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Abstract

Influenza epidemics arise through the accumulation of viral genetic changes. The emergence of new virus strains coincides
with a higher level of influenza-like illness (ILI), which is seen as a peak of a normal season. Monitoring the spread of an
epidemic influenza in populations is a difficult and important task. Twitter is a free social networking service whose
messages can improve the accuracy of forecasting models by providing early warnings of influenza outbreaks. In this study,
we have examined the use of information embedded in the Hangeul Twitter stream to detect rapidly evolving public
awareness or concern with respect to influenza transmission and developed regression models that can track levels of
actual disease activity and predict influenza epidemics in the real world. Our prediction model using a delay mode provides
not only a real-time assessment of the current influenza epidemic activity but also a significant improvement in prediction
performance at the initial phase of ILI peak when prediction is of most importance.
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Introduction

Influenza is an important respiratory infectious disease causing

seasonal epidemics or occasional pandemics across the world with

considerable morbidity and mortality. Much of the observed

wintertime increase of mortality in temperate regions is attributed

to seasonality of influenza which is easily spread by airborne

droplets made when an infected person coughs, sneezes or talks.

Surveillance has become important to detect clusters of influenza

cases and to focus public health resources on mitigating the spread

and impact of the outbreaks. However, tracking the spread of an

epidemic influenza in populations is a difficult task. Information

on surveillance systems used to routinely monitor influenza activity

such as influenza-like illness (ILI) has been collected to estimate the

relative severity of influenza seasons [1]. Although ILI surveillance

provides a valuable picture of influenza activity, ILI reports come

directly from doctors and other health service professionals by in
vitro identification of influenza viruses, typically with a delay of up

to one to two weeks. Since Google search engine query data were

detected to be closely associated with seasonal influenza activity

[2], there has been growing interest in monitoring influenza

outbreaks using other digital media [3,4].

Twitter is a social networking service that enables its users to

exchange text-based messages of up to 140 characters known as

tweets, including Hangeul (the Korean language). Useful infor-

mation for tracking or even forecasting behavior when extracted in

an appropriate manner lies embedded in the Twitter stream.

Twitter has been used for a variety of purposes in many fields of

human activity. It was shown that monitoring the contents of the

Twitter messages can improve the accuracy of detecting models by

providing early warnings of influenza outbreaks [5]. While Google

tracking was found highly correlated with ILI statistics over a long

time period [2], Twitter messages can provide more descriptive

information than search engine query data, and estimates of ILI

derived from the media can accurately track influenza activity

[3,4]. Twitter has over 500 million active users as of 2012,

generating over 340 million tweets daily and handling over 1.6

billion search queries per day [6]. Although Twitter appears to be

targeted to a young generation, it has attracted a diverse set of

users in terms of age. The majority of Twitter’s nearly 10 million

visitors in February 2009 were 35 years or older, and a nearly

equal percentage of users were between ages 55 and 64 as were

between 18 and 24 [7]. In August 2012, the demographic

breakdown on the social network still reveals that most users in

Twitter and Facebook are 35 or older, and the average Twitter

and Facebook users are 37.3 and 40.5 years old, respectively [8].

Hangeul as one of the most perfect phonetic system devised [9]

is the native alphabet of the Korean language, which consists of 24

consonant and vowel letters. Unlike the letters of the Latin

alphabet, Hangeul letters which are grouped into blocks are

shaped similar to the features of the sounds they represent. We

have collected over 287 million Korean tweet messages for a 51

week period from October 2011 to September 2012. In this study,

we have examined the use of information embedded in the

Hangeul Twitter stream to detect rapidly-evolving public aware-

ness or concern with respect to influenza transmission, and

developed regression models that tracked levels of actual disease

activity and can predict the ILI activity level in a population using

a delay mode.
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Methods

Twitter Stream Data Collection
In order to analyse public concerns regarding influenza activity,

Hangeul tweets containing influenza-related words were collected

from Twitter GardenPipe stream [10] beginning April 2011 via

Query class in twitter4j that was an unofficial Java library for the

Twitter application programmers interface (API) from TWIT-

TER4J.org [11]. Collection of tweets were expanded via

FilterQuery beginning October 2011. We developed JAVA-based

Twitter timeline collector and the filtered Twitter stream

constituted a subset of the entire stream [3]. To preserve the

integrity of the collected tweets, we included tweets containing

Hangeul characters only. Due to the limit of word counts in

FilterQuery, data collection process was mainly based on a set of

190 frequently used and pre-filtered single characters and 10

infectious disease names in Hangeul.

