,
combined training modalities result in improvements in body
composition and cardiorespiratory fitness. These improvements
can partially be explained by intramuscular changes, such as an [14]. In contrast to voluntary muscle actions, NMES activates the
increased enzyme activity and an increased muscle fiber size [2,3]. muscle to a greater extent under identical technical conditions

These intramuscular changes are dependent on the type of [15]. At identical levels of workload (10% of the quadriceps
exercise training. Generally, aerobic exercise training results in maximum isometric voluntary torque), the muscle reaches higher

increased levels of oxidative enzymes [4] and only a marginal
increase in percentage type I fibers [5]; whereas resistance training
results in increased levels of glycolytic enzymes [6] and an increase
in percentage and size of type II fibers [7-10].
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values in blood flow and oxygen consumption during NMES
compared with voluntary contractions [15]. Moreover, a single
session of NMES is sufficient to stimulate molecular-level
responses, which are indicative of the initiation of myogenic
processes in skeletal muscle, while an additional NMES session (a

September 2013 | Volume 8 | Issue 9 | 69391



total of 14 minutes spread over 2 days), was sufficient to induce an
increase in the concentration of total ribonucleic acid (RNA) [16],
most likely representing an increase in muscle protein synthesis.
There is sufficient evidence that NMES induced contractions differ
physiologically compared to voluntary contractions [17]. In
human studies contradictory findings on motor unit recruitment
order have been found [18]. Some studies suggest preferential or
selective activation of fast motor units with NMES [19,20],
whereas others suggest that motor unit recruitment during NMES
reflects a non-selective, spatially fixed, and temporally synchro-
nous pattern rather than in a reversal of the physiological
voluntary recruitment order [17]. These diverse results could
have been related to differences in protocols and stimulated
muscles [14].

In daily clinical practice, lower-limb NMES improves skeletal
muscle mass and function, exercise capacity and health status [21—
23], particularly in subjects who are unable to perform or
complete volitional exercise training programs. Therefore, NMES
may be valuable in dyspneic and deconditioned patients with
chronic organ failure due to the low metabolic load on the
impaired cardio-respiratory system [23,24].

NMES training sessions generally last 10-30 minutes during a
4- to 5-week period that involves 20-25 sessions to increase
peripheral muscle function [14]. 2 types of NMES frequencies can
be distinguished: high-frequency NMES (HF-NMES, >50 Hertz);
and low-frequency NMES (LF-NMES, <20 Hertz) [13,14,25—
27]. Frequencies of 50 Hertz and above induce a fused tetanus
[28,29] and generate higher torques than low frequencies [30].
The mechanisms by which NMES results in increased muscle
strength or endurance are poorly understood. In isolated muscles
in rats HF-NMES induces anabolic processes similar to resistance
training (e.g. increased PKB-TSC2-mTor and protein synthesis)
and LF-NMES similar to endurance training (AMPK-PG Cla
activation) [31]. In humans, it is unknown which stimulation
frequency is involved in the specific physiological and biochemical
processes [13].

To date, narrative reviews have been published about the effects
of NMES on gains in muscle performance, activation of motor
units and/or muscle energetics [14,26,32,33]. However, there is a
broad diversity in NMES programmes, populations and outcomes
which makes it difficult to interpret the conclusions. The effects of
NMES on intramuscular changes have not been systematically
reviewed yet. The purpose of this study is to systematically review
changes in enzyme activity, muscle fiber type composition and
muscle fiber size in human lower-limbs following a NMES
programme. A distinction will be made between HF-NMES and
LF-NMES, as well as in healthy volunteers, patients with chronic
organ failure or orthopedic problems. Our hypothesis is that LF-
NMES (<20 Hz) will primarily induce endurance training-like
adaptations such as increased oxidative enzyme capacity and fiber
type I proportion, whereas HF-NMES (>50 Hz) will primarily
induce adaptations comparable to resistance training such as an
increased glycolytic capacity, fiber type II proportion and muscle
fiber size. Safety and the methodological quality of the trials will
also be assessed.

Methods

Data sources and searches

We followed the procedures described in the PRISMA
statement for reporting systematic reviews (online supplement)
[34]. A broad computerized literature search was performed to
identify relevant trials reported in the English language. We used
the following databases: Medline/PubMed (from 1966), EMBASE
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(from 1974), Cochrane Central Register of Controlled Trials (from
1898), CINAHL (from 1982), and The Physical Therapy Evidence
Database (PEDro) (from 1982). Trials were collected up to March
2012. Search terms were combinations of keywords related to
neuromuscular electrical stimulation, lower-limb muscles, muscle
mass and muscle metabolic profile. The exact search algorithm for
Medline/PubMed can be found in Appendix 1. Similar search
algorithms were used for the other databases. In addition,
reference lists and citations of original articles were also scanned
to identify additional articles that may contain information on the
topic of interest.

