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Abstract

Estrogens promote beneficial effects in the cardiovascular system mainly through the estrogen receptor (ER)a and ERb,
which act as ligand-gated transcription factors. Recently, the G protein-coupled estrogen receptor (GPER) has been
implicated in the estrogenic signaling in diverse tissues, including the cardiovascular system. In this study, we demonstrate
that left ventricles of male Spontaneously Hypertensive Rats (SHR) express higher levels of GPER compared to normotensive
Wistar Kyoto (WKY) rats. In addition, we show that the selective GPER agonist G-1 induces negative inotropic and lusitropic
effects to a higher extent in isolated and Langendorff perfused hearts of male SHR compared to WKY rats. These
cardiotropic effects elicited by G-1 involved the GPER/eNOS transduction signaling, as determined by using the GPER
antagonist G15 and the eNOS inhibitor L-NIO. Similarly, the G-1 induced activation of ERK1/2, AKT, GSK3b, c-Jun and eNOS
was abrogated by G15, while L-NIO prevented only the eNOS phosphorylation. In hypoxic Langendorff perfused WKY rat
heart preparations, we also found an increased expression of GPER along with that of the hypoxic mediator HIF-1a and the
fibrotic marker CTGF. Interestingly, G15 and L-NIO prevented the ability of G-1 to down-regulate the expression of both HIF-
1a and CTGF, which were found expressed to a higher extent in SHR compared to WKY rat hearts. Collectively, the present
study provides novel data into the potential role played by GPER in hypertensive disease on the basis of its involvement in
myocardial inotropism and lusitropism as well as the expression of the apoptotic HIF-1a and fibrotic CTGF factors. Hence,
GPER may be considered as a useful target in the treatment of some cardiac dysfunctions associated with stressful
conditions like the essential hypertension.
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Introduction

Compelling experimental evidence and epidemiological studies

support the idea that the different impact of cardiovascular

diseases between women and men may be related, at least in part,

to the beneficial effects exerted by estrogens [1–4]. Classically, the

estrogen receptor (ER)a and ERb mediate the biological responses

to estrogens acting as ligand-gated transcription factors [5,6],

however membrane associated receptors are also involved by

estrogens in triggering gene transcription and physiological

functions [7–9]. In this regard, it has been shown that the novel

estrogen receptor named GPR30/GPER mediates estrogenic

signals [10–19] activating diverse transduction cascades like the

extracellular signal-related kinase (ERK), the phosphatidylinositol-

3-kinase (PI3K)/AKT pathway, Ca2+ mobilization and cAMP

production [20–23]. Among numerous tissues, GPER was

detected in the cardiovascular system suggesting that it may play

a physiological role in the regulation of vascular and myocardial

function [24]. In line with these findings, we have demonstrated in

the isolated and perfused rat hearts that the selective GPER ligand

G-1 induces negative inotropic responses through the ERK and

the endothelial Nitric Oxide Synthase (eNOS) transduction

pathways [25]. In addition, G-1 improved the functional

recovery and reduced the infarct size following ischemia and

reperfusion (I/R) in Sprague Dawley rat hearts [26]. G-1

lowered also the mean arterial pressure in normotensive rats

[27] and the systolic blood pressure in ovariectomized female

mRen2 Lewis rats [28]. In cardiomyocytes exposed to hypoxia,

GPER and the fibrotic mediator Connective Tissue Growth

Factor (CTGF) were found up-regulated together with the key

factor mediating the adaptive response to low oxygen tension,

such as the Hypoxia Inducible factor-1 (HIF-1) [29]. Notwith-

standing the potential ability of GPER in mediating the

beneficial effects of estrogens in the cardiovascular system, its

role in the essential hypertension and cardiac remodeling

remains to be fully elucidated. In the present study, using as a

model system the Spontaneously Hypertensive Rats (SHR), we

provide novel insights into the mechanisms through which

GPER may elicit a cardioprotective action in stressful conditions

like essential hypertension.
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Materials and Methods

Animals
Male Wistar Kyoto (WKY) and Spontaneous Hypertensive Rats

(SHR) (450–500 g; 20 weeks old; Harlan Laboratories s.r.l. Udine,

Italy) ad libitum fed with a standard diet and with free water

access. Blood pressure (BP), measured before each experiment by

tail-cuff method, was: WKY: Systolic BP = 127.565.4 mmHg and

Diastolic BP = 83.564.5 mmHg; SHR: Systolic BP =

181.967.9 mmHg and Diastolic BP = 124.366.2 mmHg. Heart

weights were: WKY: 1,7560,18 g; SHR: 2,2560,2 g.

