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Abstract

Background: Sub-Saharan Africa bears a disproportionate burden of HIV infection. Knowledge of the spatial distribution of
HIV outcomes is vital so that appropriate public health interventions can be directed at locations most in need. In this
regard, spatial clustering analysis of HIV-related mortality events has not been performed in a rural sub-Saharan African
setting.

Methodology and Results: Kulldorff’s spatial scan statistic was used to identify HIV-related and all-cause mortality clusters
(p,0.05) in a population-based demographic surveillance survey in rural KwaZulu Natal, South Africa (2000–2006). The
analysis was split pre (2000–2003) and post (2004–2006) rollout of antiretroviral therapy, respectively. Between 2000–2006 a
total of 86,175 resident individuals $15 years of age were under surveillance and 5,875 deaths were recorded (of which
2,938 were HIV-related) over 343,060 person-years of observation (crude all-cause mortality rate 17.1/1000). During both
time periods a cluster of high HIV-related (RR = 1.46/1.51, p = 0.001) and high all-cause mortality (RR = 1.35/1.38, p = 0.001)
was identified in peri-urban communities near the National Road. A consistent low-risk cluster was detected in the urban
township in both time periods (RR = 0.60/0.39, p = 0.003/0.005) and in the first time period (2000–2003) a large cluster of low
HIV-related and all-cause mortality in a remote rural area was identified.

Conclusions: HIV-related and all-cause mortality exhibit strong spatial clustering tendencies in this population. Highest HIV-
related mortality and all-cause mortality occurred in the peri-urban communities along the National Road and was lowest in
the urban township and remote rural communities. The geography of HIV-related mortality corresponded closely to the
geography of HIV prevalence, with the notable exception of the urban township where high HIV-related mortality would
have been expected on the basis of the high HIV prevalence. Our results suggest that HIV treatment and care programmes
should be strengthened in easy-to-reach high density, peri-urban populations near National Roads where both HIV-related
and all-cause mortality are highest.
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Introduction

Identification of areas with excess health problems is important

so that appropriate public health interventions can be directed at

these locations [1,2]. Since many diseases are related to location,

geographic information systems (GIS) through spatial analysis can

identify problem areas or locations for public health effort

especially in poor, remote or rural settings which have limited

available resources. Evidence suggests that geographic approaches

to control and prevention may enhance public health efforts [3]

and improve public health care delivery systems. The development

of technologies, such as GIS, and the advancement of spatial

statistics have allowed the application of not only disease mapping

but also spatial analyses, such as spatial clustering, in epidemio-

logical research [4–7]. In this context, clusters are defined as a

statistically significant excess or deficit of events relative to

expectation [8].

There are a large number of studies that have used spatial

clustering methods to identify clusters of deaths due to non-

communicable diseases such as cancer in developed country

contexts, for example, Rosenberg et al [4], and Jemal et al [7].

There are also examples of work that have used spatial clustering

methods to help understand the epidemiology of infectious diseases

in rural African settings. For example, in our study population, we

previously demonstrated substantial geographical heterogeneity in

the prevalence of HIV infection [9]. The highest prevalence

occurred in peri-urban communities located near the National

Road. Snow et al [10], report a space-time clustering of severe

childhood morbidity on the Kenyan coast with seasonal peaks in

incidence of severe malaria comprising discrete mini-epidemics.

Similar studies on micro-epidemiology of malaria were done in

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e69279



Nouna, rural Burkina Faso [1] and the results are likely to help

better understand the observed clustering of mortality in the area.

However, for deaths related to infection with HIV, spatial

clustering has not previously been done at a truly local level.

Here we use population-based data from KwaZulu-Natal,

South Africa to detect statistically significant all-cause and HIV-

related mortality clusters in a typical rural South African

population between 2000 and 2006. In this setting, HIV with or

without TB remains the major cause of death among the

population [11] and residents are at a high-risk of HIV infection.

Methods

Study Area and Population
The study area is located near the market town of Mtubatuba in

the Umkanyakude district of KwaZulu-Natal province, South

Africa (Figure 1) and has been described in detail previously [12].