Data extraction

A pre-designed data abstraction form was used to obtain data
on trial design and relevant results. For each article, characteristics
of the study subjects were noted: a) the condition of the study
population (healthy or primary diagnosis), gender and age; b)
study design and NMES features (i.e. pulse duration, pulse
frequency, duty cycle and pulse amplitude of the used current,
training intensity, session time and duration in weeks); c) outcome
measures, such as muscle enzyme activity (i.e. changes in oxidative
and glycolytic enzymes), changes in muscle fiber type, changes in
muscle fiber size and d) safety.

Article selection

Articles were used for further analyses when they met the
following eligibility criteria:

Types of studies. Randomized controlled trials (RCTs),
controlled clinical trials (CCTs) and clinical trials were included. 4
priont, congress abstracts, reviews, editorials and case reports were
considered ineligible.

Study subjects. Included were trials in which human lower-
limb muscles were electrically stimulated. Reasons for exclusion
were studies with subjects suffering from neurological disorders
(e.g., hemiplegia or lesion of the spine) or smooth muscle problems
(e.g., period of bladder dysfunction)

Types of interventions. Included were trials in which the
muscles were stimulated transcutaneously at the muscle motor
points with a stimulation frequency of <20 Hertz (LF-NMES) or
>50 Hertz (HF-NMES), a minimum total session time of
120 minutes, a minimum of 3 sessions per week in a minimum
of 4 weeks [13,14,18]. Trials were not excluded based on pulse
duration, pulse amplitude or training intensity.

Types of outcome measures. In the reviewed publications
the outcome measures were muscular activities of enzymes
mvolved in oxidative or glycolytic energy metabolism, changes
in fiber type composition and/or muscle fiber size following
NMES.

Assessment of methodological quality

The methodological quality of the identified trials was scored
using the PEDro scale and is based on the Delphi list and “expert
consensus” [35]. The PEDro scale consists of 11 criteria which
receives either a “yes” or a “no”. Criterion 1 (‘Eligibility criteria’)
is not used in the calculation of the PEDro score. All “yes” scores
were summed resulting in a maximum score of 10 points [35]. A ¥
coeflicient was used to measure the level of interrater reliability,
using a method for comparing the level of reliability with
categorical data along with their respective 95% confidence
intervals [36]. Consensus was sought in case of disagreement.
Trials with a PEDro score of =6 points were classified as “high-
quality trials”, while trials with a PEDro score =5 points were
classified as “low-quality trials” [37].
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Records excluded because of
duplicate:
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Records after duplicates removed
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Records excluded based on title
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A
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Figure 1. Screening and selection process of trials.
doi:10.1371/journal.pone.0069391.g001

Data analysis

The use of meta-analytic techniques for data-pooling was not
possible, because of the heterogeneity in study types, study
populations, wide diversity in NMES protocols (e.g., frequency,
pulse duration, session time, total number of sessions) and/or
outcome parameters (e.g., activity of different enzymes). Also, the
technique for measuring muscle fiber size differed among the
included studies. Therefore, the present authors were only able to
systematically review the available peer-reviewed literature and to
critically appraise the methodological quality and the overall
findings.
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Results

Search and selection

After removing duplicates, 1230 potentially relevant studies
were identified by screening electronic databases. No trials were
additionally identified by scanning reference lists. Of these trials,
1171 were excluded based on title and/or abstract. Of the
remaining 59 trials, 41 trials were excluded after reading the full
text based on type of intervention, outcome parameters and/or
publication type. Finally, 18 [38-55] trials were included. 8 trials
[39,40,46-48,52-54] studied changes in enzyme activity, 7 trials
[38,40,46-48,52,54] studied changes in muscle fiber type compo-
sition, and 14 trials [38,40-45,48-52,54,55] studied changes in
muscle fiber size following NMES (figure 1).
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A non-controlled experimental design was used in 6 studies, a
controlled clinical trial was used in 3 studies and a randomized
controlled design was used in 9 studies.

Methodological quality of the trials (table 1)

The interrater reliability for the reviewers (MJHS and FMEF)
was 0.74 (95% confidence interval, 0.68 to 0.80; p<<0.001).

PEDro scores ranged from 2 to 9 points in the trials concerning
changes in enzyme activity (median: 5.5 points). 4 trials (50%) [46—
48,54] scored >6 points on the PEDro scale. Of the trials studying
muscle fiber type composition, PEDro scores ranged from 2 to 9
points (median: 6 points). 5 trials (71%) [38,46-48,54] scored >6
points on the PEDro scale. In the trials concerning changes in
muscle fiber size, PEDro scores ranged from 2 to 9 points (median:
4 points). 5 trials (36%) [38,48,49,54,55] scored >6 points on the
PEDro scale.