Ethics Statement
All procedures conformed to the Guiding Principles in the Care

and Use of Animals (US National Institutes of Health, Publication

No. 85-23, revised 1996) and the project were supervised and

approved by the ethics committee of the Department of

Pharmacy, Health and Nutritional Sciences, University of

Calabria. All surgery was performed under anesthesia and all

efforts were made to minimize suffering.

Langendorff perfused rat heart
Rats were anaesthetized by i.p. injection of ethyl carbamate

(2 g/kg body weight). Hearts were then dissected out and mounted

on a Langendorff apparatus for perfusion with a Krebs-Henseleit

solution (KHs) composed of (in mM) NaCl 113, KCl 4.7,

NaHCO3 25, MgSO4 1.2, CaCl2 1.8, KH2PO4 1.2, glucose 11,

mannitol 1.1, Na-pyruvate 5 and gassed with 95%O2-5%CO2

(pH 7.4, 37uC), or gassed with 50%O2-45%N2-5%CO2 (pH 7.4,

37uC) for hypoxic stimulation. KHs was delivered at a constant

flow-rate of 12 mL/min [30]. All hearts were perfused for a

15 min equilibration period. After the equilibration period, the

hearts (n = 5) were randomly assigned to one of the following

groups: Group 1 (control): KH; Group 2: KH plus G-1; Group 3:

KH in the presence of G-1 plus G15; Group 4: KH in the

presence of G-1 plus L-NIO; Group 5: KH gassed with 50%O2-

45%N2-5%CO2. Cardiac and hemodynamic parameters were

evaluated as previously described [31,32]. Briefly, to measure left

ventricular pressure, a water-filled latex balloon connected to a

BLPR gauge (WRI, Inc. USA) was inserted through the mitral

valve into the left ventricle to allow isovolumic contractions and to

continuously record mechanical parameters. The balloon was

progressively filled with water to obtain an initial left ventricular

end diastolic pressure of 5 to 8 mmHg [30]. Hemodynamic

parameters were assessed using a PowerLab data acquisition

system and analyzed using Chart software (ADInstruments, Basile,

Italy). Heart performance was evaluated from the Left Ventricular

pressure (LVP, in mmHg) which is an index of contractile activity,

the rate-pressure product (RPP: HR6LVP, in 104 mmHg6beats/

min) which is an index of cardiac work, the maximal value of the

first derivative of LVP (mmHg/sec) which is an index of the

maximal rate of LV contraction, the time to Peak Tension of

isometric twitch (Ttp) which is an assessement of inotropism.

Lusitropism was determined by calculating the maximal rate of

LVP decline -(LVdP/dT)max (mmHg/sec), the half time relaxa-

tion (HTR) (sec), which is the time required for tension to fall from

the peak to 50% and T/-t ratio obtained by +(LVdP/dT)max/-

(LVdP/dT)max. Mean CP was calculated by averaging values

obtained during several cardiac cycle [30].

Basal conditions
Cardiac performance was evaluated for inotropism by analyzing

the left ventricular pressure (LVP, in mmHg) (index of contrac-

tility), the rate-pressure product (RPP) (index of cardiac work), the

maximal value of the first derivative of LVP (+(LVdP/dt)max)

(mmHg/sec) (index of the maximal rate of left ventricular

contraction), Ttp (Time to Peak Tension of isometric twitch),

and for lusitropism by analyzing the maximal rate of left

ventricular pressure decline of LVP (2(LVdP/dt)max) (mmHg/

sec), the half time relaxation (HTR) (sec) (time required for tension

to fall from the peak to 50%) and T/-t ratio obtained by +(LVdP/

dt)max/2(LVdP/dt)max. Mean CP (mmHg) was the average of

values obtained during several cardiac cycles [30].

Experimental protocols
G-1 stimulated preparations. Preliminary experiments

(data not shown) obtained by repetitive exposure of each heart

to one concentration of G-1 (1 nmol/L) revealed no desensitiza-

tion. Thus, concentration-response curves were generated by

perfusing the hearts (WKY and SHR) with KHs plus increasing

concentrations of G-1 (from 1 pmol/L to 10 nmol/L) for 10 min.