We excluded tweets of less than five characters and re-tweets

which contained less than two characters before first ‘‘RT @’’ or

those starting with ‘‘RT @’’. Advertisement sentences that

contained ‘‘[‘‘and’’]’’ marks, hyper-linked sentences that contained

‘‘http://’’ string, sentences from robotic Twitter users, blank-

ignored tweets, and spam tweets that cause too much messaging

from one source were removed. Valuable re-tweets and tweets, if

they were considered to be redundant of Tweet ID, were also

removed. Tweets were then stored in Oracle 10g database, after

removing approximately 20% of the collected tweets. Since the

search on the Oracle database became significantly slow as the

amount of data increased, the texts with search strings were stored

in the Oracle database.

Generation of Marker Frequency Matrix
Influenza is still often confused with the common cold but

influenza symptoms usually are more severe than the typical

sneezing and stuffiness by a cold. For this reason, keywords which

have obvious connection to influenza or common cold were used

to extract all the tweet messages containing them. The extracted

messages were segmented into individual words divided by blanks,

which were ranked as the most frequently used words: e.g. a total

of 500 words were considered as initial marker corpus (Table S1).

As the words were analysed for selecting markers, they were found

to contain phonological and morphological features including

homonyms to the term of influenza, honorifics that could be

confused with influenza, and words with the same stem. As an

example of phonological and honorific features in 500 most

common words, [chu.u.ni.ka], [chu.un], [chu.wn], [chu.wi],

[chup.go], [chup.ne], [chup.da], [chup.sp.ni.da], [chup. jo], and

[chup. i] came from [chup.da] or [chu.wi] which means the word

‘‘COLD’’. The words including these phonological features and

misspells were eliminated and those with the same stem were

assigned to the same word. From this set of influenza related

markers, we generated a daily marker frequency matrix from the

Twitter corpus of a day.

Let the set of tweets on the ith day be T i~fti1,ti2, . . . ,
tik, . . . ,tiK(i)g where K(i) is the total number of tweets collected on

the day. The frequency of the jth marker on the ith day, xij , is

defined as

xij~
1

K(i)

XK(i)

k~1

x
(ith marker appears in tik )

, j~1,2, . . . ,MI ð1Þ

where MI is the number of markers and x is an indicator function

xE~
1, if E is true;

0, otherwise:

�

Processing of ILI Data and Marker Selection by LASSO
We used ILI daily reports from Korea Centers for Disease

Control and Prevention (KCDC) as a disease spreading reference.

KCDC also provided regional statistics for influenza, which

included the number of ILI patients among 1,000 visits reported

by the Korea Influenza Surveillance Scheme [12]. The ILI activity

was calculated by the number of ILI over the total number of

inpatients (per thousand). For use of stationary estimation, the

unreported ILI activities were filled by linear interpolation of the

previous and next ILI activities to better express a weekly tendency

in the ILI data, since KCDC’s daily ILI report is not available on

Sundays or holidays. Baseline level of ILI activities in daily

surveillance influenza outbreak was found to exhibit a threshold of

0.5 persons out of 100. In addition, the missing data in marker

frequency matrix were also estimated by the same procedure, in

order to remove the effect of spurious noise and periodic

components, probably introduced by the weekly work pattern.

The resulting marker frequency is further processed by applying a

7-point moving average on each column of the frequency matrix

X~fxijg. For the remainder of the paper, whenever we refer to

ILI data and marker frequency they are interpolated and

smoothed data.

After interpolation and smoothing, we selected a subset of

markers for daily estimation by using the LASSO (Least absolute

shrinkage and selection operator) algorithm. LASSO has an effect

of automatically performing marker selection by using a single

tuning parameter to control both the marker selection and the

shrinkage component of the fitting procedure [13].

Linear Regression
Daily influenza spreading score was estimated with both ILI and

selected marker frequency matrix by using linear least squares

regression algorithm, where the model coefficients were chosen to

minimize the error metric or residual sum of squares [14]. Data set

was created using Microsoft Excel format and numerical methods

were applied as follows. Let.