Overall, eligibility criteria [41,42,45,48,53], failure to conceal
allocation, and blinding of the participants, therapists and
outcome assessors were the most prevalent methodological
shortcomings (table 1).

NMES Protocols (table 2)

There was a substantial heterogeneity in the studied populations
and NMES features (table 2). For example, 6 studies enrolled
patients with chronic organ failure, divided in 2 studies [38,54]
including patients with chronic obstructive pulmonary disease
(COPD) and 4 studies [43,44,47,49] including patients with
chronic heart failure (CHF). In 3 studies [50,51,55] the subjects
had orthopedic problems of the lower limbs and in 9 studies [39—
42,45,46,48,52,53] healthy volunteers were enrolled.

Different lower-limb muscles were stimulated in the identified
trials: quadriceps femoris muscles [38-42,48,50-53,55], calf
muscles [45], quadriceps femoris muscles combined with calf
muscles [43,44,54], or quadriceps femoris muscles combined with
hamstrings [46,47,49].

All trials used biphasic impulse current forms ranging from 8 to
20 and 50 to 120 Hertz. Pulse duration, not reported in 1 study
[53], ranged between 200 and 700 ps. Duty cycle, not reported in
1 study [53], ranged between 3 seconds on, 30 seconds off to
55 seconds on, 2 seconds off. Pulse amplitude, not reported in 1
study [39], varied between 10 mA until the individual’s maximum
level of toleration. Session time varied between 10 minutes and
8 hours, 1 to 2 times a day. The total number of sessions varied
between 12 and 140 (table 2) between 4 and 10 weeks. The total
session time ranged from 2 to 384 hours.

Safety

Safety was not reported in 13 trials. In 3 trials [38,47,49] no
relevant side effects or adverse events were reported. Only once
[49] a delayed onset muscle soreness was reported and one trial
explicitly reported the absence of serious discomfort in the
stimulated subjects [41]. Finally, in 1 trial [54] 1 study subject
withdrew because of discomfort during NMES.

Changes in enzyme activity following NMES

5 trials studied changes in enzyme activity following LF-NMES
[39,46,47,52,53] and 3 trials following HF-NMES [40,48,54]
(tables 3 and 4). The study subjects consisted of healthy volunteers
[39,40,46,48,52,53], patients with severe CHF [47] or severe
COPD [54]. Enzyme activity was determined using muscle
biopsies in the vastus lateralis of the quadriceps muscle in all
studies.
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Changes in oxidative enzymes in healthy volunteers

Levels of oxidative enzymes generally increased following LF-
NMES (table 3) and following HF-NMES (table 4).

Citrate synthase. Citrate synthase (CS), a marker enzyme
for the tricarboxylic acid cycle (Krebs cycle), was an outcome
parameter in 4 LF-NMES trials [39,46,52,53]. In 3 trials
[39,52,53] CS increased compared to baseline (9 to 31%) and in
1 trial [46] CS increased compared to sham-stimulation.

Isocitrate dehydrogenase. Isocitrate dehydrogenase, anoth-
er enzyme that participates in the tricarboxylic acid cycle,
increased significantly following HF-NMES compared to baseline
(40].

3-Hydroxylacyl-CoA dehydrogenase (HADH). HADH, a
key enzyme of B-oxidation of fatty acids, increased significantly
following LF-NMES compared to baseline in 2 trials in healthy
volunteers (7-30%) [39,53]. Contradictionary, in a HF-NMES
trial [40] HADH decreased.

Enoyl CoA hydratase. Enoyl CoA hydratase, an enzyme
that participates in the B-oxidation of fatty acids, increased
significantly following HF-NMES compared to baseline [40].

NADH-ubiquinone NADH-ubiquinone
oxidoreductase, complex I of the electron transport chain,
increased significantly following HF-NMES compared to baseline
(40].

Succinate dehydrogenase. Succinate dehydrogenase, an
enzyme that participates in both the tricarboxylic acid cycle and
in complex II of the electron transport chain, increased
significantly following HF-NMES compared to baseline and
increased 16% compared to controls [48].

Ubiquinol-cytochrome ¢ reductase. Ubiquinol cyt C
reductase, complex III of the electron transport chain, increased
significantly following HF-NMES compared to baseline [40].

Cytochrome c oxidase. Cytochrome c¢ oxidase, complex IV
of the electron-transfer chain metabolism, increased significantly
following LF-NMES compared to baseline (16 to 19%) [39,53].

Pyruvate dehydrogenase. Pyruvate dehydrogenase, an en-
zyme which contributes to linking the glycolysis metabolic
pathway to the citric acid cycle and releasing energy via NADH,
increased significantly following HF-NMES compared to baseline
[40].

oxidoreductase.