To confirm that G-1 specifically activates GPER, hearts were

perfused with the selective GPER antagonist G15 (100 nmol/L)

alone for 10 min and then exposed to G15 (100 nmol/L) in

combination with increasing concentrations of G-1 (from 1 pmol/

L to 10 nmol/L).

eNOS involvement. To verify the involvement of eNOS in

the GPER-mediated cardiotropic effects, hearts were perfused

with L-NIO (10 mmol/L) alone for 10 min and then in presence of

L-NIO (10 mmol/L) in combination with increasing concentra-

tions of G-1 (from 1 pmol/L to 10 nmol/L).

Hypoxia stimulated preparations. Hearts were dissected

out and connected to a Langendorff apparatus for perfusion with a

Krebs-Henseleit solution gassed with 50%O2-45%N2-5%CO2.

Left ventricular pressure, heart rate and coronary flow were

monitored throughout the perfusion protocol.

At the end of the perfusions, ventricles were excised and

immediately processed for RNA and protein extraction.

Reagents
1-(4-(-6-Bromobenzol(1,3)diodo-5-yl)3a,4,5,9b-tetrahidro-3H-

cyclopenta(c-)quinolin-8yl)ethanone (G-1) was purchased from

Merck KGaA (Frankfurt, Germany). G15 was a kind gift from Dr

Prossnitz (University of New Mexico). L-N5-(1-iminoethyl)ornithine

(L-NIO) was purchased from Sigma-Aldrich (Milan, Italy).

Reagents were dissolved in dimethylsulfoxide. Preliminary exper-

iments showed that the presence of equivalent amounts of DMSO

in KHs solution did not modify basal cardiac performance.

Ventricular tissue homogenates preparation and gene
expression studies

Gene expression was evaluated by real-time PCR. Briefly, the

left ventricles were excised, homogenized with a motor-driven

homogenizer and total RNA was isolated using the Trizol reagent

(Invitrogen, Milan, Italy), according to the manufacturer’s

instructions. RNA was quantified spectrophotometrically and

quality was checked by electrophoresis through agarose gels

stained with ethidium bromide. Only samples that were not

degraded and showed clear 18 and 28 S bands under UV light

were used for RT-PCR. Total cDNA was synthesized from the

RNA by reverse transcription using the murine leukemia virus

reverse transcriptase (Invitrogen, Milan, Italy) following the

protocol provided by the manufacturer. The expression of selected

genes was quantified by real-time PCR using the Step OneTM

sequence detection system (Applied Biosystems Inc., Milan, Italy),

following the manufacturer’s instructions. Gene-specific primers

were designed using Primer Express version 2.0 software (Applied
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Biosystems Inc., Milan, Italy) and are as follows: ERa Fwd: 59-

AGGAGACTCGCTACTGTGCTG-39 and Rev: 59-AT-

CATGCCCACTTCGTAACAC-39; ERb Fwd: 59-CACTG-

CACTTCCCAGGAGTCA-39 and Rev: 59-AACTTGGCATTC-

GGTGGTACAT-39; GPER Fwd: 59-TCTACCTACCCT-

CCCGTGTGG-39 and Rev:59-AGGCAGGAGAGGAAGA-

GAGC-39; HIF-1a Fwd: 59-AACAAACAGAATCTGTCCT-

CAAAC C-39 and Rev: 59-CAGGTAATGGAGACATTG

CCAG-39; CTGF Fwd: 59-AAGACCTGTGGGATGGGC-39

and Rev: 59-TGGTGCAGCCAGAAAGCTC-39; 18S Fwd: 59-

TTTGTTGGTTTTCGGAACTGA -39 and Rev: 59-

CGTTTATGGTCGGAACTACGA -39. 18S expression was

used as PCR amplification control. The relative gene expression

levels were normalized to a calibrator that was chosen to be the

WKY rat samples. Final results were expressed as n-fold

differences in gene expression relative to 18S rRNA and

calibrator, calculated following the DDCt method as follows: n-

fold = 2 2(DCt sample2DCt calibrator). The DCt values of the sample

and calibrator were determined by subtracting the average cycle

threshold (Ct) value of the 18S rRNA reference gene from the

average Ct value of the different genes analyzed.

Western Blot Analysis
To prepare lysates, ventricles from rat hearts (n = 5) were

homogenized with a motor-driven homogenizer prior to extrac-

tion which was performed using 50 mM Hepes solution, pH 7.4,

containing 1% (v/v) Triton X-100, 4 mM EDTA, 1 mM sodium

fluoride, 0.1 mM sodium orthovanadate, 2 mM PMSF, 10 mg/ml

leupeptin and 10 mg/ml aprotinin. Protein concentrations in the

supernatant were determined according to the Bradford method.