N : number of days for which KCDC’s ILI data and Twitter

data are available

MS : number of selected markers

yi: KCDC’s ILI data for the ith days, i = 1, 2,…, N (smoothed

using 7-point moving average)

xij : frequency of marker j on the ith day (smoothed using 7-point

moving average)

The linear estimator of yi, ŷyi, is

ŷyi~b0z
XMI

j~1

bjxij ð2Þ

where bj ’s are the coefficients of regression. The residual, the error

of the linear estimator, is

Use of Twitter to Predict Influenza Infection
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ei~yi{ŷyi, i~1,2, . . . ,N ð3Þ

The residual sum of squares (RSS) which is a function of vector of

regression coefficients b~(b0,b1 . . . ,bMS
) is

RSS(b)~
XN

i~1

e2
i ð4Þ

We find the optimal coefficient vector b̂b by minimising RSS(b).
That is,

b̂b~ arg min
b

RSS(b) ð5Þ

The optimal coefficient vector b̂b is obtained by solving a system

of (MSz1) linear equations

LRSS(b)

Lbj

~0, j~0,1, . . . ,MS ð6Þ

ILI Prediction Algorithm
We assumed that KCDC’s ILI data for the ith day is reported

after D days of delay (Figure 1). That is, yi is only available on the

(izD)th day. We attempted to determine the coefficients of the

linear regression model based on the past data available for

predicting ILI of the most recent days. In this context, when we

computed ŷyi using equation (2), we needed to compute the

regression coefficients using (y1,y2, � � � ,yi{D{1) and

(x1j ,x2j , . . . ,xij) for j~1, � � � ,MS .

The following algorithm, called Prediction Algorithm 1 (PA1),

was a natural modification of the linear estimation described by

equations (2)–(6).

PA1

For i~1 to N, we performed (a)-(c).

(a) Let the subset of days IE(i)~f1,2, � � � ,i{D{1g and

RSS(b̂b)~
X

l[IE (i)

yl{b̂b0{
XMS

j~1

b̂bjxlj

" #2

: ð7Þ

where, l~1, . . . ,N. Here IE(i) is the days when KCDC’s ILI is

available for the computation of ŷyi (Figure 1).

(b) Obtain b̂bj for j~0,1, . . . ,MS by solving a set of MSz1

equations

LRSS(b̂b)

Lb̂bj

~0, j~0,1, . . . ,MS ð8Þ

(c) Compute ŷyi by

ŷyi~b̂b0z
XMS

j~1

b̂bjxij ð9Þ

The limitation of PA1 is that during the initial period of

NzDz1 days of an influenza season, we do not have enough

data to compute the coefficients of the linear regression. Even if

there are enough data for the computation of the regression

coefficients, the model obtained using small amount of available

data poorly predict yi’s especially when there is a significant time

variation of influenza activity. We believe that this problem can be

partially resolved if the data for the previous influenza season were

used for the computation of the regression coefficients. However,

the present data we have is limited to only one influenza season.

We, therefore, duplicated the avaiable data and used it as if it were

the data of the previous influenza season. In computing the

regression coefficients, we excluded the data corresponding to not

only D days of reporting delay but also ~DD days after the post black-

out period as shown in Figure 1. This is reasonable under the

assumption that the Twitter users’ behaviour does not vary

significantly from season to season.

The modified prediction algorithm, called Prediction Algorithm

2 (PA2), is given as follows. Here, we use tilde to denote the

extension of the ILI and marker frequency matrix into the past

(Figure 1).

PA2

For i~1 to N, we performed (a)–(c).

(a) Let the subset of days
~IIE(i)~fi{Nz~DDz1, � � � ,1, � � � ,i{D{1g and

RSS(b̂b)~
X

l[~IIE (i)

~yyl{b̂b0{
XMS

j~1

b̂bj~xxlj

" #2

ð10Þ

where

~yyl~
yl , l~1, . . . ,N;

ylzN , l~{Nz1, . . . ,{1,0;

(

~xxlj~
xlj , l~1, . . . ,N;

x(lzN) j , l~{Nz1, . . . ,{1,0;

(
Figure 1. Subset of days used for regression coefficients for ŷyi .

yi is only available on the (izD)thday.
doi:10.1371/journal.pone.0069305.g001
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and ~DD§0 is the length of blackout period for estimating ~bbi’s.