Changes in oxidative enzymes in patients with CHF or
COPD

Levels of CS increased following LF-NMES (15 Hertz)
compared to sham-stimulation in patients with severe CHF [47]
and did not change following HF-NMES (50 Hertz) in patients
with severe COPD [54].Levels of HADH did not change following
HF-NMES (50 Hertz) in patients with severe COPD [54].

Changes in glycolytic enzymes in healthy volunteers

Levels of glycolytic enzymes generally did not change or
decreased following LF-NMES or HF-NMES respectively (tables 3
and 4).

Phosphofructokinase (PFK). Levels of PFK, a glycolytic
enzyme that catalyses the phosphorylation of fructose phosphate,
decreased or did not change compared to baseline following LI-
NMES or HF-NMES (variation from baseline was between —11
and 0%) [39,40,53].

Glyceraldehyde
(GAPDH). Concentrations of GAPDH, a marker enzyme of
anaerobic energy metabolism by catalysing the sixth step of
glycolysis, decreased significantly in 1 LF-NMES trial [46]
compared with sham-stimulation (variation from baseline was -

3-phosphate dehydrogenase
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Glyceraldehydephosphate dehydrogenase (15% | ) changes in glyceraldehydrephosphate

Citrate synthase (30% 1) Mean changes in citrate synthase

Patients with 15

severe CHF

Nubhr et al.,
2004

dehydrogenase in the NMES-group compared with sham-stimulation (p<0.05). NMES-group:

in the NMES-group compared with sham-stimulation (p<0.05).

mean changes in glyceraldehydephosphate dehydrogenase of -41 units per gram wet wt-1

NMES-group: mean changes in citrate synthase of 1.0 units per gram

(277 units per gram wet wt-1 before NMES vs. 236 units per gram wet wt-1 after NMES).

wet wt-1 (3.3 units per gram wet wt-1 before NMES vs. 4.3 units per

Sham-stimulation group: mean changes in glyceraldehydephosphate dehydrogenase of 12
units per gram wet wt-1 (277 units per gram wet wt-1 before NMES vs. 289 units per gram

wet wt-1 after NMES).

gram wet wt-1 after NMES). Sham-stimulation group: mean changes in

citrate synthase of -0.3 units per gram wet wt-1 (3.4 units per gram wet

wt-1 before NMES vs. 3.1 units per gram wet wt-1 after NMES).

doi:10.1371/journal.pone.0069391.t003
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15%). Levels of GAPDH did not change in 2 LF-NMES trials
[39,53] compared to baseline.

Hexokinase. Hexokinase, a key glycolytic enzyme, increased
significantly in females (36%) and did not change in males
following LF-NMES compared to baseline [39].

B-enolase. B-enolase, which catalyses the glycolysis of 2-
phosphoglycerate to phosphoenolpyruvate, did not change in a
sedentary group of healthy young men following HF-NMES
compared to baseline, but increased in an active group of healthy
young men following HF-NMES compared to baseline [40].

Changes in glycolytic enzymes in patients with CHF

In patients with severe CHF levels of GAPDH decreased
significantly in 1 LF-NMES trial [47] compared with sham-
stimulation (variation from baseline was —15%).

Skeletal muscle fiber type composition following NMES

3 trials [46,47,52] studied skeletal muscle fiber type composition
following LF-NMES and 4 trials [38,40,48,54] following HF-
NMES (table 5). The study subjects consisted of healthy volunteers
[40,46,48,52], patients with severe CHF [47] and patients with
severe COPD [38,54].

Healthy volunteers

Type I fibers. Proportion of type I fibers increased in 1 LF-
NMES trial (15%) [46] and 1 HF-NMES trial (active group 20%
and sedentary group 96%) [40], and did not change in 1 LF-
NMES trial [52]. This fiber type decreased in 1 trial following HF-
NMES (—15%) [48].

Type II fibers. Type Ila fibers proportions increased
following LF-NMES (19%) [52] and HF-NMES (63%) [48]. In
another HF-NMES trial this fiber type increased in the sedentary
group (42%) and decreased in the active group (9%) [40].

Type IIx fibers proportions decreased in 2 LF-NMES trials
(22% and 32%) [46,52] and 2 HF-NMES trials (79% and 88%)
[40,48].

Patients with CHF or COPD

Proportion of type I fibers increased (19%) following LF-NMES
[47] and decreased (4% and 21%) following HF-NMES [38,54],
type II proportions did not change following HF-NMES [38].

Type Ila proportions did not change in patients with CHF
following LF-NMES [47] and these fiber type proportions
remained unchanged compared to controls in patients with
COPD following HF-NMES [54]. Type IIx fibers decreased
following LF-NMES (19%) [47] and did not change following HF-
NMES compared to a control group [54].