Tissue lysates (10–50 mg of protein) were electrophoresed through

a reducing SDS/10% (w/v) polyacrylamide gel and electroblotted

onto a nitrocellulose membrane. After the transfer, the membranes

were stained with Red Poinceau to confirm equal loading and

transfer. Membranes were blocked and incubated with primary

polyclonal IgG antibody for HIF-1a (R&D Systems, Inc. Celbio,

Milan, Italy), ERb (Serotec, Milan, Italy), ERa (F-10), GPER (N-

15), CTGF (L-20), phosphorylated ERK1/2 (E-4), ERK2 (C-14),

phosphorylated-c-Jun Ser 73, c-Jun (N), p-AKT1/2/3 Ser 473-R,

p- GSK-3b Ser 9, p-NOS3 Ser 1177, b-tubulin (H-235-2), AKT/

1/2/3 (H-136), eNOS/NOS3 (B-5), GSK3b (4E95) and appro-

priate secondary HRP-conjugated antibodies, all purchased from

Santa Cruz Biotechnology (DBA, Milan, Italy). The levels of

proteins and phosphoproteins were detected with horseradish

peroxidase-linked secondary antibodies and revealed using the

Enhanced Chemiluminescence system (GE Healthcare, Milan,

Italy).

Statistics
Data are expressed as the mean6SD. Since each heart

represents its own control, the statistical significance of differences

within groups was assessed using one-way ANOVA. Comparison

between groups was made by using a one-way analysis of variance

(ANOVA) followed by the Bonferroni correction for post hoc t-

tests. Differences were considered to be statistically significant for

(#),(N),(%),(&),(*),(1),(+) p,0.05.

Results

ERs and GPER expression in WKY and SHR heart tissues
In order to provide novel insight into the molecular mechanisms

involved in the cardiac effects elicited by estrogens, we began our

study evaluating the expression of ERa, ERb and GPER in the left

ventricles of male WKY and SHR homogenates. The mRNA

expression levels of both ERa and ERb were similar in WKY and

SHR preparations, while GPER expression was found increased in

the left ventricles of SHR with compared to WKY rats, as

evaluated by Real time RT-PCR (Fig. 1A) and semi-quantitative

PCR (data not shown) [33]. In line with these results, the protein

expression of GPER was higher in SHR homogenates compared

to WKY preparations (Fig. 1D), while the protein levels of ERa
and ERb were similar in WKY and SHR hearts (Fig. 1B,C).

Cardiotropic effects of G-1 in WKY and SHR
Basal conditions. Cardiac parameters of WKY and SHR

rats, obtained after 20 min equilibration, are in Table 1 and 2.

Endurance and stability of the preparations, analyzed by

measuring the performance variables every 10 min, showed that

each heart was stable up to 180 min (data not shown).

G-1 inotropic, lusitropic and coronary actions. G-1

effects on basal cardiac performance were evaluated by exposing

heart preparations to increasing concentrations of G-1 to generate

concentration-response curves. Since G-1 effects remained stable

until 15–20 min, cardiac parameters were measured at 10 min.

On WKY hearts G-1 caused a concentration-dependent negative

inotropic effect, showed by a decrement of LVP, significant

starting from 1 pmol/L. G-1 also significantly reduced +(LVdP/

dt)max from 10 pmol/L, without changing HR (Fig. 2). Analysis

of the lusitropic changes revealed a reduction of -(LVdP/dt)max

and an increase of T/-t from 10 pmol/L. G-1 also induced an

increase in coronary pressure (Fig. 2). On SHR hearts increasing

concentrations of G-1 induce a relevant negative inotropic effect

which was significant from 10 pmol/L. It reduced LVP (49%) and

+(LVdP/dt)max (46%), reaching a maximum at 10 nmol/L. G-1

also affects the lusitropic parameters, causing a concentration-

dependent increment in T/-t and a decrement in -(LVdP/dt)max,

without changing HR. G-1 treatment did not affect coronary

pressure (Fig. 2) and LVEDP, an index of cardiac contracture.