The population is almost exclusively Zulu-speaking and the study

area was part of a former ‘‘homeland’’ under apartheid and is still

characterized by high levels of circulatory migration [13]. The

adult unemployment rate is 67% and the district of Umkhanya-

kude has the lowest score of any district in KwaZulu-Natal on

United Nation’s Human Development Index [14]. The demo-

graphic surveillance site (DSS) was established in 2000 and since

then has followed vital events (including all deaths) in a complete

population of 87,000. The surveillance area is 438 km2, and is

typical of many rural areas of South Africa in that while

predominantly rural, it contains an urban township and informal

peri-urban settlements [12]. All homesteads (N < 12,000) within

the Africa Centre’s demographic surveillance area have been

mapped via global positioning system (GPS) technology to an

accuracy of ,2 m (Figure 2). The area is characterized by high

HIV prevalence and HIV incidence [15]. Starting in 2004 there

has been a rapid roll-out of anti-retroviral therapy (ART), [15,16]

through a nurse-led, devolved public-sector programme described

previously [17].

The Africa Centre Demographic Information System
(ACDIS)

ACDIS has been described in detail elsewhere [12]. Briefly, the

ACDIS database stores longitudinal health and socio-demographic

data on registered subjects, physical structures (e.g. homesteads,

clinics and schools) and households [12]. The information is

updated every six months through fieldworker visits. The events

that are recorded include: individual events (death, birth,

migration, etc) household events (household formation, migration,

change of household head), and events affecting individual

homesteads (start of a new building, change of a building’s main

purpose or its owner).

All deaths across the surveillance area are subject to a verbal

autopsy interview. The detailed description of this methodology

has been described and validated previously [18]. In brief, trained

nurses conduct interviews with the caregivers of the deceased. The

interview includes an open disease history, a checklist of signs and

symptoms, and a structured questionnaire [18]. Two most

experienced clinicians then independently assign the cause of

death. HIV and TB were combined as a cause of death as it is

often difficult to distinguish between them using a verbal autopsy

and this improves the sensitivity of the tool. The resulting ICD-10

(10th revision of the International Classification of Diseases) codes

were grouped into global burden of disease groups I, II and III

[19] with the exception of tuberculosis and AIDS diagnoses, which

were classified together into a separate group as HIV-related

deaths, given the extensive overlap in mortality from HIV

infection and tuberculosis [20]. Ethical clearance for the demo-

graphic surveillance and collection of verbal autopsies has been

obtained from the University of KwaZulu-Natal’s Ethics Com-

mittee.

Spatial Analysis
The mortality event and person-time data was used to describe

the all-cause mortality and HIV-related mortality patterns for the

adult ($15 years of age) population. We aggregated mortality

Figure 1. Location of the study area in South Africa.
doi:10.1371/journal.pone.0069279.g001

Spatial Clustering of Mortality
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events and person-years of observation (PYO) by fieldworker area (48

in total across the study area). Individuals contributed to the

person-time denominator from 1 January 2000, or from any later

date at which they attained the age of 15, or through in-migration

until 31 December 2006, and ceased to contribute to the

denominator at death or out-migration. For this analysis we only

used person-time accrued and deaths observed whilst the

individual was resident at a homestead within the surveillance

Figure 2. Distribution of homesteads across the study area.
doi:10.1371/journal.pone.0069279.g002
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area. We then calculated directly standardized mortality rates for

each fieldworker area to eliminate the influence of age and sex

composition by standardizing against the ACDIS population for

the period 2000–2006. We displayed this information in the form

of thematic maps for both all-cause and HIV-related mortality

from 2000–2003 (period before introduction of ART and 2004–

2006 (period after introduction of ART), respectively.

Cluster Detection
Similarly, all mortality events and person-years of observation

were summed for all individuals $15 years of age in each

homestead (mapped to an accuracy of ,2 m). We then applied

Kulldorff’s spatial scan statistic (Poisson model) implemented in

SaTScan software version 7.0 to perform the spatial analysis

scanning to detect mortality clusters (high or low mortality clusters)

across the surveillance area. A spatial scan statistic is a cluster

Figure 3. Causes of deaths by year and sex for the adult population ($15 years of age) between 2000–2006.
doi:10.1371/journal.pone.0069279.g003

Figure 4. Maps showing HIV-related mortality ($15 years of age) clusters across the two time periods (A: 2000–2003 and B: 2004–
2006) identified by the Kulldorff spatial scan statistic (solid lines indicate high-risk clusters whilst dashed lines indicate low-risk
clusters). The clusters are superimposed onto maps showing the corresponding age and sex standardized HIV-related mortality rates aggregated by
‘‘fieldworker area’’.
doi:10.1371/journal.pone.0069279.g004

Spatial Clustering of Mortality
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detection test that is able to both detect the location of clusters and

evaluate their statistical significance [21]. This was done by

gradually scanning a window across time and/or space across the

study area, noting the number of observed and expected

observations inside the window at each location using a Poisson

model [21,22]. For any given position of the centre, the radius of

the circle changes continuously so that it can take any value. For

each circle, the spatial scan statistic calculates the likelihood of

observing the observed number of cases inside and outside the

circle [21,23]. The circle with the maximum likelihood is the most

likely cluster (least likely to have occurred by chance).