(b) Obtain b̂bj for j~0,1, . . . ,MS by solving a set of MSz1

equations

LRSS(b̂b)

Lb̂bj

~0, j~0,1, . . . ,MS ð11Þ

(c) Compute ŷyi by

ŷyi~b̂b0z
XMS

j~1

b̂bjxij ð12Þ

Results

Markers and their Correlations
The data set in our database consists of 881 thousand tweets

containing influenza-related keywords, influenza and common

cold, which were selected from 287 million Hangeul tweet

timelines observed between October 2011 and September 2012.

The size of the data set represented over 0.3% of the entire tweet

volume. Interpolation and smoothing of ILI and marker frequen-

cies seem to give a reasonable compromise between time

resolution and rejection of high frequency noise as shown in

Figure 2. The original and smoothed ILI activities by KCDC

suggest that the smoothed ILI captures the important peaks of the

ILI while removing unwanted noise. Interestingly, the frequencies

of many of the markers were found to be not only weakly

correlated with KCDC’s ILI data but also highly correlated with

those of at least one of the other markers.

We initially made use of subjective markers derived from

keywords which have direct connection to influenza. A pool of

selected markers were then extracted from the 500 most common

words which were found to form a very good description of the

topic as well as many irrelevant ones. In order to rank weights for

the selected markers, their regression coefficients were calculated.

Inspecting the selected markers of the model revealed large

positive coefficients assigned to markers like ‘novel flu’ (0.853), ‘flu’

(0.843), ‘severe’ (0.673), and ‘influenza’ (0.638). However, the

algorithm also selected the terms ‘furthermore’ and ‘lightly’, which

do not have any obvious connection to influenza. The term

‘lightly’ occurred frequently in phrases like ‘Since I dressed lightly,

I caught the flu’ which was a common expression for catching a

flu. The selected markers included not only illness symptoms but

Figure 2. Comparison of original and smoothed ILI data by
KCDC. The data were observed between October 2011 and September
2012.
doi:10.1371/journal.pone.0069305.g002

Figure 3. Correlations and p-value of markers. A) Fraction of
markers satisfying jr0j jwrTH. B) Fraction of markers whose p-value is

greater than pTH. C) Fraction of markers with maxj=k jrjkjwrTH.

doi:10.1371/journal.pone.0069305.g003

Use of Twitter to Predict Influenza Infection
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Figure 4. Cross-correlation among the markers. A) The effect of reducing number of markers. R2 is plotted as a function of number of markers.
B) Comparison of y and ŷy. The improvement of the estimation becomes less significant when MS is increased beyond 40.
doi:10.1371/journal.pone.0069305.g004
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also irrelevant terminologies such as ‘likely’, ‘concert’, ‘due to’, and

‘for mercy’s sake’.

In order to examine the nature of data, the correlation of the

selected markers with the ILI data was first examined. Let ILI data

from KCDC be represented by a vector y~(y1,y2, � � � ,yN ) and

the frequency of the jth marker be by a vector

xj~(x1j :x2j , � � � ,xNj), and define.

r0,j = correlation between ILI data y and the frequency of the

jth marker xj .

pj = p-value of the jth marker.

rj,k = correlation between the jth marker frequency xj and the

kth marker frequency xk.

Here, N is the number of days when KCCD’s ILI data is

available.

Figure 3A shows the fraction of markers whose correlation with

the ILI data is greater than a prescribed value, rTH. It is observed

that there are about 50% of the markers whose correlation with

the ILI data is less than 0.2. In Figure 3B, the fraction of markers

whose p-value is less than pTH is plotted. It was shown that more

than 60% of the markers have p-value greater than 0.01. In order

to further see the characteristics of the markers, we counted the

number of markers whose correlation with other markers is

significant. To that end, we plotted F vs. rTH, according to

F (rTH)~
1

MI

XMI

j~1

x( max
k=j

jrj,k jwrTH) ð13Þ

where MI is the number of initial markers and x is indicator

function. F gives the fraction of markers whose correlation with at

least one other marker is greater than rTH. More than 50% of the

markers are correlated with at least one other marker with

correlation greater than 0.5 (Figure 3C).