G-1 activated GPER signaling
On the basis of the aforementioned results, we aimed to

evaluate whether the expression of ERa, ERb and GPER could be

altered by G-1 in WKY and SHR rat hearts preparations. To this

end, WKY and SHR rat hearts were perfused with 1 nmol/L G-1

for 2 hours, however the expression of all receptors examined did

not change at both mRNA (3A) and protein (3B) levels. Hence, the

cardiotropic effects induced by G-1 did not involve alteration in

ER and GPER expression. As GPER/eNOS signaling is involved

in G-1 dependent cardiac modulation [25], we determined that in

WKY rat (Fig. 3C) and SHR hearts (data not shown) the GPER

selective antagonist G15 [34] and the selective eNOS inhibitor L-

NIO [25] prevented the G-1 dependent negative inotropic and

lusitropic effects (data not shown). On the basis of these findings,

we aimed to characterize the transduction pathways activated by

G-1 in order to evaluate the mechanisms involved in its

cardiomodulatory action. In WKY rats (Fig. 4A) and SHR

(Fig. 4B), the exposure to G-1 (1 nmol/L) induced eNOS

phosphorylation, which was abrogated in presence of G15 and

L-NIO (Fig. 4A–B). In addition, in WKY (Fig. 4A) and SHR

(Fig. 4B) heart preparations exposed to G-1 (1 nmol/L), the

activation of ERK1/2, AKT, c-Jun and GSK3b was abolished

using G15 but not L-NIO.

HIF-1a and CTGF expression in WKY and SHR hearts
We have recently shown that GPER and CTGF are target

genes of HIF-1a upon hypoxic conditions in cancer cells and

cardiomyocytes [29]. Hence, we asked whether the increased

levels of GPER in SHR compared to WKY rats (Fig. 1) could be

GPER and Spontaneously Hypertensive Rat Hearts
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Figure 1. ERs expression in WKY and SHR left ventricular homogenates. (A) ERa, ERb and GPER mRNA expression in WKY and SHR left
ventricular tissue, as evaluated by Real Time PCR and normalization to 18S expression, PCR amplification in absence of cDNA was used as a control (-).
Bars represent the mean6SD of 5 experiments for each group. (#) p,0.05 for the expression in SHR vs WKY. (B) ERa, (C) ERb and (D) GPER protein
expression in male WKY and SHR ventricular tissue, lysis buffer without proteins was used as a control (-), protein expressions were normalized to b-
tubulin. (E) Densitometric analysis of the blots. Percentage changes were evaluated as mean6SD of 5 experiments for each group. (#) p,0.05 for the
expression in SHR vs WKY.
doi:10.1371/journal.pone.0069322.g001
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paralleled by an enhancement of HIF-1a and CTGF expression.

As shown in Figure 5, HIF-1a and CTGF were found up-

regulated at both mRNA and protein levels in SHR compared to

WKY heart preparations, suggesting that stressful hypertensive

conditions activate the HIF-1a/GPER/CTGF signaling in vivo as

we observed following the exposure to hypoxia in a different

model system [29]. Accordingly, exposing to low oxygen tension

(50% O2 for 1 h) WKY rat hearts, HIF-1a, GPER and CTGF

mRNA and protein expressions increased in hypoxic preparations

compared to normoxic homogenates (Fig. 6), while a similar

experimental procedure performed in SHR hearts did not

evidence a further up-regulation of these genes (data not shown)

likely due to their elevated levels detectable before the exposure to

hypoxia (Fig. 5). In WKY rats, exposure to low oxygen tension

reduced LVP (LVP = 89+3 vs 45+4 mmHg, P,0.05), and

coronary pressure (CP = 6363 vs 43+7 mmHg, P,0.05), without

significant changes in HR. A similar trend was observed in the

SHR hypoxic heart.

Then, we evaluated whether the GPER/eNOS transduction

pathway may influence the expression of HIF-1a and CTGF, as

the estrogenic signaling regulated HIF-1a and CTGF levels in a

stressful environment [35]. In WKY (Fig. 7A) and SHR (data not

Figure 2. Negative inotropic and lusitropic effects induced by G-1. Dose-dependent response curves to G-1 (1 pmol/L410 nmol/L) on
inotropic parameters: LVP and +(LVdP/dT)max, on lusitropic parameters: 2(LVdP/dT)max, T/-t, CP and on LVEDP on Langendorff perfused male rat
WKY and SHR heart preparations. For abbreviations and basal values see results. Percentage changes were evaluated as mean 6 SD of 5 experiments.
Significance of difference from control values (One way ANOVA); (*),(+) p,0.05; comparison between groups (ANOVA, Bonferroni’s Multiple
Comparison Test): (1) p,0.05. For abbreviations and basal values see results.
doi:10.1371/journal.pone.0069322.g002

GPER and Spontaneously Hypertensive Rat Hearts

PLOS ONE | www.plosone.org 6 August 2013 | Volume 8 | Issue 8 | e69322



shown) G-1 reduced the mRNA expression of both HIF-1a and

CTGF, however this effect was abrogated in presence of G15 and

L-NIO, suggesting that the GPER/eNOS transduction pathway is

involved in the G-1 dependent decrease of HIF-1a and CTGF

expression. Further supporting the abovementioned findings, G-1

reduced HIF-1a and CTGF protein levels in WKY and in SHR

heart preparations (Fig. 7B). Altogether, these data suggest that the

up-regulation of GPER may be included among the biological

responses to stressful conditions like the regulation of HIF-1a and

CTGF expression.