The spatial clustering method [24] offers several advantages: it

corrects for multiple comparisons, adjusts for the heterogeneous

population densities among the different areas in the study, detects

and identifies the location of the clusters without prior specification

of their suspected location or size thereby overcoming pre-

selection bias, and the method allows for adjustment of covariates

[22,25]. The p-value of the statistic is obtained through Monte

Carlo hypothesis testing (9999 iterations), where the null

hypothesis of no cluster is rejected at an a level of 0.05 exactly if

the simulated p-values is #0.05 for the most likely cluster [21,23].

We limited any possible cluster so it would not exceed 50% of the

total population at risk but in practice such a constraint is unlikely

to have any bearing on the results given the highly localized spatial

heterogeneity in HIV prevalence observed in this population [9].

We ran the analysis by two time periods described previously

(2000–2003 and 2004–2006) for HIV-related and all-cause adult

population scanning for clusters of high or low mortality rates.

Results

Over the seven year period (2000–2006) we observed a total of

86,175 resident individuals $15 years of age and 5,875 deaths

were recorded (2,938 were HIV-related) over 343,060 PYO. The

crude all-cause mortality rate in this population cohort was 17.1

(95% CI 16.7–17.6) deaths per 1000 PYO and was higher in males

(18.1 deaths per 1000 PYO) in comparison to females (17.3 deaths

per 1000 PYO). Across the two time periods, the crude mortality

rate decreased slightly from 17.3 (95% CI 16.7–17.8) deaths per

1000 PYO between 2000–2003 to 17.0 (95% CI: 16.3–17.6)

deaths per 1000 PYO between 2004–2006. HIV-related deaths

accounted for 45% of deaths in males over 53% for females

respectively (Figure 3). Although the HIV-related mortality rate

was similar for males and females (<8.6 per 1000 PYO), HIV-

related deaths make up a larger proportion of deaths in females

due to the fact that other causes of death such as injury-related

deaths are higher in males [18,26].

The results of cluster analysis for adult HIV-related mortality

are shown in Figure 4. All results were adjusted for age and sex.

Superimposed on the map of age-standardized HIV-related

Figure 5. Maps of the study area showing the location of the rural, urban and peri-urban zones. Superimposed on the map are the HIV-
related clusters identified during the period 2000–2003 (A) and 2004–2006 (B) identified by the Kulldorff spatial scan statistic. Solid lines indicate high-
risk clusters whilst dashed lines indicate low-risk clusters.
doi:10.1371/journal.pone.0069279.g005
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mortality rates are the clusters identified by the Kulldorff spatial

scan statistic for the two time periods (A: 2000–2003 and B: 2004–

2006). HIV-related mortality exhibits strong spatial clustering

tendencies as measured by the Kulldorff’s spatial scan statistic for

time periods 2000–2003 (A, cluster 1, RR = 1.46, p = 0.001, 836

observed mortality cases, 673.24 expected) and 2004–2006 (B,

cluster 1, RR = 1.51, p = 0.001, 323 observed cases, 237.30

expected) respectively. A consistent low-risk cluster was detected

around KwaMsane township across both time periods (A, clusters

2 and 3, RR = 0.60, 0.39, p = 0.014, 0.003, B, cluster 2, RR = 0.45,

p = 0.005). The Highest HIV-related mortality occurred in the

peri-urban communities along the National Road (Figure 5).

The results of cluster analysis for all-cause mortality are shown

in Figure 6. Superimposed on the map of age-standardized all-

cause mortality rates are the clusters identified by the Kulldorff

spatial scan statistic for the two time periods (A: 2000–2003 and B:

2004–2006). Kulldorff’s spatial scan statistic has identified

statistically significant clusters with high and low relative risk for

both time periods. For time period 2000–2003 (A, cluster 1) a

statistically significant cluster was detected with a high RR of 1.35

(p = 0.001): 1194 total observed cases (973.66 expected). Low

relative risk clusters was also detected (A, clusters 2 and 3,

RR = 0.31, 0.44, p = 0.041, 0.042). For time period 2004–2006 (B,

cluster 1) a statistically significant cluster was detected with a high

RR of 1.38 (p = 0.001): 660 total observed cases (518.07 expected).

A low relative risk cluster was also detected for the period 2004–

2006 (cluster 2) with a RR of 0.21, p = 0.017.