Marker Selection
We observed that there is a significant inter-dependence among

the marker frequencies and that frequencies of a considerable

number of markers are rather weakly correlated with KCDC’s ILI

data. In order to reduce the number of markers for reduced

computation, the LASSO method was chosen as it has the

advantage of producing sparse solutions, i.e., it will discard

candidate features which are proven to be redundant in terms of

predictability [13]. LASSO performs the same optimization as the

linear regression with an added constraint that the sum of absolute

value of the regression coefficients is upper bounded by a tuning

parameter t. That is, given the desired number of selected

markers, MS , equation (5) described in Methods is modified as

follows:

b̂b~ arg min
b

RSS(b) ð14Þ

subject to :
XMS

j~1

jb̂bj jƒt

where the RSS is a function of vector of regression coefficients

b~(b0,b1 . . . ,bj), and t is adjusted such that the number of

nonzero b̂bj ’s is MS .

To see the effect of reducing the number of markers, the

coefficient of determination, R2, versus the number of selected

Figure 5. Estimation in the absence of ILI data. A) PA1: comparison of y and ŷy for D~7,11,15. The prediction error increases as D increases. B)

Comparison of regression coefficients. b̂b7 versus days is plotted.
doi:10.1371/journal.pone.0069305.g005

Use of Twitter to Predict Influenza Infection

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e69305



markers, MS , was plotted to find the suitable subset of selected

markers (Figure 4A & Table S2). R2 is defined as

R2~1{
RSS(b̂b)P

i

(yi{�yy)2
, �yy~

1

N

X
i

yi ð15Þ

Thus, 1{R2 is the normalized RSS. The coefficient of

determination can also be seen as the sample correlation between

y~(y1,y2, . . . ,yN ) and its estimated sequence ŷy~(ŷy1,ŷy2, . . . ,ŷyN ).
That is,

R2~

P
i

(yi{�yy)(ŷyi{�̂yŷyy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

(yi{�yy)2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

(ŷyi{�̂yŷyy)2
r , �̂yŷyy~

1

N

X
i

ŷyi ð16Þ

As we increased the number of selected markers, MS , starting

from 1, R2 initially increased rapidly, followed by a plateau or

levelling out of its value (Figure 4A & Table S2). When the

number of markers MS is greater than 30, R2 reached a plateau,

close to 1.

At this point LASSO algorithm was used to generate subsets of

selected markers and their regression coefficients which maximise

the correlation with the ILI data, while minimising the size of the

Figure 6. PA2: Comparison of y and ŷy. The predicted values of ILI are compared with those reported by the KCDC for D~7,11,15 and
~DD~11,21,31. The curves obtained using PA1 (blue lines) were superimposed for comparison. A) ~DD~11 and D~7,11,15. B) ~DD~21 and D~7,11,15. C)
~DD~31 and D~7,11,15.
doi:10.1371/journal.pone.0069305.g006
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marker set. Notably, Figure 4B shows the comparison between y
and its estimate ŷy for a number of selected markers,

MS~1,5,10,20,30,40,50 and 60. The linear regression gave an

excellent estimation of the KCDC’s ILI with coefficient of

determination in excess of 0.99 with MS§30. The visual

inspection of the figures confirm the earlier observation that the

improvement of the estimation becomes less significant when MS

is increased beyond 40. For the remainder of this paper, we will

use MS~40 and re-index xij such that ‘j’ denotes the jth marker

selected by LASSO.

ILI Prediction
The above analysis assumes that the entire ILI data reported by

the KCDC is available at the time of estimation. There is typically

a one to two-week delay between the time a patient is diagnosed

and the moment that data points become available in ILI reports.

Accordingly, when we used prediction algorithm PA1, it was

found that this algorithm was implementable for prediction of the

ILI despite reporting delay of KCDC’s ILI and could be used

under the environment when the model is ‘slowly’ time varying.

However, the use of this algorithm resulted in a significant

estimation error during the beginning of winter seasonal peak,

whereas this gave a fairly good prediction during the middle and

latter part of the influenza season (Figure 5A). The comparison of

the predicted values and the KCDC’s ILI for three different values

of KCDC’s report delay, D~7,11, and 15, demonstrated the

inability of the prediction to follow the initial rise of the ILI data. It

was soon realized that the prediction error increased as D
increased. At the beginning of a season when ILI data for

computing regression coefficients was not sufficient, the prediction

tended to be significantly different from the reported KCDC’s ILI

data.