Changes in muscle size following NMES

Different techniques were used to determine changes in whole
muscle cross-sectional area (CSA) or muscle fiber CSA following
NMES (tables 6, 7 and 8). Muscle fiber GSA was measured by
percutaneous needle biopsy of the wvastus lateralis muscle
[38,40,48,52,54]. Whole muscle CSA was measured by computed
tomography [45,49,51], magnetic resonance imaging (MRI)
[43,44,50,55], ultrasonography [41] or circumference and skinfold
measurements [42]. Maillefert and colleagues determined the total
volume of the soleus muscles and gastrocnemius muscles by
calculated muscle volume from serial CSAs measured by MRI
[44].3 trials used LF-NMES [43,44,52] and 11 trials used HF-
NMES [38,40-42,45,48-51,54,55].

Healthy people. Muscle fiber CSA did not change following
1 LF-NMES trial [52] and 1 HF-NMES trial [48]. Following

September 2013 | Volume 8 | Issue 9 | 69391



Table 4. Enzyme activity following HF-NMES.
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after NMES.

Frequency .
Study Subjects (Hz) Enzyme activity
Oxidative enzymes Glycolytic enzymes
Perez et al,  Healthy 45-60 Succinate dehydrogenase (16% 1) Succinate dehydrogenase activity
2002 volunteers increased ?716% vs. control group.
Gondin Healthy 75 Active group post-NMES vs Active group pre-NMES: NADH-ubiquinone Active group post-NMES vs Active
et al, 2011 volunteers oxireductase 1 Ubiquinol cyt C reductase 1 Enoyl CoA hydratase group pre-NMES: B-enolase 1
Sedentary group post-NMES vs sedentary group pre-NMES: Acyl CoA Sedentary group post-NMES vs
dehydrogenase | Pyruvate dehydrogenase 1 lsocitrate dehydrogenase sedentary group pre-NMES:
1 Ubiquinol cyt C reductase 1 Phosphofructokinase | B-enolase =
Vivodtzev Patients with 50 No significant changes in enzyme activity after training Citrate synthase
etal, 2012  severe COPD (2% 1) NMES-group: mean changes in citrate synthase of 13.5 (+5.1)

umol*min-1.g wet wt-1 before NMES vs.13.2 (+8.2) pmol*min-1.g wet wt-1
after NMES. Sham-stimulation group: mean changes in citrate synthase
(17% |, ) of 9.0 (+2.2) umol*min-1.g wet wt-1 before NMES vs.10.8 (+2.4)
umol*min-1.g wet wt-1 after NMES.

HADH (7% | ) NMES-group: mean changes in HADH of 4.2 (+1.2)
umol*min-1.g wet wt-1 before NMES vs.3.9 (+1.1) umol*min-1.g wet wt-1
after NMES. Sham-stimulation group: mean changes in HADH of 3.6 (+1.2)
umol*min-1.g wet wt-1 before NMES vs.3.6 (+0.8) umol*min-1.g wet wt-1

doi:10.1371/journal.pone.0069391.t004

another HF-NMES trial muscle fiber CGSA increased, in both type
I and type II fibers [40] (table 6). Whole muscle CSA was studied
in 3 HF-NMES trials [41,42,45] and did not change in 1 trial [45]
and increased in 2 trials [41,42].

Patients with CHF or COPD. Following HF-NMES muscle
fiber CSA did not change in one trial [38] and increased
compared to sham stimulation in another trial [54] (table 7).
Whole muscle CSA increased following LF-NMES [43,44] and
HF-NMES [49] (table 7).

Patients with orthopedic problems. Whole muscle CSA
increased significantly in 1 HF-NMES trial [55] and did not
change in two other HF-NMES trials [50,51] (table 8).

Discussion

This is the first systematic review on the effects of lower-limb
NMES on intramuscular changes in the human lower-limb
muscles. Most of the studies reported a significant increase in
oxidative enzymes following LF-NMES. There are obvious
changes in skeletal muscle fiber type composition following
NMES. Indeed, LF-NMES seems to increase percentage of type
I and IIa fibers, whereas fiber type composition following HF-
NMES shows conflicting results. Both NMES protocols showed
conflicting results in changes in muscle fiber size and total muscle
volume. Heterogeneity in study design, study population, NMES
features and outcome parameters prohibits the use of meta-
analysis.