All-cause mortality clusters were located in similar locations as

the HIV-related mortality clusters. This largely reflects the fact

that HIV-related mortality is the major cause of death in this

population and hence the spatial patterns of all-cause mortality are

influenced by the underlying spatial distribution of HIV-related

mortality.

Discussion

We have investigated for the first time localized spatial

clustering of HIV-related and all-cause mortality events in adults

($15 years of age) in a typical rural South African population with

high HIV-prevalence. Both HIV-related and all-cause mortality

are not homogenously (randomly) distributed in this population

and exhibit strong spatial clustering tendencies as measured by the

Kulldorff spatial scan statistic. Highest HIV-related and all-cause

mortality occurred in the peri-urban communities along the

National Road and were lowest in the urban township and remote

rural communities. Overall, these results provide a clear rationale

for the need to strengthen HIV treatment and care programmes in

the high density peri-urban communities along the National Road.

Figure 6. Maps showing all-cause mortality ($15 years of age) clusters across the two time periods (A: 2000–2003 and B: 2004–
2006) identified by the Kulldorff spatial scan statistic (solid lines indicate high-risk clusters whilst dashed lines indicate low-risk
clusters). The clusters are superimposed onto maps showing the corresponding age and sex standardized all-cause mortality rates aggregated by
‘‘fieldworker area’’.
doi:10.1371/journal.pone.0069279.g006

Spatial Clustering of Mortality

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e69279



Our results reinforce the substantial contribution of HIV to all-

cause mortality in this population with half of all adult deaths over

the study period being HIV-related. Our findings are supported by

previous research in the same population which showed a

reduction in HIV-related mortality post 2004 [26]. The high

HIV mortality clusters identified in this study corresponded

approximately with areas of high HIV prevalence identified

previously in this population in communities closest to the

National Road [9]. Indeed, a strong ecological relationship

between proximity to roads and HIV prevalence among women

attending antenatal clinics has been previously demonstrated in

this setting [27]. Interestingly, the low mortality cluster around the

urban township (close to the National Road) corresponded to a

cluster of relatively high HIV prevalence. This could be a

consequence of a combination of better living conditions, [28,29]

and easier access to HIV treatment and care in the urban area in

comparison to the surrounding peri-urban communities. The

locations of high and low mortality communities were remarkably

similar across the two time periods. This reflects the fact that

mortality rates in the peri-urban communities were always

relatively higher than the surrounding population (and the

converse was true for the urban and deep rural communities)

despite the fact that overall mortality had decreased slightly across

the two time periods. In line with our previous work [9], the results

provide further evidence to challenge the paradigm of a ubiquitous

‘generalized’ rural epidemic. Rather the marked spatial variation

in mortality in this population is likely a consequence of the fact

that several localized HIV sub-epidemics occur in this population

that are partly contained within geographically defined commu-

nities. Consequently, resources should not be distributed in a

purely uniform manner in such settings where clear, marked

geographical variations in mortality exist.

The last two decades have seen substantial work in the GIS

arena on the statistical analysis of point patterns, e.g, Besag and

Newell (1991) [3], and spatial clustering is one of the many

statistical analysis used for point pattern analysis. Spatial clustering

detection methods are classified as global, local and focused [3,30].

In this present study we chose the local spatial scan statistic

(Kulldorff’s spatial scan statistic) over others [5,31], as it is suitable

for the purpose of this present study because it determines the

existence of statistically significant clusters and their geographic

locations. Quite often public health authorities need to respond to

demands to investigate potential clusters of different diseases and

confirm or refute, with certainty, whether a health problem exists

in a particular location [23]. The application of GIS and spatial

scan statistics can help health workers better understand the HIV-

related mortality patterns both in space and time.

A strength of our cluster detection approach is that we do not

aggregate the data by arbitrary (with respect to the ‘‘boundary’’ of

the cluster) administrative units but instead use person-exposure

and mortality events at the level of individual homesteads

(accuracy ,2 m) to define the "clusters". A limitation of the

analysis using the Kulldorff’s spatial scan statistic is that clusters

are defined as circles [1,10]. For example, if a homestead with a

lower mortality rate is located next to or is surrounded by

homesteads with a higher mortality rates it is more likely that the

homestead with a lower mortality rate will always be included in

the cluster [32,33].

The results of this present study can be used to target high-risk

communities for public health intervention and prioritize the areas

that need thorough epidemiological investigation. Although the

detailed datasets used in this analysis are unlikely to be available at

a National level, the principal elucidated in our work suggests that

HIV treatment programmes should be strengthened in easy-to-

reach high density, peri-urban populations near National Roads

where mortality rates are highest.
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