In order to see the underlying mechanism of this error, one of

the regression coefficients, say b̂b7 versus days was plotted in

Figure 5B, with the value of the same coefficient obtained

assuming that the entire KCDC’s ILI data as well as the marker

frequency matrix is available. This figure showed that computa-

tion of b̂bj ’s based on data on the set of days IE~f1,2, � � � ,
i{D{1g gives considerably different value when ‘i’ (index

representing day of the season) is less than 100. However, as ‘i’
increasesd, the discrepancy between these two became less

pronounced.

Figure 7. ILI percentages predicted by our model and provided by the KCDC for each month between Dec. 2011 to Sep. 2012. The
data were compared at D~7 and ~DD~11.
doi:10.1371/journal.pone.0069305.g007
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In Figure 6, we compared the predicted values of Twitter data

obtained using PA2 with those reported by the KCDC for

D~7,11,15 and ~DD~11,21,31. For comparison, we duplicated the

results obatined using PA1. It was shown that the modified

algorithm, PA2, gave a considerably better prediction for y than

PA1 with the parameter values considered. The improvement was

paricularly significant during the initial period of ILI rise when

PA1 had difficulty in predicting. The prediction error, however,

increased somewhat as the post blackout period ~DD increased.

Taken together, even during the beginning of winter seasonal

peak, predictive regression algorithms in our model obtained a

reasonably reliable prediction of the ILI data.

Throughout the 2011-2012 influenza season we used our model

using the modified algorithm PA2 to generate ILI estimates to

Table 1. Selected 40 markers and their linear regression coefficients.

Index Marker1 Pronunciation with Hangeul2 Regression coefficient

1 novel flu [sin.N.p h l.ru ] 4:743

2 surely [s@l.ma] {2:769

3 lightly [ja:lp.da] 2:668

4 winter [kj@.ul] {2:571

5 flu [p h l.ru] 2:277

6 concert [koN.j@n] {1:847

7 similar [kat.s p.ni.da] 1:551

8 for mercy’s sake [t@k.bun.e] {1:268

9 once [il.tan] {1:263

10 severe [tok.k ha.da] 1:262

11 pleased [c l.g@.un] 1:033

12 serious [sim.han] 1:018

13 eat [t.si.go] 0:982

14 autumn [ka. l] {0:982

15 recover [nat.da] 0:934

16 become sick [k@l.ri.da] {0:883

17 shortly [k m.baN] {0:860

18 tweet [t h.wit] 0:773

19 cough [ki.c him] 0:729

20 injection [cu.sa] {0:708

21 fighting [p ha.i.t hiN] {0:660

22 by the way [k n.de] {0:600

23 good night [kut.bam] 0:598

24 live [ci.nE.da] 0:480

25 realize [al.at.da] 0:446

26 give [cu.sib.si.jo] 0:400

27 condition [k h@n.di.sj@n] {0:381

28 birthday [sEN.il] 0:332

29 early [c ho.gi] {0:308

30 air conditioner [e.@.k hEn] {0:246

31 transfer [po.nE.da] 0:238

32 severe [tok.k hE.jo] 0:226

33 dog [kE] {0:207

34 noze [k ho] {0:145

35 actually [i.man] 0:134

36 anyway [an.g.rE.do] {0:121

37 be [ib.ni.da] 0:116

38 almost [k@. y] 0:114

39 have a rest [swi.da] 0:027

40 haha [ha.ha] 0:014

1Hangeul markers translated to English.
2Symbols from the international phonetic alphabet (IPA) [21].
doi:10.1371/journal.pone.0069305.t001
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evaluate timeliness and accuracy of the delay mode. Figure 7

illustrates data available at different points throughout the season

for D~7 and ~DD~11. During the time course of the season, we

were able to estimate not only the current ILI percentage 1-2

weeks ahead of the reports by KCDC but also a predictive ability

of our model.