PLOS ONE | www.plosone.org

1

Table 5. Skeletal muscle fiber type composition following NMES.
Study Subjects Frequency Changes in muscle fiber type composition
Type | fibers Type Il fibers Type lla fibers Type lib/x fibers
Theriault Healthy volunteers 8 = 19% 1 32% |
et al,, 1996
Nuhr et al.,  Healthy volunteers 15 15% 1 = 22% |
2003
Perez et al,  Healthy volunteers 45-60 15% |, 63% 1 88% |,
2002
Gondin Healthy volunteers 75 Active group 20% 1 Active group 9% | Sedentary group 79% |
et al, 2011 Sedentary group 96% 1 Sedentary group 42% 1
Nuhr et al.,  Patients with CHF 15 19% 1 = 19% |,
2004
Dal Corso Patients with moderate 50 4% |, E
et al, 2007  to severe COPD
Vivodtzev Patients with 50 21% |, = =
etal, 2012  severe COPD
Data are shown as variation from baseline.
doi:10.1371/journal.pone.0069391.t005
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Table 6. Changes in muscle fiber size following NMES in healthy people.

Frequency
Study (Hz) Type | CSA Type Il CSA Whole muscle CSA/muscle fiber CSA
Theriault 8 Mean changes of CSA of type |  Mean changes of CSA of type lla No significant changes in CSA of the muscles before and after
et al, 1996 fibers before 54371170 um? fibers before 5568+1318 pum? NMES.
versus 57911381 um? after versus 6041+1515 um? after NMES.
NMES.

Mean changes of CSA of type lIx

fibers before 4539+1314 um?

versus 48501730 um? after NMES.
Perez et al, 45-60 CSA of the muscles increased (?14%) compared with controls
2002 (p<0.05).
Gondin 75 CSA of both fiber types increased after NMES, which was higher
et al, 2011 in type Il fibers (+23%) compared with type | fibers (+12%).
Martin 70 Total CSA of the muscles was similar before and after NMES
et al,, 1994 Mean CSA values in the triceps surae were 50.80+5.2 cm?

before NMES and 50.80+4.8 cm? after NMES.
Gondin 75 CSA increased significantly in the NMES group compared with
et al, 2005 control group. CSA increased significantly (6.0+2%, p<<0.001)
in the NMES group compared with baseline.

Herrero 120 CSA increased significantly (9.0%, p<<0.01) in the NMES group
et al, 2006 compared with baseline.

doi:10.1371/journal.pone.0069391.t006

Table 7. Changes in muscle fiber size following NMES in patients with CHF or COPD.

722 pm? versus 5129+969
um? after NMES.

Mean changes of CSA of

type | fibers before 5252+
505 um? versus 4818+422
um? after sham-stimulation

397 um? versus 3673+545
um? after NMES.

Mean changes of CSA of
type lla fibers before 4653+
367 um? versus 3913+502
um? after sham-stimulation.

Mean changes of CSA of
type lIx fibers before 2406+
312 um? versus 3380854
um? after NMES.

Mean changes of CSA of
type lIx fibers before 4206+
607 pm? versus 4046+453
um? after sham-stimulation.

Frequency

Study (Hz) Type | CSA Type Il CSA Whole muscle CSA/muscle fiber CSA

Mailllefert 10 Total volume of soleus muscles and gastrocnemius muscles increased

et al., 1998 significantly. Mean changes of total volume of soleus muscles before
319+42.9 cm? versus 338+52.5 cm® and gastrocnemius muscles before
259.4+58 cm® versus 273.4=74 cm® after NMES.

Jancik et al, 10 Muscle mass volumes of gastrocnemius muscles increased significantly

2002 and of soleus muscles no significant differences were reported. Mean
changes of total volume of gastrocnemius muscles before 254.3+47 cm?®
versus 278.6+38 cm® after NMES.and of soleus muscles before 315.2+65
cm? versus 331.5+44 cm3 after NMES.

Quittan 50 CSA increased significantly (p<<0.001) in the NMES group compared with

et al, 2001 the control group (p=0.009). NMES group: Mean changes of CSA before
98.5+27.6 cm? versus 111.3+24.2 cm? after 8 weeks. Control group:
Mean changes of CSA before 104.4+21.6 cm? versus 106.4+22.8 cm?
after 8 weeks.

Dal Corso 50 Mean changes of CSA of Mean changes of CSA of CSA of the muscles was similar before and after NMES.

et al,, 2007 type | fibers before 4610+ type Il fibers before 3786+

1808 pm? versus 4009+ 1294 um? versus 4119+
1329 pum? after NMES. 936 um? after NMES.
Vivodtzev 50 Mean changes of CSA of Mean changes of CSA of No statistically significant changes in CSA between groups. Mean changes
et al, 2012 type | fibers before 4636+ type lla fibers before 3423+  of CSA of all type fibers before 3488+450 um? versus 4061+735 um?

after NMES

Mean changes of CSA of all type fibers before 4720429 um? versus
4046+4530 pm? after sham-stimulation.

doi:10.1371/journal.pone.0069391.t007
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Table 8. Changes in muscle fiber size following NMES in patients with orthopedic problems.