Figure 3. Involvement of eNOS in the cardiotropic actions induced by G-1. (A) ERa, ERb and GPER mRNA expression in WKY and SHR left
ventricular tissue perfused with vehicle (-) and 1 nmol/L G-1, as evaluated by Real Time PCR and normalization to 18S expression. Bars represent the
mean6SD of 5 experiments for each group. (#), (N) p,0.05. (B) ERa, ERb and GPER protein expression in male WKY and SHR left ventricular tissue
perfused with vehicle (-) and 1 nmol/L G-1. Protein expressions were normalized to b-tubulin, percentage changes were evaluated as mean6SD of 5
experiments for each group. (#), (N) p,0.05. (C) LVP responses of isolated and perfused Langendorff rat heart preparations to G-1 alone (1 pmol/
L410 nmol/L) and in combination with G15 (100 nmol/L) or L-NIO (10 mMol/L). Percentage changes were evaluated as mean6SD of 5 experiments
for each group. Significance of difference from control values (One way ANOVA); (*) p,0.05; comparison between groups (ANOVA, Bonferroni’s
Multiple Comparison Test): (1) p,0.05.
doi:10.1371/journal.pone.0069322.g003
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Discussion

An increasing number of studies shows that GPER is involved in

the signaling activated by estrogen and related compounds in

numerous tissues [36–39], including the cardiovascular system

[11,24,40]. As GPER is strongly expressed in the rat and human

hearts [41], it may mediate the cardioprotective action elicited by

estrogens together with or independently of ER [31,42,43].

Considering the growing interest addressed to better define the

role exerted by GPER in cardiac physiopathology, we aimed to

provide further insight into the mechanisms through which GPER

may influence cardiac performance in SHR, which represent a

useful model of essential hypertension. Our results demonstrate

that both GPER mRNA and protein levels are increased in left

ventricles from male SHR compared to male normotensive WKY

rats. In isolated and Langendorff perfused rat hearts, the selective

GPER ligand G-1 induced a reduction in contractility, as revealed

by the decrement of LVP and +(LVdP/dt)max. This effect was

more evident in SHR compared to WKY rats and independent of

the chronotropism in both animal groups. In addition, the

negative inotropism observed upon G-1 treatment in SHR and

WKY rats was paralleled by negative lusitropic effects, as revealed

Figure 4. Activation of GPER-mediated signaling. (A) eNOS, ERK, AKT, c-Jun, and GSK3b phosphorylation in WKY left ventricular tissues
perfused with vehicle (-), 1 nmol/L G-1 alone (2 h) and in combination with 100 nmol/L G15 (1 h) or 10 mmol/L L-NIO (1 h). The expression level of
each phospho-protein was quantified by densitometry and normalized to the respective total protein content. Percentage changes were evaluated as
the mean6SD of 5 experiments for each group. (#), (N), (%), (*), (1) p,0.05. (B) eNOS, ERK, AKT, c-Jun and GSK3b phosphorylation in SHR left
ventricular tissues perfused with vehicle (-), 1 nmol/L G-1 alone (2 h) and in combination with 100 nmol/L G15 (1 h) or 10 mmol/L L-NIO (1 h). The
expression level of each phospho-protein was quantified by densitometry and normalized to the respective total protein content. Percentage
changes were evaluated as the mean6SD of 5 experiments for each group. (#), (N), (%), (*), (1) p,0.05.
doi:10.1371/journal.pone.0069322.g004
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by the reduction of -(LVdP/dt)max and the increase of T/-t. In