Discussion

Despite substantial progress in many areas of influenza research,

how and when a new influenza virus strain emerges and spreads

rapidly remain largely unknown. Seasons with higher influenza

mortality are associated with higher disease transmission and more

rapid spread than are mild ones. Although influenza reoccurs each

season in regular cycles, efforts to produce reliable and timely

estimates of influenza activity are complicated. Various forecasting

methods for ILI, using telephone triage calls [15], over-the-counter

medications for respiratory diseases [16–19], school absenteeism

[20], and digital media [2–4] have yielded information about

future influenza activity for days to weeks in advance of ILI

surveillance. Twitter data can monitor the disease activity faster

than current practice allows. Our results demonstrate that Twitter

data can be used to track and estimate users’ concerns related to

influenza disease activity in real time.

In this study, daily influenza spreading score was estimated

using linear regression algorithm with ILI data and LASSO

selected marker frequency matrix, and the linear correlation

coefficients between the tweet and ILI data were used as the

performance indicator. Our results revealed important features

that make a significant contribution to the goodness-of-fit of the

regression models. First, the LASSO method was chosen to select

a subset of markers and their weights to maximize the correlation

with the ILI data. Although the more marker terms were included

the better performance was achieved in terms of correlation

coefficients, there was a strong inter-dependence among the

marker frequencies. Optimization of the number of markers was

necessary and subsequent automatic marker selection generated a

set of 40 markers (Table 1) [21]. Linear regression revealed large

positive coefficients assigned to markers like ‘novel flu’ (+4.743),

‘lightly’ (+2.668), ‘flu’ (+2.277), and so on. There were also

markers with large negative coefficients like ‘surely’ ({2:769),

‘winter’ ({2:571), ‘concert’ ({1:847) and so on. While our model

from a large set of markers can overfit, about 40 selected markers

were found to be sufficient to obtain reliable results.

Second, linear regression was implemented to examine the

prediction performance of our model. Computation of the

coefficients depended largely on KCDC̀s ILI data when its value

was fully available. However, since ILI surveillance reports come

via identification of influenza viruses with a delay of up to 1–2

weeks, direct comparison of the predicted values with the ILI data

was not straightforward. In the absence of KCDC’s most recent

ILI data, prediction resulted in a significant error at the beginning

of the influenza season. This is due to insufficient training data set

at the beginning of the current influenza season if only the current

season’s data were used. This is understandable because compu-

tation of the regression coefficients using equations of (9) was based

on data collected during the time when ILI is near baseline value.

If the previous influenza seasonal data are available, we can use

them to improve the accuracy of prediction especially during the

period when our algorithm suffers from significant errors. We

noted that there are clear seasonal variations in the occurrence of

influenza, with a marked peak at wintertime in temperate regions.

Therefore, the problem can be circumvented by using data

accumulated during the previous influenza season. In order to

ensure the fitting algorithm converging despite this problem, we

assumed that previous year’s seasonal data are very similar to the

present year’s with regard to the seasonal patterns and applied the

same algorithm. However, we avoided using the data in the

neighbourhood of the ith day by introducing a post blackout

period ~DD in addition to the report delay D. Our experiment with

duplicated data demonstrated considerable improvement of

prediction accuracy.

Annual epidemics of influenza typically occur during the winter

months, but the peak of influenza activity can occur in late spring.

Influenza activity recently tends to reach two peaks a year in East

Asia. Regardless of the peak time of influenza activity, however,

when the KCDC’s ILI data of the previous season is available, our

algorithm is expected to lead to a considerably more accurate

prediction for seasonal influenza activity than when the previous

seasonal ILI data is absent. This is a significant improvement in

prediction performance, since it is achieved at the initial phase of

ILI peak, when prediction is of most importance and enough data

of the present season are not yet available to accurately perform

the prediction. Moreover, by calculating the regression coefficients

by using the most recent set of data, our algorithm can easily adapt

to time-varying environment, albeit, slowly. Nevertheless, our

algorithm has a few limitations at present. Our data analysis has

been restricted to a single season of epidemic influenza in a single

location. It was recently found that Google tracking may not work

well for diseases with considerable media exposure, in particular,

emerging diseases such as 2009 pandemic H1N1 or severe acute

respiratory syndrome [22].

In conclusion, we proposed an adaptive algorithm for real-time

prediction of influenza infection using Hangeul Twitter. The

feasibility of using the algorithm for a real-time assessment of the

current epidemic condition was demonstrated by a reasonablly

good prediction of influenza seasonal activity.
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