Frequency Type ll
Study (Hz) Type | CSA CSA Whole muscle CSA/muscle fiber CSA
Walls et al, 2010 50 CSA increased 7.4% following NMES (p = 0.036).
Singer et al., 1986 50-100 No significant changes in CSA.
Rebai et al, 80 and 20 No significant differences in deficit in muscle volume between the groups were reported. At
2002 12 weeks, the rate of recuperation was in the 20 Hz

group 93% and in the 80 Hz group 89%.

doi:10.1371/journal.pone.0069391.t008

Methodological considerations

Overall, the methodological quality of the included trials was
poor (median score 4 points). None of the 18 included trials had a
perfect score on the PEDro scale (table 2). In fact, only 7 trials
(39%) were of high-quality. Eligibility criteria were not specified in
4 trials (22%) and a control group was lacking in 6 trials (33%).
Other methodological considerations were the limited number of
study subjects (n=8 to n=40), the low mean age (38 years) and
the fact that most subjects studied were men. Elderly subjects may
respond differently on anabolic training stimulus compared to
younger subjects [56]. Moreover, gender-differences exist in fiber
type distribution and mean CSA [57]. So, the internal and
external validity of the findings of the reviewed trials were limited.

NMES protocols

NMES protocols varied tremendously among the included
trials. Pulse duration, if reported, ranged between 200 and 700 ps.
Pulse duration of 300—400 us is recommended for large muscle
groups, such as the quadriceps muscles and calf muscles [58]. It
remains currently unknown which duty cycle is optimal for
effective treatment.

While throughout the literature a wide variety of protocols are
used, there seems to be at least some agreement on the use of
biphasic symmetrical pulses that last between 100 and 500 ps and
are delivered at a pulse rate of 10-100 Hertz. Pulse rates between
10-50 Hz are used in patients with CHF and in patients with
COPD with positive improvements in exercise capacity and health
status [23,59] whereas pulse rates between 50-100 Hz are mostly
recommended for gains in muscle performance [14,18]. Such
pulses are widely accepted as being well tolerated.

The stimulus intensity varied among the included trials, from a
comfortable stimulus till maximum tolerance level. These diverse
results could have been related to differences in protocols and
stimulated muscles. It is strongly recommended that pulses are
delivered at the highest tolerable pulse amplitude [22]. Another
common procedure is to quantify isometric maximal voluntary
contraction (MVC) force at the beginning of a NMES session, and
subsequently express the level of each electrically elicited
contraction as a percentage of the MVC force [18].

The duration of the NMES programmes varied between
10 minutes to 8 hours/day, 1 to 2 sessions/day, 3 to 7 days/week
for 4 to10 weeks. The minimum total duration of the NMES in
the included studies are in line with the studies which show
significant improvements in peripheral muscle function [13,14].

Changes in enzyme activity following NMES

Activity of oxidative enzymes generally increased significantly
following 6 weeks of LF-NMES. The increase in oxidative enzyme
activity was accompanied with an improved resistance to fatigue
[52,53] and an improvement in functional exercise capacity [47].
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Compared with a minimum of 6 weeks of endurance cycling
training [60,61], the absolute and relative improvement in CS
activity after NMES is lower.

Levels of glycolytic enzymes did not change or decreased
following LF-NMES. These results are comparable with endur-
ance training in healthy young men [62] and in patients with
COPD [63]. In healthy volunteers levels of oxidative enzymes
increased following HF-NMES [40,48]. These adaptations are
more endurance-specific. Collins and colleagues recently showed
that the use of a wide pulse (1 ms), high frequency (80-100 Hertz)
and a low intensity might favour the recruitment of fatigue-
resistant motor units (according to the Henneman’s size principle)
[64]. This combination of stimulation parameters could also be
relevant for increasing oxidative capacity. However, they used a
wide pulse and low stimulation intensity whereas the included
trials in the present review [40,48] used narrow pulses and
intensities at the maximum toleration level. As the consequence,
the corresponding increase of oxidative enzymes is likely due to the
non-selective recruitment of both type IIx and type I fibers during
HF-NMES [17]. Another study limitation is that only one study (in
healthy volunteers) with a very small sample size [40] studied
glycolytic enzymes following HF-NMES. In the sedentary group
the downregulation of glycolytic enzymes is highly consistent with
the fast-to-slow MHC isoform shift as slow fibers mostly have an
oxidative metabolism and type IIx fibers mostly have a glycolytic
metabolism. Additionally, glycolytic enzyme content is known to
increase in the order of slow oxidative, fast oxidative, glycolytic,
fast glycolytic fibers [65]. However, the small sample size is too
limited (n=10) to provide an answer on the hypothesis that HF-
NMES increases glycolytic capacity.