spite of the remarkable effects on contractility and relaxation, G-1

did not affect coronary motility as only a slight, non-significant

vasoconstriction was observed in WKY rats. On the basis of these

observations, the elevated expression of GPER associated with a

marked cardiodepression discovered in SHR, could elicit a

protective role toward the stressful effects consequent to the high

blood pressure. In agreement with this assumption, G-1 did not

modify the endo-diastolic pressure, which is a well-known index of

contracture. Hence, the aforementioned responses mediated by

GPER could be beneficial in order to prevent and delay the

hypertensive damages leading to cardiac hypertrophy and heart

failure [44,45]. In this regard, our findings highlight the valuable

cardiac effects of GPER activation, according to a previous study

showing that G-1 ameliorates diastolic dysfunction and reduces left

ventricular hypertrophy in a model of salt-induced hypertensive

cardiomyopathy [43]. Analogously, G-1 was reported to attenuate

diastolic impairment and left ventricle remodeling in oophorecto-

mized mRen2.Lewis rats, suggesting that GPER activation may

mitigate the adverse effects of estrogen loss on left ventricle

remodelling and diastolic damage [46].

Recalling previous reports which link estrogenic signals with

eNOS activation [9,25], in the present study the GPER/eNOS

transduction pathway was shown to be involved in the negative

inotropic and lusitropic effects induced by G-1 on the basis of the

ability of the GPER antagonist G15 and the eNOS inhibitor L-

NIO to abrogate these cardiotropic responses (see results section

and figure 3). Moreover, we determined that the activation of

diverse transduction cascades induced by G-1 lies upstream of the

eNOS response, as G15 but not L-NIO prevented the phosphor-

ylation of ERK1/2, AKT, GSK3b and c-Jun. Our current results

are in line with diverse investigations showing that G-1 promotes

cardiotropic actions through the activation of ERK/eNOS

signaling and the PI3K/AKT transduction pathways [25,26].

Further extending previous data linking c-Jun activity with NO

production [47], we have also demonstrated that GPER is

involved in the activation of c-Jun associated with eNOS

phosphorylation. Next, we evidenced that G-1 perfusion induces

also the activation of GSK3b, which is largely known to promote

cell survival [48,49]. Altogether, our findings suggest that G-1

triggers a cardioprotective signaling network involved in the

‘‘reperfusion injury salvage kinase (RISK) pathway’’ [50] which is

activated by both ischaemic and pharmacological pre- and post-

conditioning [50,51,52].

The hypoxic mediator HIF-1a and the fibrotic marker CTGF

together with GPER were found expressed to a higher extent in

SHR with compared to WKY left ventricles. Accordingly, an

increased expression of these genes was detected in WKY exposed

Figure 5. HIF-1a and CTGF expression in normotensive and
hypertensive rat hearts. (A) Evaluation of HIF-1a and CTGF mRNA
expression in WKY and SHR left ventricular tissue, as evaluated by Real
Time PCR and normalization to 18S expression. Bars represent the
mean6SD of 5 experiments for each group. (#), (N) p,0.05 for the
expression in SHR vs WKY. (B) Evaluation of HIF-1a and CTGF protein
expression in WKY and SHR ventricular tissue, protein expressions were
normalized to b-tubulin. Percentage changes were evaluated as
mean6SD of 5 experiments for each group. (#), (N) p,0.05 for the
expression in SHR vs WKY.
doi:10.1371/journal.pone.0069322.g005

Figure 6. HIF-1a and CTGF expression in hypoxic cardiac
preparations. (A) Evaluation of HIF-1a, GPER and CTGF mRNA
expression by real time PCR in normoxic and hypoxic (1 h exposure
to 40% pO2 levels) WKY left rat ventricle after normalization to 18S
expression. Bars represent the mean6SD of 5 experiments for each
group. (#), (N), (%) p,0.05 for the expression of hypoxic vs normoxic
preparations. (B) Representative immunoblots showing HIF-1a, GPER
and CTGF protein expression in normoxic and hypoxic (1 h exposure to
40% pO2 levels) male WKY rat left ventricle. Protein expressions were
normalized to b-tubulin, percentage changes were evaluated as
mean6SD of 5 experiments for each group. (#), (N), (%) p,0.05 for
the expression of hypoxic vs normoxic preparations.
doi:10.1371/journal.pone.0069322.g006
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to low oxygen tension. It is well known that HIF-1, which is

formed by the constitutive b subunit and the oxygen-sensitive a
subunit [53], induces the transcription of factors involved in the

adaptation to stressful condition [54]. Hence, under hypoxia [29]

or hypertension as demonstrated in the present study, the up-

regulation of GPER may be included among the biological

adaptive responses to stressful microenvironment. In this regard, it

should be mentioned that a functional cross-talk exists between

hypertension and hypoxia, as hypoxic conditions which follow

hypertension trigger HIF-1a expression and function [55]. In

addition, hypoxia can provoke hypertension through diverse

mechanisms mediated by HIF-1a [56] and leading to increased

levels of catecholamines [57]. HIF-1 activation may also promote

programmed cell death during hypoxia in a cell type specific

manner [58,59] contributing to the cardiac degeneration and

progression toward heart failure [60]. Noteworthy, previous

studies have shown that NO is able to inhibit HIF-1 activity and

expression [61–64]. In line with these findings, our results indicate

that the GPER/eNOS signaling mediates the down-regulation of

both HIF-1a and its fibrotic target CTGF induced by G-1,

particularly in the hypertensive rat heart model.