Changes in skeletal muscle fiber type composition
following NMES

Changes in type I and Ila fiber proportion were variable
following HF-NMES. Resistance training resulted in no changes in
type I fibers and an increase of type II fibers [7,66]. However,
based on the results of the present systematic review changes in
type Ila and type IIx fibers following regular resistance training
programs [67] cannot be compared with HF-NMES. Following
LF-NMES type I and Ila fibers increased. Endurance training
programs also resulted in an increase of type I and type Ila fibers
and a decrease of type IIx fibers [4,5,68]. However, considering
the small number of studies and heterogeneity in NMES protocols
and study populations it is difficult to draw relations between LI-
NMES and endurance training.

Changes in muscle size following NMES

In 50% of the HF-NMES studies muscle fiber size increased
significantly. The increased CSA was accompanied with an
increased muscle strength [40-42,49]. Changes in total muscle
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fiber size following LF-NMES are conflicting. Differences in the
LF-NMES studies which could possible explain the conflicting
results are the study population (age, healthy volunteers versus
patients with chronic organ failure), measurement of muscle fiber
size or intensity of NMES.

These results are in line with previous studies concluding that
muscle fiber size increased less in subjects who performed
endurance training than in strength training [69,70]. Conflicting
results for the changes in muscle fiber size in HF-NMES could be
related to the intensity of the training. In two trials [38,51]
reporting no changes in muscle fiber size, the stimulus intensity
varied from “a comfortable stimulus” [51] to 25 mA [38]
compared with a stimulus at the maximum tolerable level in the
trials with an increased muscle fiber size [40—42,48]. Moreover,
Vivodtzev and colleagues showed that gains in muscle strength
were proportional to the increase in pulse amplitude during the
training program and to the final pulse amplitude of training [54].
The impact of NMES is also dependent on the training duration.
It is well known that long training duration is needed to induce
muscle hypertrophy [71], however the total duration time in the
HF-NMES trials ranged from 2 [45] to 54 hours [50].

Recommendations

Opverall, LF-NMES seems to improve oxidative phenotype
(oxidative enzyme capacities, type I/1Ila fibers). However, some of
the results of the included trials are difficult to compare and cannot
be generalized. Besides the heterogeneity in NMES protocols and
study designs, the number of study populations is limited and
varies among the trials, from well-trained healthy volunteers [40]
to patients with severe chronic organ failure [38,54] or severe
orthopedic problems [50,55]. Stimulation variables (i.e. pulse
amplitude, session time and number of sessions) might have
influenced the number of muscle fibers recruited during NMES,
the motor unit recruitment order and the types of the recruited
muscle fibers [18,72].

Therefore, future trials are needed to determine the optimal
settings of NMES, such as stimulation frequency (HF-NMES or
LF-NMES), session time, pulse amplitude and electrodes (number,
size and location) in healthy (i.e. athletes) and in diseased people
(i.e. GOPD, CHF, orthopedic problems). These trials should not
only study the effects of NMES versus volitional training, but also
study the superimposed effects of NMES on volitional training.

Based on the results of the present systematic review,
randomized controlled trials using concealed allocation, blinded
therapists, blinded participants and blinded outcome assessors are
recommended. Additionally, studies should focus on larger study
populations, including both genders and a broad range in age.
These studies should not include only healthy people but also
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people who are unable to perform or complete volitional exercise
training programs. Finally, safety should be added to new
randomized controlled trials as secondary outcome.

Conclusion

NMES seems to be a training modality resulting in changes in
oxidative enzyme activity, skeletal muscle fiber type and skeletal
muscle fiber size. A more formal meta-analysis would be a more
rigorous way to analyze the current data, but is not possible at this
time. Indeed, the small sample sizes, the variance in study
populations, the non-randomized controlled study designs, the
variance in primary outcomes and the large heterogeneity in
NMES protocols are major methodological limitations which may
limit the external validity of the current findings. Therefore, it is
difficult to draw definitive conclusions about the effects of
stimulation frequencies on muscular changes. This systematic
review, however, will help generate discussion in the field that
would lead to a consensus in study design that would permit a
meta-analysis in the future.

A better understanding of metabolic and structural changes
following NMES is of particular clinical interest as it will increase
its applicability in specific populations who are not able to perform
regular exercise training. Therefore, future well-designed, ran-
domized controlled trials with larger study samples are needed to
determine the optimal NMES settings (i.e. electrode placement,
stimulation frequency and pulse amplitude) to achieve endurance
or resistance training-like adaptations. The actual stimulation
parameters, session time, total time and changes in NMES pulse
intensity over time should be reported to enable comparisons
between studies and to facilitate the further development and
implementation of NMES.
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