Our present findings let emerge an important role for GPER in

the adaptation to stressful conditions, in line with previous data

showing that G-1 ameliorates post-ischemic dysfunction and

reduces infarct size after I/R [26]. Moreover, the ability of G-1

to preserve myocardial function when administered prior to global

I/R has been associated with decreased myocardial inflammation

[65], hence evidencing that the cardioprotective action mediated

by GPER may involve multiple mechanisms which need to be

further elucidated. In this context, it should be noted that we used

male WKY and SHR that represent a unique experimental model

as their exposure to estrogens is very low. This issue should be

carefully considered as GPER-mediated function may be regulat-

ed by estrogens making difficult the interpretation of the biological

responses. In addition, it should be mentioned that men and

women in post-menopause present a higher risk to develop

cardiovascular diseases respect to women before the menopause,

that are exposed to elevated estrogen levels. Anyway, further

studies are needed towards a better understanding of the potential

of GPER to mediate beneficial effects in presence of a different

hormone milieu.

Our previous study has demonstrated that the inhibition of ERa
and ERb abolishes the beneficial cardiac effects elicited by both E2

and G1 [25], suggesting a functional cross-talk between ERa, ERb
and GPER. ERa isoforms at 66 kD, 46 kD, and 36 kD have been

identified, although the 66 kDa isoform has been widely charac-

terized for its main role in mediating estrogenic stimuli [5,66,67].

G-1 has been shown to be able to activate the 36 kD isoform of

ERa in human cancer cells [68], evidencing a possible contribu-

tion of this receptor isoform in triggering the biological responses

to G-1. In this regard, it should be mentioned that similar evidence

has not been reported in rat hearts, hence it should be argued that

in our experimental model system the activation of GPER by G-1

is the mechanism involved in the cardiotropic effects observed, as

further demonstrated by using the selective GPER antagonist G-

15.

Collectively, the present study provides novel insight into the

regulatory role played by GPER in stressful conditions character-

Figure 7. Involvment of GPER/eNOS signaling in the regulation of HIF-1a and CTGF expression. (A) Evaluation of HIF-1a and CTGF mRNA
expression in WKY left ventricular tissues perfused with vehicle (-), 1 nmol/L G-1 alone (2 h) and in combination with 100 nmol/L G15 (1 h) or
10 mmol/L L-NIO (1 h), as evaluated by Real Time PCR and normalization to 18S expression. Bars represent the mean6SD of 5 experiments for each
group. (#), (N) p,0.05. (B) Evaluation of HIF-1a and CTGF protein expression in WKY and SHR ventricular tissues treated with vehicle (-) or 1 nmol/L
G-1 (2 h). Protein expressions were normalized to b-tubulin. Percentage changes were evaluated as mean6SD of 5 experiments for each group. (#),
(N) p,0.05.
doi:10.1371/journal.pone.0069322.g007
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ized by an altered ventricular performance. Hence, GPER may be

considered as a further therapeutic target in cardiac diseases on

the basis of its involvement in myocardial inotropism and

lusitropism as well as in the expression of the apoptotic and

fibrotic factors HIF-1a and CTGF, respectively.

Conclusion

In this study, we detected higher expression of GPER, the

hypoxic mediator HIF-1a and the fibrotic mediator CTGF in

left ventricles from SHR with respect to WKY rats. The GPER

ligand G-1induced negative inotropic and lusitropic effects that

could be considered as a protective action elicited by GPER.

Moreover, the activation of the prosurvival/anti-apoptotic

RISK pathway may further highlight the cardioprotection

mediated by GPER upon pathophysiological conditions. Hence,

the up-regulation of GPER expression may represent an

adaptive response to stressful conditions such as hypertension

and hypoxia. This may pave the way to analyze the therapeutic

potential of the GPER-dependent transduction pathways in

cardiac diseases.
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